
API Documentation MatrixSSL 1.2

Page 1 of 6 Copyright ©2002-2004 PeerSec Networks, LLC

MatrixSSL Sockets API documentation
The MatrixSSL library is not written for a specific transfer protocol. The generic buffer
based encryption/decryption routines make MatrixSSL ideal for securing data to be
transported over virtually any communication channel. However, the majority of
MatrixSSL integrations will be to secure data between computer systems over TCP
sockets. The MatrixSSL package includes a sample socket layer wrapper around the
public APIs as a reference implementation for customers wishing to use MatrixSSL to
secure their sockets-based applications. This document details the socket layer APIs.

The example socket layer source code can be found in the examples/sslSocket.c file in the
installed package. For working examples see the httpsReflector and httpsClient
applications which take advantage of these socket level APIs.

The sockets interface is currently designed for blocking sockets operation, support for
non-blocking sockets is easily implemented using this code as a base.

Raw socket functions
For clarity, the initialization, shutdown, and raw socket control functions have been
implemented separately from the security layer functions that wrap the MatrixSSL public
APIs. This functionality will typically already be part of a networked application. The
details of these routines are beyond the scope of this document but brief descriptions are
given in this section.

SOCKET socketListen(short port, int *err);
 Creates a new socket and binds to the given port

SOCKET socketAccept(SOCKET listenfd, int *err);
 Creates new socket from an incoming request to a listen socket

SOCKET socketConnect(char *ip, short port, int *err);
 Creates a new socket and connects to a listen socket on the given IP and port

Void socketShutdown(SOCKET sock);
 Closes a socket

void setSocketBlock(SOCKET sock);
 Sets a socket to blocking mode

void setSocketNonblock(SOCKET sock);
 Sets a socket to non-blocking mode

void setSocketNodelay(SOCKET sock);
 Sets the NO_DELAY option on the socket

API Documentation MatrixSSL 1.2

Page 2 of 6 Copyright ©2002-2004 PeerSec Networks, LLC

Secure socket functions
Details for the functions that wrap the MatrixSSL public APIs are described in this
section.

sslConnect
Prototype

 int sslConnect(sslConn_t **cp, SOCKET fd, sslKeys_t *keys, sslSessionId_t * id,
 short cipherSuite, int (*certValidator)(sslCertInfo_t * t, void *arg));

Description
This client side function is used to connect to a server that has set up a listen
socket. This function connects the socket and performs the SSL handshake with
the server. The returned cp parameter is the new SSL connection context used as
input for the sslRead and sslWrite routines. The remainder of the parameters are
inputs that control the initialization of the new context.

At the successful completion of this function, the application may call sslRead
and sslWrite as necessary to communicate with the server.

The cp parameter should be freed when no longer needed by calling
sslFreeConnection.

Parameters
cp Output. Initialize to NULL. Newly

allocated connection context on success.
fd Socket descriptor returned from a

previous call to socketConnect.
keys The MatrixSSL key structure returned

from a previous call to
matrixSslReadKeys.

id An optional session id from a previous
connection to initiate a resumed SSL
session. The id can be retrieved by a
call to matrixSslGetSessionId after a
session has been successfully
negotiated.

cipherSuite An optional parameter that will restrict
the cipher suite to the single specified
value for the connection. Supported
cipher suite values can be found in
matrixInternal.h. Set to 0 for no
preference.

certValidator An optional function callback that will
be invoked as part of the server
certificate validation process. See the
public API documentation for

API Documentation MatrixSSL 1.2

Page 3 of 6 Copyright ©2002-2004 PeerSec Networks, LLC

matrixSslSetCertValidator. Pass as
NULL if not used.

Return Value
0 Success. Handshake complete.
< 0 Failure. Can’ t continue with this

connection.

sslAccept
Prototype

 int sslAccept(sslConn_t **cp, SOCKET fd, sslKeys_t *keys,
 int (*certValidator)(sslCertInfo_t * t, void *arg), int flags);

Description
This server side function is used to accept a client connection on an existing
socket. This function connects with the client and performs the SSL handshake.
The returned cp parameter is the new SSL connection context used as input for
the sslRead and sslWrite routines. The remainder of the parameters are inputs that
control the initialization of the new context.

At the successful completion of this function, the application may call sslRead
and sslWrite as necessary to communicate with the client.

The cp parameter should be freed when no longer needed by calling
sslFreeConnection.

Parameters
cp Output. Initialize to NULL. Newly

allocated connection context on success.
fd Socket descriptor returned from a

previous call to socketAccept.
keys The MatrixSSL key structure returned

from a previous call to
matrixSslReadKeys.

certValidator NULL
flags 0

Return Value
0 Success. Handshake complete
< 0 Failure. Can’ t continue with this

connection

API Documentation MatrixSSL 1.2

Page 4 of 6 Copyright ©2002-2004 PeerSec Networks, LLC

sslFreeConnection
Prototype

 void sslFreeConnection(sslConn_t **cp);

Description
Free a connection that was opened with sslAccept or sslConnect

Parameters
cp The connection to close

Return Value
none

sslRead
Prototype

 int sslRead(sslConn_t *cp, char *buf, int len, int *status);

Description
This function reads secure data from the given connection and returns the decoded
data to the caller.

Parameters
cp The connection to read from. Returned

from a previous call to sslAccept or
sslConnect

buf A user allocated buffer to hold the
returned decoded data that was read
from the SSL socket.

len The length in bytes of the allocated buf
parameter

status Status information. On a socket failure,
the status will contain the error code. In
a zero return code case, status may be
set to SSLSOCKET_EOF if the
connection was closed by the other side.

Return Value
Positive integer The number of bytes successfully read

into buf. The function may be called
again with an updated buffer if there is
more to read.

API Documentation MatrixSSL 1.2

Page 5 of 6 Copyright ©2002-2004 PeerSec Networks, LLC

0 Success, but no data to be returned to
the caller. This special case typically
indicates a handshake message was
successfully decoded and handled. No
additional action is required for this
message. This return code gives
visibility into the handshake process and
can be used in conjunction with
matrixSslHandshakeIsComplete to
determine when the handshake is
complete.

The other possible scenario for this
return case is if the connection has been
closed by the other side. In this case,
the status parameter will be set to
SSLSOCKET_EOF.

< 0 Failure. The status parameter contains
specific information about the error if it
is socket related. If using a non-
blocking socket implementation the
caller should check for non-fatal errors
such as WOULD_BLOCK before
determining whether to close the
connection.

sslWrite
Prototype

 int sslWrite(sslConn_t *cp, char *buf, int len, int *status);

Description
This function encodes and writes secure data to the given connection.

Parameters
cp The connection to write to. Returned

from a previous call to sslAccept or
sslConnect

buf The un-encoded data to be written to the
connection

len The length of the buf parameter in bytes
status Status information. On a socket failure,

the status will contain the error code.
Set to 0 on internal function errors.

API Documentation MatrixSSL 1.2

Page 6 of 6 Copyright ©2002-2004 PeerSec Networks, LLC

Return Value
Positive integer Success. Return value is number of

bytes written to the SSL connection.
Should always match len parameter.

0 Indicates that sslWrite must be called
again as all the data was not able to be
written in one pass. Call again with
same parameters.

< 0 Failure. If a socket level error, error
code is contained in status. If using a
non-blocking socket implementation the
caller should check for non-fatal errors
such as WOULD_BLOCK before
closing the connection. A zero value in
status indicates an error with this
routine.

sslWriteClosureAlert
Prototype

 void sslWriteClosureAlert(sslConn_t *cp);

Description
Writes an SSL closure alert to the connection.

Parameters
cp The connection to write the alert to.

Returned from a previous call to
sslAccept or sslConnect

Return Value
 none

