
Introduction to Application
Development with Qt Quick

Release 1.0

Digia, Qt Learning

February 28, 2013

Contents

1 Introduction 1
1.1 Who should read this tutorial and why . 1
1.2 The journey is the target . 1
1.3 Downloads . 2
1.4 Help us help you . 2
1.5 Related material . 2
1.6 License . 3

2 Work Environment Setup 5
2.1 Installing the tools . 5
2.2 Creating Qt Quick applications . 5
2.3 Qt Quick Application* project type . 7
2.4 Tracing what is going on . 8

3 Qt Quick Core Principles for Application Development 11
3.1 Qt Quick Compared to Classical Qt . 11
3.2 Declarative vs imperative programming . 12
3.3 Four cornerstones . 12
3.4 Moving from a concept to a real application 14

4 Elements as building blocks 17
4.1 Composing a basic UI with nested elements 17
4.2 Ordering elements on the screen . 19
4.3 Arranging application elements on the screen 20
4.4 Properties . 23
4.5 Other Visual Composition Elements . 27

5 Loading and Displaying Content 29
5.1 Accessing and loading content . 29
5.2 Basic Image Parameters . 30
5.3 Basic Text Parameters . 31

i

5.4 Get ready for translation . 32
5.5 Static Clock Application Code . 33

6 Using JavaScript 36
6.1 JavaScript is not JavaScript . 36
6.2 More About JavaScript . 37
6.3 Adding Logic to Make the Clock Tick . 37
6.4 Importing JavaScript Files . 41

7 Acquire and Visualize Data 44
7.1 Models . 44
7.2 Repeater and Views . 47

8 Components and Modules 53
8.1 Creating Components and Collecting Modules 53
8.2 Defining Interfaces and Default Behavior . 54
8.3 Handling Scope . 55
8.4 Integrated Application . 58
8.5 Further Readings . 62

9 Interactive UI with Multiple Top-Level Windows 63
9.1 A Button . 63
9.2 A Simple Dialog . 66
9.3 A Checkbox . 69
9.4 Handling Keyboard Input and Navigation . 70

10 UI Dynamics and Dynamic UI 77
10.1 Using States . 77
10.2 Adding Animations . 82
10.3 Supporting the Landscape Mode . 84
10.4 Finalizing the Main Item . 85

11 Doing More, Learning More 91
11.1 Porting to Qt5 . 91
11.2 Porting to a mobile device . 91
11.3 Enhancements and New Features . 93

12 Lesson Learned and Further Reading 95

13 Annexure: JavaScript Language Overview 97
13.1 Introduction . 97
13.2 The Type System . 98
13.3 Expressions . 99
13.4 Branching . 99
13.5 Repetitions and Iterators . 99
13.6 Labeled Loops, Break and Continue . 100
13.7 Objects and Functions . 100
13.8 Prototype-based Inheritance . 101
13.9 Scopes, Closures and Encapsulation . 104

ii

13.10 Namespaces . 105
13.11 Common Methods . 106
13.12 Exceptions . 106
13.13 Resources . 107

iii

iv

CHAPTER 1

Introduction

1.1 Who should read this tutorial and why

This tutorial explains the basics of developing Qt Quick applications with the help of code
walkthroughs of complete applications. The tutorial extends the standard Qt Quick documen-
tation provided with Qt and relies on it as a source of more detailed information about Qt Quick
APIs and fundamental concepts.

This tutorial is thought to precede in-depth content as a prerequisite for those of you who are
new to Qt Quick. Even though it starts with the basics, you still have to be familiar with
principles of programming. Some basic knowledge of JavaScript is highly recommended.

After completing this tutorial, you should be able to write your own Qt Quick applications
and start discovering more by reading advanced materials or analyzing the code of complex
applications.

1.2 The journey is the target

This tutorial starts with the traditional “Hello World” application and ends with a full-featured
Qt Quick application that can be used on a daily basis. The features of this final application
covers the major Qt Quick programming aspects.

Features are never enough

No doubt many more features could have been added, but it had to be finished at a certain
level to keep the size of this tutorial in limits. Feel free to take the source code of the final
application and extend it. You will know how to do it!

The tutorial is a journey through these aspects. We will stop at famous places, watch some
remarkable scenery, and use the gained knowledge to enhance the application more and more.
At each of those steps we will look into code samples, and discuss what is happening there
and how we use it in our application. At the end, you might be surprised that the application

1

Introduction to Application Development with Qt Quick, Release 1.0

is fairly simple compared to the length of the tutorial. This is on purpose: our target is not to
develop the application quickly, but to learn through the journey.

Right after “Hello World”, we’re going to develop a simple application that shows the current
time and date in the nostalgic format of an old LED clock. The next step is another application
which reads, parses, and displays weather forecasts from the Internet. Later, we try to combine
these two applications as components into a larger application: a clock with integrated weather
forecasting.

Note that some advanced aspects are not discussed in this tutorial to keep it simple. Those
aspects are mentioned in the last chapter. One piece of advice that we have for you is to
remember the old developer saying: “Documentation is your friend”1...

1.3 Downloads

A .zip file that contains the source code of each chapter is provided so you can compare it with
your code:

Source code2

This tutorial is available in the following formats:

PDF3

ePub4

Qt Help5.

..note: The example application referred in this guide is developed with Qt 4.8.x and Qt Quick 1.1 running on Linux and Windows. Refer to the section,
Porting to Qt5 (page 91) for details about how to get this example application running
with Qt5.

1.4 Help us help you

We would greatly appreciate any feedback or comments from you that can help us improve the
content of this guide.

Use the Qt Bug Tracker to give us feedback.

1.5 Related material

Other guides

1http://qt-project.org/doc/qt-4.8/index.html
2http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/qt_quick_app_dev_intro_src.zip
3http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/QtQuickAppDevIntro.pdf
4http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/QtQuickAppDevIntro.epub
5http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/QtQuickAppDevIntro.qch

1.3. Downloads 2

http://qt-project.org/doc/qt-4.8/index.html
http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/qt_quick_app_dev_intro_src.zip
http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/QtQuickAppDevIntro.pdf
http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/QtQuickAppDevIntro.epub
http://releases.qt-project.org/learning/developerguides/qtquickappdevintro/QtQuickAppDevIntro.qch

Introduction to Application Development with Qt Quick, Release 1.0

As mentioned before, the following Qt Learning Guides for Qt Quick could be useful if you’re
developing for desktop and mobile devices on Symbian and MeeGo:

• Programming with Qt Quick for Symbian and MeeGo Harmattan Devices

• Qt Quick Application Developer Guide for Desktop

Check this link6 to download these and other guides.

Qt documentation

There are two major sets of documents in Qt that we will be referring to. We recommend
reading them to learn all the key details about Qt Quick:

• Qt Quick landing page in the Qt documentation7

• Introduction to the QML Language8

Training materials

You may consider looking into the training materials published on the Qt Training web page9 .
In addition to training slides, training materials contain a lot of useful examples.

Videos*

The recordings of training sessions and technical talks given at Qt Developer Days are another
interesting learning resource. They are available in the Qt’s video collection10 .

Examples and demos*

Qt Quick comes with a wide range of demos and examples. You can access all of them either
from the Qt Creator welcome page or from the Qt Quick Code Samples11 page in Qt documen-
tation.

The wiki on the Qt Project website12 has two listings of examples and demos:

• Demos and Examples13

• Example Applications for Qt Quick14

1.6 License

Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). All rights reserved.

This work, unless otherwise expressly stated, is licensed under a Creative Commons
Attribution-ShareAlike 2.5.

6http://qt-project.org/wiki/Developer-Guides/
7http://qt-project.org/doc/qt-4.8/qtquick.html
8http://qt-project.org/doc/qt-4.8/qdeclarativeintroduction.html
9http://qt.digia.com/Product/Learning/Topics/QML-Qt-Quick/

10http://qt-project.org/videos
11http://qt-project.org/doc/qt-4.8/qdeclarativeexamples.html
12http://qt-project.org/
13http://qt-project.org/wiki/Category:Learning::Demos_and_Examples
14http://qt-project.org/wiki/qml_examples_directory

1.6. License 3

http://qt-project.org/wiki/Developer-Guides/
http://qt-project.org/doc/qt-4.8/qtquick.html
http://qt-project.org/doc/qt-4.8/qdeclarativeintroduction.html
http://qt.digia.com/Product/Learning/Topics/QML-Qt-Quick/
http://qt-project.org/videos
http://qt-project.org/doc/qt-4.8/qdeclarativeexamples.html
http://qt-project.org/
http://qt-project.org/wiki/Category:Learning::Demos_and_Examples
http://qt-project.org/wiki/qml_examples_directory

Introduction to Application Development with Qt Quick, Release 1.0

The full license document is available from http://creativecommons.org/licenses/by-
sa/2.5/legalcode .

Qt and the Qt logo is a registered trade mark of Digia plc and/or its subsidiaries and is used
pursuant to a license from Digia plc and/or its subsidiaries. All other trademarks are property
of their respective owners.

What’s Next?

The next chapter covers how to set up the development environment and run your first Qt Quick
application.

1.6. License 4

http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://creativecommons.org/licenses/by-sa/2.5/legalcode

CHAPTER 2

Work Environment Setup

If this is your first Qt Quick project, it makes sense to take a look at the tools you need, how
a new project can be started and what are the most important needs of the daily development
workflow.

2.1 Installing the tools

We recommend using the latest Qt libraries for working with this tutorial. You can download
the libraries for your platform on www.qt-project.org/downloads. If you already have a work-
ing Qt development environment, make sure that you use Qt version Qt 4.7.4 or 4.8.x, which
include QtQuick 1.1.

2.2 Creating Qt Quick applications

In this tutorial we will be using QtCreator1 as an IDE. You can download the latest Qt Creator
IDE and configure it to use the Qt 4.x libraries. For more information about configuring Qt
Creator, refer to Adding Qt Versions <http://doc-snapshot.qt-project.org/qtcreator-2.6/creator-
project-qmake.html>.

The wizard under the menu File → New File or Project creates not only project files, but also
some initial application code. The wizard provides two choices relevant to Qt Quick:

Qt Quick Application Qt Quick UI

The major difference between these two options is how the application code is executed. This
difference reveals quite a few interesting facts of how Qt Quick works under the hood. Let’s
create a project of each type and take a look at the files generated by the wizard.

Qt Quick UI* project type

1http://qt-project.org/wiki/Category:Tools::QtCreator

5

http://qt-project.org/wiki/Category:Tools::QtCreator

Introduction to Application Development with Qt Quick, Release 1.0

If you select Qt Quick UI*, let’s name it hello_qt_quick_ui, you will get just one qml
file and two project files in the project directory:

• hello_qt_quick_ui.qml - application code you start with

• hello_qt_quick_ui.qmlproject - the project file. You do not need to touch it
for now

• hello_qt_quick_ui.qmlproject.user - your project settings. Automatically
generated and changed by Qt Creator. You need not edit this file, nor check it in into your
version control system

hello_qt_quick_ui.qml looks like this:

import QtQuick 1.1

Rectangle {
width: 360
height: 360
Text {

anchors.centerIn: parent
text: "Hello World"

}
MouseArea {

anchors.fill: parent
onClicked: {

Qt.quit();
}

}
}

You can execute it by pressing CTRL-R or by selecting Build → Run in Qt Creator. This shows
the following on the screen:

But wait! There is no compilation step! How does the application run?

Qt Quick is script-based, just like Python or Perl. A script needs to be interpreted and exe-

2.2. Creating Qt Quick applications 6

Introduction to Application Development with Qt Quick, Release 1.0

cuted by an engine. This engine in Qt Quick is called Qt Declarative UI Runtime2. Qt Quick
applications can use this engine in two different ways:

1. passing a qml file as a command-line option to the engine application, qmlviewer3

2. integrating Qt Declarative UI Runtime4 in C++ code and loading the qml files

Our hello_qt_quick_ui uses the first way. The qmlviewer5 application located in the
bin folder of the Qt installation. It contains code which uses Qt Declarative UI Runtime6

to load the qml file specified on the command line. In the Qt Quick UI projects, Qt Creator
automatically runs qmlviewer7 to load the main qml file when you press CTRL-R or select
Build → Run. No compilation step is required.

The qmlviewer8 application also provides debugging interfaces and many other cool goodies.
Check its documentation page or call qmlviewer --help to see what is available.

This project type and the way it is integrated in Qt Creator is very simple and handy for dis-
covering the functionality of Qt Quick. We use it most of the time. Nevertheless, in the next
section we are going to learn about the Qt Quick Application project type to understand how
you can use Qt Quick in a standard Qt application developed in C++.

Before we start with it, a short remark about the name Qt Quick UI given to a project type
with qml files only. This underlines the major purpose of Qt Quick to serve as a script-based
programming environment for application UI. Complex application logic and heavy processing
should stay on the C++ side and expose its APIs to Qt Quick.

2.3 Qt Quick Application* project type

Another project type called Qt Quick Application allows you to unleash the power of Qt Quick.
If you create a hello_qt_quick_app project in the wizard with this type, you get a Qt
application in C++:

• hello_qt_quick_app*.png and .svg - desktop icons for different platforms

• hello_qt_quick_app*.desktop - desktop description files for different plat-
forms

• hello_qt_quick_app.pro - Qt project file. You need not touch it for now.

• hello_qt_quick_app.pro.user - your local project settings. Automatically
generated and changed by Qt Creator. You need not edit this file, nor check it in into
your version control system

• main.cpp - the main file of your application starting your own qmlviewer imple-
mented using the QmlApplicationViewer C++ class

2http://qt-project.org/doc/qt-4.8/qmlruntime.html
3http://qt-project.org/doc/qt-4.8/qmlviewer.html
4http://qt-project.org/doc/qt-4.8/qmlruntime.html
5http://qt-project.org/doc/qt-4.8/qmlviewer.html
6http://qt-project.org/doc/qt-4.8/qmlruntime.html
7http://qt-project.org/doc/qt-4.8/qmlviewer.html
8http://qt-project.org/doc/qt-4.8/qmlviewer.html

2.3. Qt Quick Application* project type 7

http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qmlviewer.html
http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qmlviewer.html
http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qmlviewer.html
http://qt-project.org/doc/qt-4.8/qmlviewer.html

Introduction to Application Development with Qt Quick, Release 1.0

• qml- a folder where the Hello World qml file resides. Add other qml files here

• qmlapplicationviewer - a folder with implementation of the
QmlApplicationViewer C++ class which initializes and starts Qt Declarative
UI Runtime9 with the main qml file

Your application now has its own qmlviewer-like module along with the same Hello World
qml file. This is a Qt C++ application which provides the basic functionality of qmlviewer
plus some additional code for integration on non-desktop platforms . If you run this
project, Qt Creator compiles and builds your application like any other C++ application, and
starts it. QmlApplicationViewer loads and executes Qt Quick code the same way as
qmlviewer:

Your new QmlApplicationViewer is another possible instance of Qt Declarative UI Run-
time10. This way of handling Qt Quick applications opens many interesting possibilities for
integrating Qt Quick code with classic C++ applications and even making C++ code available
as new Qt Quick items. This is a more advanced technique beyond the scope of this tutorial.
You can read more about this in Qt Declarative UI Runtime11 documentation, as well as in the
“Extending QML Functionality using C++”12 article in the Qt documentation.

2.4 Tracing what is going on

In the course of this tutorial you might want to trace what your application code does and
might get interested to stop the application to inspect it at run-time. Let’s take a look at how

9http://qt-project.org/doc/qt-4.8/qmlruntime.html
10http://qt-project.org/doc/qt-4.8/qmlruntime.html
11http://qt-project.org/doc/qt-4.8/qmlruntime.html
12http://qt-project.org/doc/qt-4.8/qml-extending.html

2.4. Tracing what is going on 8

http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qmlruntime.html
http://qt-project.org/doc/qt-4.8/qml-extending.html

Introduction to Application Development with Qt Quick, Release 1.0

debugging and tracing works in Qt Quick. Debugging is feature rich and is well documented
in the Debugging Qt Quick Projects13 article. When using it for the first time, you must set up
the Debugging Helpers14.

In your first steps with Qt Quick, you will mostly use tracing as it is a simple and easy
way to follow what happens in an application. You can add tracing statements by using the
console.log(), console.debug() or just print() methods provided by JavaScript.

For example, if we choose to trace the place where our Hello World* application quits upon a
mouse click, the code would look like this:

(helloqml/helloqml.qml in qt_quick_app_dev_intro_src.zip, see Down-
loads (page 2) section)

/**
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).

** Contact: http://www.qt-project.org/legal

**
** $QT_BEGIN_LICENSE:BSD$

** You may use this file under the terms of the BSD license as follows:

**
** "Redistribution and use in source and binary forms, with or without

** modification, are permitted provided that the following conditions are

** met:

** * Redistributions of source code must retain the above copyright

** notice, this list of conditions and the following disclaimer.

** * Redistributions in binary form must reproduce the above copyright

** notice, this list of conditions and the following disclaimer in

** the documentation and/or other materials provided with the

** distribution.

** * Neither the name of Digia Plc and its Subsidiary(-ies) nor the names

** of its contributors may be used to endorse or promote products derived

** from this software without specific prior written permission.

**
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

**
** $QT_END_LICENSE$

**
**/
import QtQuick 1.1

Rectangle {

13http://qt-project.org/doc/qtcreator-2.6/creator-debugging-qml.html
14http://qt-project.org/doc/qtcreator-2.6/creator-debugging-helpers.html

2.4. Tracing what is going on 9

http://qt-project.org/doc/qtcreator-2.6/creator-debugging-qml.html
http://qt-project.org/doc/qtcreator-2.6/creator-debugging-helpers.html

Introduction to Application Development with Qt Quick, Release 1.0

width: 360
height: 360
Text {

anchors.centerIn: parent
text: "Hello World"

}
MouseArea {

anchors.fill: parent
onClicked: {

console.log("I was \"" + parent + "\"!")
console.log("Bye for now!")
Qt.quit();

}
}

}

This code produces the following in the QML Viewer tab in Qt Creator:

I was "QDeclarativeRectangle(0x23705d0)"!
Bye for now!

What’s Next?

By now you should have a working development environment and a simple project with a
“Hello World” application which you can manipulate, run and inspect how it works. In the
next chapter, we are going to discuss some of the core concepts of Qt Quick and take a look at
what is available to do more than a simple Hello World example.

2.4. Tracing what is going on 10

CHAPTER 3

Qt Quick Core Principles for
Application Development

3.1 Qt Quick Compared to Classical Qt

Being a part of Qt, Qt Quick (or Qt User Interface Creation Kit*) provides a totally new way of
creating UIs and even programming in general. Most use cases for Qt Quick are in areas where
users expect non-widget based UIs with rich animations, effects and graphical resources. It
allows turning virtually any graphical element into an interactive UI component with minimal
effort.

Using Qt Quick, you can move fast from sketching ideas on to a working prototype. You can
continue using the prototyped code in later development phases with almost no rewriting. You
can involve graphic, interaction and animation designers during the entire development process
and skip the painful steps of exchanging ideas and requirements on paper or slides.

Developing with Qt Quick does not require any C++ knowledge. It is a script language inspired
by CSS and JavaScript. Moreover, it also uses JavaScript a lot in its syntax and functionality.
It uses a JavaScript engine to execute your code. Those of you who are familiar with QtScript
will feel at home. Though no C++ is needed to develop in Qt Quick, you can extend Qt
Quick with own modules written in C++. This can also be used to exchange data with existing
Qt applications. This allows starting with Qt Quick without breaking your code if you are
interested. And you will :-)

Qt Quick does not replace classical Qt...

Though you can implement complete applications with Qt Quick only, the role of classical
Qt and C++ changes, but does not get less important. In complex real world applica-
tions, Qt Quick is used for UI and user interaction, application’s business logic and system
interfaces are still written in C++.

11

Introduction to Application Development with Qt Quick, Release 1.0

3.2 Declarative vs imperative programming

Qt Quick can be seen as one of several implementations of declarative programming1. Qt
Quick programs describe which items an application UI consists of, how they look and how
they change upon various user actions. This is very different from the traditional imperative
programming2 with Qt C++, which puts algorithms and statements in the foreground. This
difference is actually the major reason why Qt Quick can directly be used for designing appli-
cation UIs. UI design deals with the content on a screen and interactions with users, assuming
that application logic is somewhere in the back. If needed, Qt Quick still allows the use of im-
perative elements and you can even write fairly complex algorithms in JavaScript in the same
QML file.

3.3 Four cornerstones

There are four fundamental aspects used in Qt Quick:

1. UI is composed of nested elements ordered in a hierarchical tree structure

2. Elements are described by properties

3. A property can be bound to another property and keep the same value

4. A notification is generated and processed by a handler on each property change or a
signal sent

You write a Qt Quick application by adding elements one after the other or by nesting them.
You customize the appearance and the behavior of the elements by changing their properties.
If a property of one element should follow the value of a property of another element on each
change, you bind those properties. If you need to react on a property change, you add some
handler code which is automatically executed on each change.

Let’s find the four cornerstones listed above in a slightly modified version of our first Qt Quick
application:

import QtQuick 1.1

Rectangle {
width: 360
height: 360
Text {

anchors.centerIn: parent
text: "Hello World! My size is " +

parent.width + " x " + parent.height + "!"
}
onHeightChanged: print ("new size: ", width, "x", height)
MouseArea {

anchors.fill: parent

1http://en.wikipedia.org/wiki/Declarative_programming
2http://en.wikipedia.org/wiki/Imperative_programming

3.2. Declarative vs imperative programming 12

http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming

Introduction to Application Development with Qt Quick, Release 1.0

onClicked: {
Qt.quit();

}
}

}

*Concerning point 1:** Our application consists of three elements ordered in a tree-like structure. ‘‘Rectangle‘‘ is a root element of that tree. It contains a ‘‘Text‘‘ element and a ‘‘MouseArea‘‘ element. They are siblings and have ‘‘Rectangle‘‘ as a parent.

*Concerning point 2:** We assign new values to the properties ‘‘width‘‘ and ‘‘height‘‘ of ‘‘Rectangle‘‘ to set its initial size.

*Concerning point 3:** We bind the text content of the ‘‘Text‘‘ element to the dimensions of its parent element (‘‘Rectangle‘‘). The application does not show anything spectacular after its start:

but if you resize its window with the mouse the text will change and the console output will
keep posting the current dimensions of Rectangle:

3.3. Four cornerstones 13

Introduction to Application Development with Qt Quick, Release 1.0

If it had been just a traditional assignment the text would have not changed and would have
kept its first value. This is a very powerful technique which is used very intensively in any Qt
Quick application.

Concerning point 4:* An on notification is generated each time a property change
including changes of width and height. We add a handler for notification
onHeightChanged. Each time its height changes, the size of the Rectangle
is printed on the console. It is also possible to send a signal when you need to
notify other elements about something. Our simple code segment does not use any
signals, but we will talk about them later. Generally, the fourth cornerstone is very
similar to properties and signals-and-slots in classical Qt.

Let’s take a look at the application concept phase and let’s analyze how we proceed implement-
ing it with Qt Quick. We will take a closer look at these four cornerstones and learn about other
important details.

3.4 Moving from a concept to a real application

There is a reason why the concept phase of the application development is important in Qt
Quick. Your application UI is based on Qt Quick elements, and most of them are rectangles
or something similar to it. You can use property binding and notification handlers to make a
functional system with those elements. There is an easy way to replicate and modularize its
functionality. The first version of your application runs very soon, even though there might
be not much application logic implemented. You can add more application logic and then
realize that something should be enhanced in the UI design. This turnarounds are known on
any platform with any application development framework. Qt Quick makes going through
these turnarounds less time-consuming and less error-prone. You just need to pay a bit more
attention to the decomposition of the initial application concept.

We are going to develop a digital clock with an integrated weather forecast. The use case for
the application is more of a decorative kind. Imagine waking up in the middle of the night
wanting to quickly check what time it is and then continue sleeping. If it is already time to
start your day, you might want to find out what’s the weather forecast so you can decide what
to wear. Our application shows the current time of the day and the weather forecast for the

3.4. Moving from a concept to a real application 14

Introduction to Application Development with Qt Quick, Release 1.0

next days fetched from the Internet. Additionally, we need another top level window to store
a few basic settings (e.g. the city where the user and his device are currently located). This
gives three main components: a clock, weather forecast, and possibly settings. The clock and
weather forecast are shown on the same screen, whereas settings can pop-up and dismiss.

The clock element looks something like this:

This just shows the current time and date, which can be seen as elements on their own as well.

A weather forecast usually displays information about the weather for the current day and the
actual forecast section covering a few days in the future. This information is repeated for all
days, showing just weather conditions and temperatures. We plan to get the weather data from
the Internet. This makes weather elements tightly linked to the weather data. We should keep
this in mind when selecting Qt Quick elements to use.

A root element containing all weather related elements can look something like this:

The clock and weather parts are quite independent and it makes sense to develop them sepa-
rately and use them as components in the final application:

3.4. Moving from a concept to a real application 15

Introduction to Application Development with Qt Quick, Release 1.0

Settings will pop-up as a separate window:

This element can be developed separately as well. We just need to take care that there is a way
to transfer the settings data from and into the application core.

Additionally, we probably need some basic UI features such as text input fields, check boxes
and simple buttons.

Visual appearance is important! We will spend some extra time exploring possibilities in Qt
Quick to enhance our application.

What’s Next?

In the next chapter we are going to explore how to use Qt Quick elements to compose an UI.

3.4. Moving from a concept to a real application 16

CHAPTER 4

Elements as building blocks

We start with our simple Hello World application and use it as a basis to expand and learn what
happens.

As we already know, Qt Quick applications can been seen as a hierarchical tree of elements.
This tree is composed into a dynamic scene on a screen. All elements can be seen as objects
with parent-child relationships which can also be seen as a kind of inheritance.

Some elements are not visible on the screen, but rather used under the hood to control or
transform other elements. Due to this, a generic name for all Qt Quick building blocks is
items*. There is also the item - Item1 which is the parent of most (21 in Qt Quick 1.1) other
items. Being a parent of so many other items, Item2 has very important properties inherited by
many other items. Take some time to check its documentation. We will use the term item most
of the time, but we will use element when we want to underline that an item is visible on the
screen.

Visual elements can be manipulated by changing their properties such as position, size, visibil-
ity, opacity, and so on. This can be done with or without animations. There are special elements
for capturing user input or visualizing data from different sources. Qt documentation provides
a list of all items sorted in groups3. Take some time to get an overview of all available items.

When you write a Qt Quick application, you should think about its UI in terms of elements.
Changes in the UI become transitions, where elements move to another place, hide or even
change their form. This is quite different compared to traditional programming, where you used
to think in terms of algorithms and spent a lot of time making changes in the UI. Developing
UIs with Qt Quick is more like creating a cartoon...

4.1 Composing a basic UI with nested elements

Like in any other tree structure, there is always exactly one root item which contains all others
in any qml file. Let’s take the rectangle from our Hello World example, and put some other

1http://qt-project.org/doc/qt-4.8/qml-item.html
2http://qt-project.org/doc/qt-4.8/qml-item.html
3http://qt-project.org/doc/qt-4.8/qml-groups.html

17

http://qt-project.org/doc/qt-4.8/qml-item.html
http://qt-project.org/doc/qt-4.8/qml-item.html
http://qt-project.org/doc/qt-4.8/qml-groups.html

Introduction to Application Development with Qt Quick, Release 1.0

elements in it:

(many_elements/many_elements.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

Rectangle {
width: 100
height: 100
color: "grey"
Rectangle {

width: 50
height: 80
color: "lightgrey"
Text {

text: "Sunday, 5 o’clock"
}

}
Rectangle {

width: 25
height: 40
color: "green"
Text {

anchors.verticalCenter: parent.verticalCenter
text: "Tee time!"

}
}

}

This is how it looks on the screen:

Although the application is not any closer to being useful in real life, it’s interesting to further
analyze what happens on the screen.

One Rectangle4 is the root item. Two others contain a Text5 with different text. All items are
rendered as a stack according their order in the tree:

the root rectangle first

then the grey rectangle with its text

the green rectangle comes on top and covers a part of the previous text

the Text6 element contained in the green rectangle comes as the last one on top of
all others.

4http://qt-project.org/doc/qt-4.8/qml-rectangle.html
5http://qt-project.org/doc/qt-4.8/qml-text.html
6http://qt-project.org/doc/qt-4.8/qml-text.html

4.1. Composing a basic UI with nested elements 18

http://qt-project.org/doc/qt-4.8/qml-rectangle.html
http://qt-project.org/doc/qt-4.8/qml-text.html
http://qt-project.org/doc/qt-4.8/qml-text.html

Introduction to Application Development with Qt Quick, Release 1.0

We could add more elements, all of them are added to this stack and drawn on the upper left
corner which is the (0,0) position. This is the default rendering position, if you do not specify
x and y properties.

This default behavior would make in this example appear too overlapped on the screen. We
add anchors.verticalCenter: parent.verticalCenter to move the last text
a bit below the text in the gray rectangle. Anchoring allows positioning of elements relatively
to each other. We will talk about this a bit later.

4.2 Ordering elements on the screen

It is possible to control the position and order of the elements on the screen in absolute (x,y)
coordinates or relatively to other elements.

The start of the coordinate system is the upper left corner of the application window. Coordinate
units are actual pixels on the screen. In addition to the (x,y) coordinates, positioning of the
items has a kind of 3rd dimension defining the stacking order of sibling items. This is defined
by the z property7. By default, its value is 0. If you set it to 1 it rises the item to the next level.
Lets try this out on our small application:

(ordered_elements/ordered_elements.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

Rectangle {
width: 100
height: 100
color: "grey"

Rectangle {
width: 50
height: 80
color: "lightgrey"
// puts this rect in the front.
// Uncomment next line or set it to -1 and see what happens
//z: 1
// this rect will clip the text element
// Uncomment this line and see what happens
// clip: true
Text {

text: "Sunday, 5 o’clock"
}

}
Rectangle {

width: 25
height: 40
color: "green"
Text {

anchors.baseline: parent.verticalCenter
text: "Tee time!"

7http://qt-project.org/doc/qt-4.8/qml-item.html#z-prop

4.2. Ordering elements on the screen 19

http://qt-project.org/doc/qt-4.8/qml-item.html#z-prop

Introduction to Application Development with Qt Quick, Release 1.0

}
}

}

This looks like this:

Setting z to -1 will put an item into the background of its parent:

If you noticed, the text elements are not clipped by the boundaries of their parents - rectangles.
This is the default behavior for performance reasons. If needed, this can be changed by setting
the clip property to true: clip: true. clip is a property of Item8 and available in all
visual elements inheriting from it.

If we set clip to true in our application it will look like this:

4.3 Arranging application elements on the screen

On the next step we will need to arrange the elements so that the build up an application UI.
Arranging items brings up another key aspect: identification of items.

Though the use of the IDs is optional in Qt Quick. We have to use IDs if items have to be
arranged in relation to each other. Generally, you should strongly consider using IDs all the
time. This greatly improves readability of the code and prevents weird side effects. Be advised
to use consistent IDs for all root items in your project, for example, just root. This helps you
keep track of items used and avoid side effects.

8http://qt-project.org/doc/qt-4.8/qml-item.html

4.3. Arranging application elements on the screen 20

http://qt-project.org/doc/qt-4.8/qml-item.html

Introduction to Application Development with Qt Quick, Release 1.0

We already saw some use of anchoring in previous examples. Lets take a closer look on this
and use it to place elements so that they start getting closer to a clock.

We just take two Text9 elements and place them inside our root element. Anchoring uses
so called anchoring lines which are provided as properties. When you anchor items, you just
bind an anchoring line of one item to an anchoring line of another one. You basically stitch
items to each other. Additionally, you can also set anchor margins. Margins are zero by default
and define a distance between anchored items. We place timeText and dateText centered
inside of root and add margins of 10 pixels:

(static_clock/static_clock.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

Rectangle {
id: root
width: 80
height: 80
color: "lightgrey"

Text {
id: timeText
anchors.top: root.top
anchors.horizontalCenter: parent.horizontalCenter
anchors.margins: 10
text: "13:45"

}
Text {

id: dateText
anchors.bottom: root.bottom
anchors.horizontalCenter: parent.horizontalCenter
anchors.margins: 10
text: "23.02.2012"

}

MouseArea {
anchors.fill: root
onClicked: {

Qt.quit();
}

}
}

The top edge of timeText stitches to the top edge of the root with a margin of 10 pixels.
dateText does the same at the bottom. If you run this application and resize the application
window with the mouse, you will see that both text items keep their anchored positions at the
edges. Just the space between them changes.

9http://qt-project.org/doc/qt-4.8/qml-text.html

4.3. Arranging application elements on the screen 21

http://qt-project.org/doc/qt-4.8/qml-text.html

Introduction to Application Development with Qt Quick, Release 1.0

The item MouseArea10 fills the entire surface of root and even reacts to mouse click events
for both text items. We will talk about handling mouse events later.

Anchoring is fairly simple, but you need to pay a bit more attention if you have many elements
on the screen. Otherwise you might lose orientation of where your elements are located. A
useful approach is to anchor to the dominant elements and keep anchoring in a hierarchical
order. A detailed description of anchoring is available in this article11 in Qt documentation.

Another approach to handle positioning of many elements which should be placed in a regular
order is using Positioners12. Positioners13 do all the ordering for you and have some additional
features.

Lets try migrate our application to use positioners. It makes the code shorter even with our two
items. We now place both Text14 elements inside a Column15 positioner. In order to keep them
apart from each other we define 20 pixels spacing and anchor the Column16 in the center of
root:

(static_clock1/static_clock1.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

Rectangle {
id: root
width: 80
height: 80
color: "lightgrey"

Column {
id: clockText
anchors.centerIn: root
spacing: 20

Text {
id: timeText
anchors.horizontalCenter: parent.horizontalCenter
text: "13:45"

}
Text {

id: dateText
anchors.horizontalCenter: parent.horizontalCenter

10http://qt-project.org/doc/qt-4.8/qml-mousearea.html
11http://qt-project.org/doc/qt-4.8/qml-anchor-layout.html
12http://qt-project.org/doc/qt-4.8/qml-positioners.html
13http://qt-project.org/doc/qt-4.8/qml-positioners.html
14http://qt-project.org/doc/qt-4.8/qml-text.html
15http://qt-project.org/doc/qt-4.8/qml-column.html
16http://qt-project.org/doc/qt-4.8/qml-column.html

4.3. Arranging application elements on the screen 22

http://qt-project.org/doc/qt-4.8/qml-mousearea.html
http://qt-project.org/doc/qt-4.8/qml-anchor-layout.html
http://qt-project.org/doc/qt-4.8/qml-positioners.html
http://qt-project.org/doc/qt-4.8/qml-positioners.html
http://qt-project.org/doc/qt-4.8/qml-text.html
http://qt-project.org/doc/qt-4.8/qml-column.html
http://qt-project.org/doc/qt-4.8/qml-column.html

Introduction to Application Development with Qt Quick, Release 1.0

text: "23.02.2012"
}

}

MouseArea {
anchors.fill: root
onClicked: {

Qt.quit();
}

}
}

The result looks pretty much the same:

If you now resize the application window, you will notice that its content stays centered, as we
anchored the positioner to the center of root.

Qt Quick provides other Positioner17 elements, such as Row18, Grid19 or Flow20. We will use
some of them during the course of this guide.

4.4 Properties

In previous sections, we used item properties by assigning or binding various values in order to
change an item. Properties play an essential role and have a much broader use. In this section
we talk about other use cases and use the knowledge gained in our application. Lets take a look
at this simple code segment:

Rectangle {
id: myButton
color: "white"

}

The element myButton automatically contains all default properties of Rectangle21, including
all default values. Implementing a button, you might need to add some other properties on top
of default ones, for example, a border color or even a generic pen color which is used to paint
both the label text and the border color. Implementing other items, you might need to keep
some values from the application logic. How to add new properties?

You can define a new property using the following syntax:

17http://qt-project.org/doc/qt-4.8/qml-positioners.html
18http://qt-project.org/doc/qt-4.8/qml-row.html
19http://qt-project.org/doc/qt-4.8/qml-grid.html
20http://qt-project.org/doc/qt-4.8/qml-flow.html
21http://qt-project.org/doc/qt-4.8/qml-rectangle.html

4.4. Properties 23

http://qt-project.org/doc/qt-4.8/qml-positioners.html
http://qt-project.org/doc/qt-4.8/qml-row.html
http://qt-project.org/doc/qt-4.8/qml-grid.html
http://qt-project.org/doc/qt-4.8/qml-flow.html
http://qt-project.org/doc/qt-4.8/qml-rectangle.html

Introduction to Application Development with Qt Quick, Release 1.0

[default] property <type> <name>[: defaultValue]

A new property for the border color in our Button would then look like this:

property string borderColor: "white"

We used the type “string” here. It is one of a range of types available, see this article22 about
property types in Qt documentation.

In some cases, it makes more sense to define an alias for an existing property instead of defining
a new one. This can be done using the following syntax:

[default] property alias <name>: <alias reference>

In fact, in the case of our button inheriting from Rectangle23, we should define the new property
as an alias since the Rectangle24 element already has a property defining the the color of the
border:

Rectangle {
id: myButton
property alias borderColor: myButton.border.color
...

}

The optional default keyword in the syntax outlined above are used to create default prop-
erties. They hold the child elements of an item. This is a more advanced use which is out of
the scope of this guide. Refer to this25 and this article26 in Qt documentation.

As mentioned before, a property change generates notification signals that can
have an handler to respond to the property change. Handlers are assigned to
on<property_name>Changed properties which are automatically created for all items
properties, including custom properties you have added. Lets do a small experiment with a
rectangle to see this in action:

import QtQuick 1.1

Rectangle {
width: 100; height: 100

onWidthChanged: console.log("Rectangle width: ", width)
onHeightChanged: console.log("Rectangle height: ", height)

}

The code above creates a window with an empty white rectangle. If you drag a corner to resize
its desktop window, you will see something like this in the console:

Rectangle width: 640
Rectangle height: 460
Rectangle width: 100

22http://qt-project.org/doc/qt-4.8/qdeclarativebasictypes.html
23http://qt-project.org/doc/qt-4.8/qml-rectangle.html
24http://qt-project.org/doc/qt-4.8/qml-rectangle.html
25http://qt-project.org/doc/qt-4.8/qml-extending.html#default-property
26http://qt-project.org/doc/qt-4.8/propertybinding.html#default-properties

4.4. Properties 24

http://qt-project.org/doc/qt-4.8/qdeclarativebasictypes.html
http://qt-project.org/doc/qt-4.8/qml-rectangle.html
http://qt-project.org/doc/qt-4.8/qml-rectangle.html
http://qt-project.org/doc/qt-4.8/qml-extending.html#default-property
http://qt-project.org/doc/qt-4.8/propertybinding.html#default-properties

Introduction to Application Development with Qt Quick, Release 1.0

Rectangle height: 100
Rectangle height: 101
Rectangle height: 102
Rectangle width: 104
Rectangle height: 109
Rectangle width: 105
Rectangle height: 110
Rectangle height: 111
...

The code of handler reacting to changes can be much more sophisticated and can use JavaScript.
We will talk about using JavaScript in Qt Quick in the section Using JavaScript (page 36)

Property binding is another fundamental aspect. It makes a property to follow changes of
another property. This works across items, and is actually used across items most of the time.
Binding occurs each time you use :, and have a value that can change on the right-hand side:

id1.text: id2.text // text in the id1 follows changes of the text in id2
width: 16 height/9 // this keeps an item being the 16:9 aspect ratio :-)

The latter is interesting as you can also do some calculations or even bind to a function returning
a value.

The following example combines what we just learned about properties in one small applica-
tion:

(property_binding/property_binding.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

Rectangle {
id: root

property int adaptiveSize: root.width/10

width: 100
height: 100

Text {
id: text1
anchors.centerIn: parent
text: "initial text"
onTextChanged: {

console.log ("text 1 is changed: " + text1.text)
}

}

Text {
id: text2
anchors.top: text1.bottom
anchors.horizontalCenter: text1.horizontalCenter
text: text1.text
font.pixelSize: adaptiveSize
onTextChanged: {

console.log ("text 2 is changed: " + text2.text)

4.4. Properties 25

Introduction to Application Development with Qt Quick, Release 1.0

}
}

MouseArea {
anchors.fill: parent
onClicked: {

text1.text = "new text"
console.log ("text 1 is now: " + text1.text)
console.log ("text 2 is now: " + text2.text)

}
}

}

The application starts like this:

As the text2.text is bound to text1.text, the property change in text1 on a mouse
click is automatically passed to text2:

The following appears in the console:

text 2 is changed: initial text
text 1 is changed: new text
text 2 is changed: new text
text 1 is now: new text
text 2 is now: new text

The mouse click was received by the MouseArea27 element and processed by the JavaScript
code in the onClicked handler. We will take a closer look at this in one of the following
chapters.

If you resize the window the pixel font size of the text in text2 is dynamically scaled to be
1/10 of the width of the root:

27http://qt-project.org/doc/qt-4.8/qml-mousearea.qml

4.4. Properties 26

http://qt-project.org/doc/qt-4.8/qml-mousearea.qml

Introduction to Application Development with Qt Quick, Release 1.0

Later on, we use properties to define custom parameters that define the appearance of our
application as well as keep a few settings.

4.5 Other Visual Composition Elements

Qt Quick 1.x provides a broad selection of items which can be used for UI creation. Qt doc-
umentation covers them28 in full details and we are not going to discuss all of them here. In
general, there are four sets of elements which can be used for composing application UIs:

• Drawn elements such as text and rectangles

• Loaded content such as images and web pages as well as fonts

• Visualization elements which arrange the above in various ways and can use models with
data if needed

• Effects such as animations and transitions while displaying the above

Qt5 adds two more:

• Vector-oriented graphics canvas

• 3D rendering with Open GL effects and shaders

These topics are covered by other guides available from here29

Even though you do not see high-level UI components on the list, Qt Quick gives you more
than enough power to compose very rich UIs. These UIs can be like cartoons, where images
receive user input and gets transformed smoothly into other images or elements, rectangles
rounded to become circles, ellipses, and so on. You can also create classical UI components if
required without significant effort. When you start working on a UI, try to first decompose it in
basic elements, text and images and views. Think how elements interact with each other, what
happens upon user input or changes in the application logic.

28http://qt-project.org/doc/qt-4.8/qdeclarativeelements.html
29http://qt-project.org/wiki/Developer-Guides/

4.5. Other Visual Composition Elements 27

http://qt-project.org/doc/qt-4.8/qdeclarativeelements.html
http://qt-project.org/wiki/Developer-Guides/

Introduction to Application Development with Qt Quick, Release 1.0

What’s Next?

In the next chapter we will learn how to load external content and create the required UI ap-
pearance.

4.5. Other Visual Composition Elements 28

CHAPTER 5

Loading and Displaying Content

As the next step in the development of our clock application, we are going to add a background
image instead of a solid color and display time and date in a different font than the standard
one. This type of content is usually provided in external files. We have to learn how to load and
display this kind of content. We should also learn how to customize the standard appearance of
elements to make an application look more attractive.

5.1 Accessing and loading content

Qt Quick 1.x allows the loading of images and fonts located on the network or in the local file
system. The path to related files is defined relatively to the location of the QML file where
the content is loaded. The same relative paths can be used when content is loaded over the
network. This makes moving the content from the file system to the network very easy and
does not require large changes in the code. See this article1 for more details.

Loading external content can always end up with problems. Files get misplaced. The network
connection can be too slow or the server is off-line. You don’t want that. Image2 and Font-
Loader3 provide status and progress properties for handling such situations. progress
changes its value from 0.0 to 1.0 in accordance to the actual progress of loading. If content
is loaded from the file system, progress is set to 1.0 almost instantly if we do not use it
in our application. The code segment for loading a font and tracing the status of loading looks
like this:

FontLoader {
id: ledFont
source: "./content/resources/font/LED_REAL.TTF"
onStatusChanged: if (ledFont.status == FontLoader.Error)

console.log ("Font \"" +
source +
"\" cannot be loaded")

}

1http://qt-project.org/doc/qt-4.8/qdeclarativenetwork.html
2http://qt-project.org/doc/qt-4.8/qml-image.html
3http://qt-project.org/doc/qt-4.8/qml-fontloader.html

29

http://qt-project.org/doc/qt-4.8/qdeclarativenetwork.html
http://qt-project.org/doc/qt-4.8/qml-image.html
http://qt-project.org/doc/qt-4.8/qml-fontloader.html
http://qt-project.org/doc/qt-4.8/qml-fontloader.html

Introduction to Application Development with Qt Quick, Release 1.0

Our new font, LED_REAL.TTF, is stored in the content folder, which is located in the same
folder as our application. If for any reason it does not load, an error message is posted on the
console and the application continues using a default font.

5.2 Basic Image Parameters

Loading images works almost the same way:

Image {
id: background
source: "./content/resources/light_background.png"
fillMode: "Tile"
anchors.fill: parent
onStatusChanged: if (background.status == Image.Error)

console.log ("Background image \"" +
source +
"\" cannot be loaded")

}

We need to change a few image properties. The image should cover the entire surface of the
top-level element (its parent). In many cases, filling a background is done with small images
which just design a pattern. Scaling them to the size of background would change the pattern,
and the background would not be the same as planned. In these cases, you set fillMode to
Tile as shown in the code above.

Dealing with Image Sizes

Most of the visual properties of an image can be changed using its parent (Itema) prop-
erties. Other Image’sb properties help handle critical image aspect - its size. If you deal
with large images, you should set the sourceSize property to a size which you really
need, otherwise the image loads in its full size. It is worth to notice the difference be-
tween paintedHeight and height, and between paintedWidht and width. The
painted property pairs describe the size of the area taken by the image when it is painted
on the screen, whereas the another pair describes the loaded size of the image. Both can be
different if the image is scaled. If you change the scale property inherited from Itemc, be
aware of the impact of the fillMode property on the actual scaling result. The smooth
property smoothens the edges of scaled images, but also incurs a performance cost. See
the Imaged documentation for more details.

ahttp://qt-project.org/doc/qt-4.8/qml-item.html
bhttp://qt-project.org/doc/qt-4.8/qml-image.html
chttp://qt-project.org/doc/qt-4.8/qml-item.html
dhttp://qt-project.org/doc/qt-4.8/qml-image.html

5.2. Basic Image Parameters 30

http://qt-project.org/doc/qt-4.8/qml-item.html
http://qt-project.org/doc/qt-4.8/qml-image.html
http://qt-project.org/doc/qt-4.8/qml-item.html
http://qt-project.org/doc/qt-4.8/qml-image.html

Introduction to Application Development with Qt Quick, Release 1.0

5.3 Basic Text Parameters

In the first section, we loaded a custom LED-like font. We now need to assign it to the appro-
priate text elements. Text4 has a grouped font property. It has to be used to customize various
font-related text properties. One of them, font.family, holds the name of a font to be used.

Finding the Fonts Installed

Sometimes it might be tricky to find out which fonts are installed on your target system
and how to spell their names right. A small example provided in Qt Quick lists names of
all availablea rendered in their fonts.

ahttp://qt-project.org/doc/qt-4.8/declarative-text-fonts-fonts-qml-fonts-qml-availablefonts-qml.html

Other Text5 properties allow a broad variation of the visual appearance of a text. In our appli-
cation, we use the color, style, and size-related properties.

The customized text element for displaying time looks like this:

Text {
id: timeText
text: root.currentTime
font.pixelSize: root.height root.timeTextProportion
font.family: ledFont.name
font.bold: true
color: root.textColor
style: Text.Raised
styleColor: "black"

}

Our plan is to implement as much flexibility as possible in the size and layout of all elements
as we want to run our application on different screen sizes. This is why the code above binds
the pixelSize of timeText to the height of the root element. This will scale the text
whenever the height of root changes. There are ways to make it better, but the current version
of Qt Quick unfortunately does not provide font metrics data in the font properties. If it were
available, we could make the text size adapt to the width changes as well.

In order to make the timeText element appear more attractive, we use some tricks for the
visual appearance by setting style to Text.Raised and styleColor to "black". This
detaches the text from the background so it seems like it’s hovering over it.

The Text6 element also provides basic layout controls (for example, you can set how the text
should be wrapped using wrapMode). We’re going to use this property later. The most impor-
tant thing to note about text formatting is that Text7 supports rich text8 markup. This makes it
possible to display one block of text in various formatting, colors, sizes etc.

The appearance of our application is now less boring:

4http://qt-project.org/doc/qt-4.8/qml-text.html
5http://qt-project.org/doc/qt-4.8/qml-text.html
6http://qt-project.org/doc/qt-4.8/qml-text.html
7http://qt-project.org/doc/qt-4.8/qml-text.html
8http://qt-project.org/doc/qt-4.8/Qt’s richtext-html-subset.html

5.3. Basic Text Parameters 31

http://qt-project.org/doc/qt-4.8/qml-text.html
http://qt-project.org/doc/qt-4.8/declarative-text-fonts-fonts-qml-fonts-qml-availablefonts-qml.html
http://qt-project.org/doc/qt-4.8/declarative-text-fonts-fonts-qml-fonts-qml-availablefonts-qml.html
http://qt-project.org/doc/qt-4.8/qml-text.html
http://qt-project.org/doc/qt-4.8/qml-text.html
http://qt-project.org/doc/qt-4.8/qml-text.html
http://qt-project.org/doc/qt-4.8/Qt's richtext-html-subset.html

Introduction to Application Development with Qt Quick, Release 1.0

The full source code is listed in the last section of this chapter.

5.4 Get ready for translation

When starting to develop an application, it makes a lot of sense to have some basic thoughts
about international versions even if you do not plan for it now. Qt provides a set of tools which
are used as the base by Qt Quick. If you know and use the essential part of the tools in the
beginning of your development, it can save a lot of time later when your application becomes
a complex system with a lot of code.

Qt Quick provides almost the same APIs for translation as in Qt Script. See the section, Produce
Translations9 for more details. The major API is the qsTr() function, which should be used
to wrap all visual strings in an application. The Hello World greeting in our first application
should then look like this:

import QtQuick 1.1

Rectangle {
width: 360
height: 360
Text {

anchors.centerIn: parent
text: qsTr("Hello World")

}
MouseArea {

anchors.fill: parent
onClicked: {

Qt.quit();
}

}
}

The application continues to run the same way as before using qsTr(). You need to use the
Qt translation tool chain to see translation in action. See the QML Internationalization10 article

9http://qt-project.org/doc/qt-4.8/scripting.html#produce-translations
10http://qt-project.org/doc/qt-4.8/qdeclarativei18n.html

5.4. Get ready for translation 32

http://qt-project.org/doc/qt-4.8/scripting.html#produce-translations
http://qt-project.org/doc/qt-4.8/scripting.html#produce-translations
http://qt-project.org/doc/qt-4.8/qdeclarativei18n.html

Introduction to Application Development with Qt Quick, Release 1.0

for more details about how to generate and integrate translation files. When translation files are
available, there are three ways to load them:

• by using the qmlviewer command-line option -translate

• by placing them in the i18n sub-folder (see this example11)

• by modifying the default behavior of the qmlviewer and loading QML and translation
files in your own way (this is beyond of scope for this guide)

If your plan is to make a version of an application for right-to-left languages, for example,
Arabic, take a look at the QML Right-to-left User Interfaces12 article.

Switching Languages at Runtime

Currently, there are no standard APIs to load a new language after a Qt Quick application
has already started. It is still possible with some additional code. See this article on the Qt
developer Wiki about possible workarounds: “How to do dynamic translation in QML”a

ahttp://qt-project.org/wiki/How_to_do_dynamic_translation_in_QML/

If you are interested in more details, check these further readings about internationalization in
Qt:

• Qt documentation: Writing Source Code for Translation13

• Qt documentation: Internationalization with Qt14

• Qt developer Wiki: “Qt Internationalization” article15

5.5 Static Clock Application Code

This is the code of our application including all enhancements as discussed in this chapter:

(static_clock2/static_clock2.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

// this will be a component later

Rectangle {
id: root

property bool showDate: true
property bool showSeconds: true
property string currentTime: "23:59"
property string currentDate: "31.12.12"

11http://qt-project.org/doc/qt-4.8/declarative-i18n.html
12http://qt-project.org/doc/qt-4.8/qml-righttoleft.html
13http://qt-project.org/doc/qt-4.8/i18n-source-translation.html
14http://qt-project.org/doc/qt-4.8/internationalization.html
15http://qt-project.org/wiki/QtInternationalization

5.5. Static Clock Application Code 33

http://qt-project.org/doc/qt-4.8/declarative-i18n.html
http://qt-project.org/doc/qt-4.8/qml-righttoleft.html
http://qt-project.org/wiki/How_to_do_dynamic_translation_in_QML/
http://qt-project.org/doc/qt-4.8/i18n-source-translation.html
http://qt-project.org/doc/qt-4.8/internationalization.html
http://qt-project.org/wiki/QtInternationalization

Introduction to Application Development with Qt Quick, Release 1.0

// the sizes are in proportion to the hight of the clock.
// There are three borders, text and date.
// 3*borderProportion+timeTextProportion+dateTextProportion has to be 1.0
property real borderProportion: 0.1
property real timeTextProportion: 0.5
property real dateTextProportion: 0.2
property string textColor: "red"

height:240
width:400

Image {
id: background
source: "../content/resources/light_background.png"
fillMode: "Tile"
anchors.fill: parent
onStatusChanged: if (background.status == Image.Error)

console.log (qsTr("Background image \"") +
source +
qsTr("\" cannot be loaded"))

}

FontLoader {
id: ledFont
source: "../content/resources/font/LED_REAL.TTF"
onStatusChanged: if (ledFont.status == FontLoader.Error)

console.log (qsTr("Font \"") +
source +
qsTr("\" cannot be loaded"))

}

Column {
id: clockText
anchors.centerIn: parent
spacing: root.height*root.borderProportion

Text {
id: timeText
text: root.currentTime
font.pixelSize: root.height*root.timeTextProportion
font.family: ledFont.name // use "Series 60 ZDigi" on Symbian instead
font.bold: true
color: root.textColor
style: Text.Raised
styleColor: "black"

}

Text {
id: dateText
text: currentDate
color: textColor
anchors.horizontalCenter: parent.horizontalCenter
font.family: ledFont.name // use "Series 60 ZDigi" on Symbian instead
font.pixelSize: root.height*root.dateTextProportion
visible: showDate
style: Text.Raised
styleColor: "black"

5.5. Static Clock Application Code 34

Introduction to Application Development with Qt Quick, Release 1.0

}
}

}

What’s Next?

In the next chapter we will take a look at scripting in Qt Quick. A small script code can make
our clock tick.

5.5. Static Clock Application Code 35

CHAPTER 6

Using JavaScript

We’ve already used JavaScript a lot in our code, but we have only scratched the surface.
JavaScript can be used in many more sophisticated and powerful ways in a Qt Quick appli-
cation. In fact, Qt Quick is implemented as a JavaScript extension. JavaScript can be used
almost anywhere as long as the code returns the value of the expected type. Moreover, us-
ing JavaScript is the standard way of writing parts of the application code which deal with
application logic and calculations.

There are two important topics we need to talk about before we continue developing our appli-
cation.

6.1 JavaScript is not JavaScript

JavaScript has its origins in the web development. In the course of time, JavaScript has rapidly
grown in its popularity and inspired development of many extensions and add-ons. In order to
support a broad use, JavaScript was formalized as a programming language in ECMAScript-262
standard. It is important to underline that ECMAScript-262 standard only covers the language
aspects and leaves out any API providing additional functionality such as objects and libraries
to access the web page content. Despite the standardization efforts, many JavaScript details in
web development are still browser-specific - even though the situation has improved in the last
few years. See the Wikipedia article about JavaScript1 for more details.

JavaScript is also used outside of the web where its functionality is tailored to support a use
case. Still, the use of JavaScript for client-side programming in web development is dominat-
ing. Due to this, all books and most web resources about JavaScript are actually dedicated to
web development. Qt Quick belongs to one of the platforms which use JavaScript outside of
the web. If you read books or other materials about JavaScript to understand and use it better
with Qt Quick, be aware of this difference.

Qt development teams are doing their best to provide all the details the use of JavaScript in Qt
Quick, and this guide is part of that effort.

1http://en.wikipedia.org/wiki/Javascript

36

http://en.wikipedia.org/wiki/Javascript

Introduction to Application Development with Qt Quick, Release 1.0

6.2 More About JavaScript

This guide contains an annex about basics of JavaScript (page 97) tailored for Qt Quick. We
strongly recommend reading it if you are not familiar with JavaScript, but have some general
background in programming.

In addition to the references in the annex, consider reading the following articles on the Mozilla
Developer Network:

• “About JavaScript”2

• “A re-introduction to JavaScript”3

• “JavaScript Guide”4

The following three articles in Qt Documentation explain essential details of JavaScript in Qt
Quick:

• Integrating JavaScript5 - key aspects to be aware of when using JavaScript in Qt Quick

• ECMAScript Reference6 - a list of built-in objects, functions and properties supported by
QtScript and so in Qt Quick

• QML Scope7 - explains the visibility of JavaScript objects and Qt Quick items

Note that significant changes and large updates to Qt Documentation may come with the future
Qt releases to provide a full coverage of the use of JavaScript in Qt Quick. Stay tuned and
check Qt Documentation again and again.

6.3 Adding Logic to Make the Clock Tick

We’ve already used a bit of JavaScript in previous sections. Most of it was for catching error
conditions while loading a custom font and an image. In this section, we use JavaScript to show
the actual time and date.

We are going to use the Date from the global object to get the current time and date. The
returned data has to be formatted so that we only keep parts of the date and time information
that we need. We use Qt.formatDateTime8 for this:

function getFormattedDateTime(format) {
var date = new Date
return Qt.formatDateTime(date, format)

}

2http://developer.mozilla.org/en/JavaScript/About_JavaScript
3http://developer.mozilla.org/en/A_re-introduction_to_JavaScript
4http://developer.mozilla.org/en/JavaScript/Guide
5http://qt-project.org/doc/qt-4.8/qdeclarativejavascript.html
6http://qt-project.org/doc/qt-4.8/ecmascript.html
7http://qt-project.org/doc/qt-4.8/qdeclarativescope.html
8http://qt-project.org/doc/qt-4.8/qml-qt.html#formatDateTime-method

6.2. More About JavaScript 37

http://developer.mozilla.org/en/JavaScript/About_JavaScript
http://developer.mozilla.org/en/A_re-introduction_to_JavaScript
http://developer.mozilla.org/en/JavaScript/Guide
http://qt-project.org/doc/qt-4.8/qdeclarativejavascript.html
http://qt-project.org/doc/qt-4.8/ecmascript.html
http://qt-project.org/doc/qt-4.8/qdeclarativescope.html
http://qt-project.org/doc/qt-4.8/qml-qt.html#formatDateTime-method

Introduction to Application Development with Qt Quick, Release 1.0

The :Qt.formatDateTime9 function is part of QML Global Object10, which provides many other
useful utilities in addition to the standard set defined by the ECMAScript Reference11. It is
worth taking a closer look at its documentation.

The getFormattedDateTime() function is used in another function, which creates actual
values for the Text12 elements in our clock:

function updateTime() {
root.currentTime = "<big>" +

getFormattedDateTime(Style.timeFormat) +
"</big>" +
(showSeconds ? "<sup><small> " + getFormattedDateTime("ss") +

"</small></sup>" : "");
root.currentDate = getFormattedDateTime(Style.dateFormat);

}

Note: We use rich-text formatting in the text value of the time as discussed in the previous
section.

We also use the conditional operator (also called the “ternary operator”) on the value of
showSeconds. showSeconds is a custom property that defines whether the seconds must
be shown on the clock. Using the conditional operator in Qt Quick is a very convenient way to
bind a property (or any other variable) to a value depending on a condition.

The updateTime() function needs a trigger so that the currentTime and
currentDate properties are constantly updated. We use the Timer13 item for this:

Timer {
id: updateTimer
running: Qt.application.active && visible == true
repeat: true
triggeredOnStart: true
onTriggered: {

updateTime()
// refresh the interval to update time each second or minute.
// consider the delta in order to update on a full minute
interval = 1000 (showSeconds? 1 : (60 - getFormattedDateTime("ss")))

}
}

Our timer implements some interesting aspects.

In order to optimize battery consumption, we bind the timer’s running property to two other
properties, which stops the timer, thereby reducing CPU activity. It stops if our clock element
becomes invisible (when used as a component in another application) or if our application
becomes inactive (running in the background or iconified).

We also assign a value to the interval property while not loading, but when the timer is
triggered. This is needed to catch the delta time to the full minute when seconds are not used.

9http://qt-project.org/doc/qt-4.8/qml-qt.html#formatDateTime-method
10http://qt-project.org/doc/qt-4.8/qdeclarativeglobalobject.html
11http://qt-project.org/doc/qt-4.8/ecmascript.html
12http://qt-project.org/doc/qt-4.8/qml-text.html
13http://qt-project.org/doc/qt-4.8/qml-timer.html

6.3. Adding Logic to Make the Clock Tick 38

http://qt-project.org/doc/qt-4.8/qml-qt.html#formatDateTime-method
http://qt-project.org/doc/qt-4.8/qdeclarativeglobalobject.html
http://qt-project.org/doc/qt-4.8/ecmascript.html
http://qt-project.org/doc/qt-4.8/qml-text.html
http://qt-project.org/doc/qt-4.8/qml-timer.html

Introduction to Application Development with Qt Quick, Release 1.0

This ensures that we update the clock exactly on the minute.

The full code of our application including all enhancements discussed above looks like this:

(NightClock/NightClock.qml in qt_quick_app_dev_intro_src.zip, see
Downloads (page 2) section)

import QtQuick 1.1

Rectangle {
id: root

property bool showDate: true
property bool showSeconds: true
property string currentTime
property string currentDate
// the sizes are in proportion to the hight of the clock.
// There are three borders, text and date.
// 3*borderProportion+timeTextProportion+dateTextProportion has to be 1.0
property real borderProportion: 0.1
property real timeTextProportion: 0.5
property real dateTextProportion: 0.2
property string textColor: "red"
property string timeFormat: "hh :mm"
property string dateFormat: "dd/MM/yy"

height:120
width:250

color: "transparent"

// returns formated time and date
function getFormattedDateTime(format) {

var date = new Date
return Qt.formatDateTime(date, format)

}

function updateTime() {
root.currentTime = "<big>" +

getFormattedDateTime(timeFormat) +
"</big>" +
(showSeconds ? "<sup><small> " + getFormattedDateTime("ss") +

"</small></sup>" : "");
root.currentDate = getFormattedDateTime(dateFormat);

}

Image {
id: background
source: "../content/resources/background.png"
fillMode: "Tile"
anchors.fill: parent
onStatusChanged: if (background.status == Image.Error)

console.log (qsTr("Background image \"") +
source +
qsTr("\" cannot be loaded"))

}

FontLoader {

6.3. Adding Logic to Make the Clock Tick 39

Introduction to Application Development with Qt Quick, Release 1.0

id: ledFont
// unfortunately, the font will not load on a Symbian device,
// and the default font will be used:
// http://bugreports.qt-project.org/browse/QTBUG-6611
// The bug should be fixed in 4.8
source: "../content/resources/font/LED_REAL.TTF"
onStatusChanged: if (ledFont.status == FontLoader.Error)

console.log("Font \"" + source + "\" cannot be loaded")
}

Timer {
id: updateTimer
running: Qt.application.active && visible == true
repeat: true
triggeredOnStart: true
onTriggered: {

updateTime()
// refresh the interval to update the time each second or minute.
// consider the delta in order to update on a full minute
interval = 1000*(showSeconds? 1 : (60 - getFormattedDateTime("ss")))

}
}

// trigger an update if the showSeconds setting has changed
onShowSecondsChanged: {

updateTime()
}

Column {
id: clockText
anchors.centerIn: parent
spacing: root.height*root.borderProportion

Text {
id: timeText
textFormat: Text.RichText
text: root.currentTime
font.pixelSize: root.height*root.timeTextProportion
font.family: ledFont.name // use "Series 60 ZDigi" on Symbian instead
font.bold: true
color: root.textColor
style: Text.Raised
styleColor: "black"

}

Text {
id: dateText
text: root.currentDate
color: root.textColor
anchors.horizontalCenter: parent.horizontalCenter
font.family: ledFont.name // use "Series 60 ZDigi" on Symbian instead
font.pixelSize: root.height*root.dateTextProportion
visible: root.showDate
style: Text.Raised
styleColor: "black"

}
}

6.3. Adding Logic to Make the Clock Tick 40

Introduction to Application Development with Qt Quick, Release 1.0

}

The appearance of the application has remained the same:

6.4 Importing JavaScript Files

If your application has a lot of JavaScript code, consider moving it to a separate file. You
can import those files just like we imported the Qt Quick module. Due to a special role that
JavaScript plays in Qt Quick, you must define the namespace for the content of the that file, for
example, Logic in this example. Your source code would then use Logic.foo() instead of
just foo(). The import statement looks like this:

import QtQuick 1.1
import "logic.js" as Logic

Note: If the application logic is complex, consider implementing it in C++ and importing it
into Qt Quick. See the “Extending QML Functionalities using C++”14 article for more details.

When you import a JavaScript file, it is used like a library and has the scope of the QML file
importing it. In some cases you might need a stateless library or a set of global variables shared
by multiple QML files. You can use the .pragma library declaration for this. See the
“Integrating JavaScript”15 article in Qt Documentation for more details.

We move the JavaScript functions of our clock into the logic.js file imported as Logic. We
also move all style properties into the style.js file imported as Style. This considerably
simplifies the code and allows sharing the style with other components that we’re going to
develop later.

The complete code of our application importing JavaScript files as discussed above looks like
this:

(components/NightClock.qml in qt_quick_app_dev_intro_src.zip, see
Downloads (page 2) section)

import QtQuick 1.1
import "../js/style.js" as Style
import "../js/logic.js" as Logic

14http://qt-project.org/doc/qt-4.8/qml-extending.html
15http://qt-project.org/doc/qt-4.8/qdeclarativejavascript.html

6.4. Importing JavaScript Files 41

http://qt-project.org/doc/qt-4.8/qml-extending.html
http://qt-project.org/doc/qt-4.8/qdeclarativejavascript.html

Introduction to Application Development with Qt Quick, Release 1.0

Rectangle {
id: root

property bool showDate: true
property bool showSeconds: true
property string currentTime
property string currentDate
property string textColor: "green"

height:120
width:300
color: "transparent"

function updateTime() {
root.currentTime = "<big>" + Logic.getFormattedDateTime(Style.timeFormat) + "</big>" +

(showSeconds ? "^{<small> " + Logic.getFormattedDateTime("ss") + "</small>}" : "");
root.currentDate = Logic.getFormattedDateTime(Style.dateFormat);

}

FontLoader {
id: ledFont
// unfortunately, the font will not load on a Symbian device,
// and the default font will be used:
// http://bugreports.qt-project.org/browse/QTBUG-6611
// The bug should be fixed in 4.8
source: "../content/resources/font/LED_REAL.TTF"
onStatusChanged: if (ledFont.status == FontLoader.Error)

console.log("Font \"" + source + "\" cannot be loaded")
}

Timer {
id: updateTimer
running: Qt.application.active && visible == true
repeat: true
triggeredOnStart: true
onTriggered: {

updateTime()
// refresh the interval to update the time each second or minute.
// consider the delta in order to update on a full minute
interval = 1000*(showSeconds? 1 : (60 - Logic.getFormattedDateTime("ss")))

}
}

// trigger an update if the showSeconds setting has changed
onShowSecondsChanged: {

updateTime()
}

Column {
id: clockText
anchors.centerIn: parent
spacing: root.height*Style.borderProportion

Text {
id: timeText
textFormat: Text.RichText
text: root.currentTime

6.4. Importing JavaScript Files 42

Introduction to Application Development with Qt Quick, Release 1.0

font.pixelSize: root.height*Style.timeTextProportion
font.family: ledFont.name // use "Series 60 ZDigi" on Symbian instead
font.bold: true
color: root.textColor
style: Text.Raised
styleColor: "black"

}

Text {
id: dateText
text: root.currentDate
color: root.textColor
anchors.horizontalCenter: parent.horizontalCenter
font.family: ledFont.name // use "Series 60 ZDigi" on Symbian instead
font.pixelSize: root.height*Style.dateTextProportion
visible: root.showDate
style: Text.Raised
styleColor: "black"

}
}

}

More Advanced Use of JavaScript

If you are interested in a more advanced use of JavaScript with Qt Quick, consider reading
“Qt Quick Application Developer Guide for Desktop” available under this linka.

ahttp://qt-project.org/wiki/Developer-Guides/

What’s Next?

In the next chapter, we start developing the weather forecast application and learn how to
retrieve and represent data in Qt Quick.

6.4. Importing JavaScript Files 43

http://qt-project.org/wiki/Developer-Guides/

CHAPTER 7

Acquire and Visualize Data

In this section, we leave our clock application for a while and start another one: a weather
forecast application. This section focuses on handling data. Our previous code kept data in
properties and in JavaScript variables. This is only sufficient for small and simple applications.
Sooner or later you will need to deal with larger sets of data.

Qt Quick implements the known model-view architecture and provides a handy set of APIs for
this. There is a selection of models which keep and, if needed, acquire data. View elements
read model items and render each of them with the help of a delegate in a specific way. For
example, as a grid or as a list.

7.1 Models

Qt Quick models are very simple since they are based on the concept of lists. The three kinds
of models that are used the most are:

• an int value (useful to display something multiple times)

• a JavaScript array of objects

• list models, for example, ListModel1 and XmlListModel2 elements

See the Models and Data Handling section in the “QML Elements”3 article for a full list of
model related items. There are also some advanced approaches which are discussed in the
“QML Data Models”4 article in Qt Documentation.

We are going to use XmlListModel5 and take a look at a few examples where an int and an
array are used as models.

Our weather forecast application uses Google weather APIs to get the data.

1http://qt-project.org/doc/qt-4.8/qml-listmodel.html
2http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
3http://qt-project.org/doc/qt-4.8/qdeclarativeelements.html
4http://qt-project.org/doc/qt-4.8/qdeclarativemodels.html
5http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html

44

http://qt-project.org/doc/qt-4.8/qml-listmodel.html
http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
http://qt-project.org/doc/qt-4.8/qdeclarativeelements.html
http://qt-project.org/doc/qt-4.8/qdeclarativemodels.html
http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html

Introduction to Application Development with Qt Quick, Release 1.0

Note: Google weather APIs are not announced as a regular internet service yet.

With these APIs, you can make a query on the web and receive weather data in XML as a
response. As this is a very common way of data provisioning, Qt Quick provides a dedicated
model for it: XmlListModel6.

XmlListModel7 uses XPath and XQuery (see this article in Wikipedia8) to read the data deliv-
ered as XML. XmlListModel9 uses XmlRole10 to create model items for selected XML tree
nodes. Let’s see how this works.

The query URL is formatted like this:

http://www.google.com/ig/api?weather=[LOCATION]&hl=[LANGUAGE]

It returns the current weather conditions and a forecast for the next four days. If LOCATION is
set as Munich and LANGUAGE is set as English, it looks like this:

http://www.google.com/ig/api?weather=Munich&hl=en

It returns the following XML output:

<?xml version="1.0" ?>
<xml_api_reply version="1">

<weather module_id="0" tab_id="0" mobile_row="0" mobile_zipped="1" row="0" section="0">
<forecast_information>

<city data="Munich, Bavaria" />
<postal_code data="Munich" />
<latitude_e6 data="" />
<longitude_e6 data="" />
<forecast_date data="2012-02-22" />
<current_date_time data="1970-01-01 00:00:00 +0000" />
<unit_system data="US" />
</forecast_information>

<current_conditions>
<condition data="Clear" />
<temp_f data="39" />
<temp_c data="4" />
<humidity data="Humidity: 56%" />
<icon data="/ig/images/weather/sunny.gif" />
<wind_condition data="Wind: E at 8 mph" />
</current_conditions>

<forecast_conditions>
<day_of_week data="Wed" />
<low data="27" />
<high data="43" />
<icon data="/ig/images/weather/sunny.gif" />
<condition data="Clear" />

6http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
7http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
8http://en.wikipedia.org/wiki/XPath
9http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html

10http://qt-project.org/doc/qt-4.8/qml-xmlrole.html

7.1. Models 45

http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
http://en.wikipedia.org/wiki/XPath
http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
http://qt-project.org/doc/qt-4.8/qml-xmlrole.html

Introduction to Application Development with Qt Quick, Release 1.0

</forecast_conditions>
<forecast_conditions>

<day_of_week data="Thu" />
<low data="36" />
<high data="43" />
<icon data="/ig/images/weather/chance_of_rain.gif" />
<condition data="Chance of Rain" />
</forecast_conditions>

<forecast_conditions>
<day_of_week data="Fri" />
<low data="36" />
<high data="54" />
<icon data="/ig/images/weather/sunny.gif" />
<condition data="Clear" />
</forecast_conditions>

<forecast_conditions>
<day_of_week data="Sat" />
<low data="34" />
<high data="48" />
<icon data="/ig/images/weather/chance_of_rain.gif" />
<condition data="Chance of Rain" />
</forecast_conditions>

</weather>
</xml_api_reply>

A model which queries and processes this data looks like this:

import QtQuick 1.1

Item {
id: root
property string location: "Munich"
property string baseURL: "http://www.google.com"
property string dataURL: "/ig/api?weather="
// some other values: "de", "es", "fi", "fr", "it", "ru"
property string language: "en"

XmlListModel {
id: weatherModelCurrent
source: baseURL + dataURL + location + "&hl=" + language
query: "/xml_api_reply/weather/current_conditions"

XmlRole { name: "condition"; query: "condition/@data/string()" }
XmlRole { name: "temp_f"; query: "temp_f/@data/string()" }
XmlRole { name: "humidity"; query: "humidity/@data/string()" }
XmlRole { name: "icon_url"; query: "icon/@data/string()" }
XmlRole { name: "wind_condition"; query: "wind_condition/@data/string()" }

}

XmlListModel {
id: weatherModelForecast
source: baseURL + dataURL + location + "&hl=" + language
query: "/xml_api_reply/weather/forecast_conditions"

7.1. Models 46

Introduction to Application Development with Qt Quick, Release 1.0

XmlRole { name: "day_of_week"; query: "day_of_week/@data/string()" }
XmlRole { name: "low"; query: "low/@data/string()" }
XmlRole { name: "high"; query: "high/@data/string()" }
XmlRole { name: "icon_url"; query: "icon/@data/string()" }
XmlRole { name: "condition"; query: "condition/@data/string()" }

}
}

If you take a closer look at the code inside the XmlRole11 elements, you will notice that they
basically create model items with property-value pairs by mapping them to the specified nodes
in the XML tree starting at the node specified in query. Like Image12 and Font13, XmlList-
Model14 provides status and progress properties, which can be used to track the loading
progress and catch the errors. Additionally, there is a reload() method which forces the
model to query the URL again and load updated data. We will use this later to make sure that
the weather forecast is always up-to-date.

7.2 Repeater and Views

Now we need to visualize the weather data collected in our models. There are various ways to
do this in Qt Quick. Most visualization elements are inherited from Flickable15:

• ListView16

• GridView17

• PathView18

These elements act like view ports and use delegate elements to draw each model item. Views
expect a fixed size to be set via height and width. The content is shown inside that specified
area and can be “flicked” (by default, up and down):

import QtQuick 1.1

ListView {
width: 150; height: 50
model: ["one", "two", "three", "four", "five"] // or just a number, e.g 10
delegate: Text { text: "Index: " + model.index + ", Data: " + model.modelData }

}

This is how it looks on the screen:

11http://qt-project.org/doc/qt-4.8/qml-xmlrole.html
12http://qt-project.org/doc/qt-4.8/qml-image.html
13http://qt-project.org/doc/qt-4.8/qml-font.html
14http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
15http://qt-project.org/doc/qt-4.8/qml-flickalbe.html
16http://qt-project.org/doc/qt-4.8/qml-listview.html
17http://qt-project.org/doc/qt-4.8/qml-gridview.html
18http://qt-project.org/doc/qt-4.8/qml-pathview.html

7.2. Repeater and Views 47

http://qt-project.org/doc/qt-4.8/qml-xmlrole.html
http://qt-project.org/doc/qt-4.8/qml-image.html
http://qt-project.org/doc/qt-4.8/qml-font.html
http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
http://qt-project.org/doc/qt-4.8/qml-xmllistmodel.html
http://qt-project.org/doc/qt-4.8/qml-flickalbe.html
http://qt-project.org/doc/qt-4.8/qml-listview.html
http://qt-project.org/doc/qt-4.8/qml-gridview.html
http://qt-project.org/doc/qt-4.8/qml-pathview.html

Introduction to Application Development with Qt Quick, Release 1.0

The best use case for views is when a large number of model items has to be displayed. Views
provide a built-in scrolling or flicking functionality to support ergonomic representation of
large data sets. There are also some performance reasons for this as views only load items that
become visible and not the entire set of them.

Advanced Use of Views

Views provide rich functionality and can be used to create pretty sophisticated UIs. If you
are interested, consider reading the The Qt Quick Carousel Tutoriala

ahttp://qt-project.org/wiki/Qt_Quick_Carousel

If you have a small number of model items that has to be placed one after the other in a certain
order, it makes more sense to use a Repeater19. A Repeater20 creates specified elements for each
item in the model. These elements must be placed on the screen by a positioner, for example,
Column21, Grid22, and so on. The above example can be modified to use a Repeater23:

import QtQuick 1.1

Column {
Repeater {

model: ["one", "two", "three", "four", "five"] // or just a number, e.g 10
Text { text: "Index: " + model.index + ", Data: " + model.modelData }

}
}

This is how it looks on the screen:

Note that all items are now visible even though the size of the containing element Column is
not specified. Repeater24 calculates the size of the elements and Column25 resizes accordingly.
Check the “Presenting Data with Views” article26 article in Qt Documentation for more details.

We will finish our application by adding two visualization elements, each of which uses its own
delegate. We need separate delegates as the current weather conditions data and the forecast
data have different structures, which we would like to present in different ways.

But what should be used as visualization elements? It is possible with either a view a or with
a Repeater27. The weatherModelForecast items are displayed by a GridView28 and it

19http://qt-project.org/doc/qt-4.8/qml-repeater.html
20http://qt-project.org/doc/qt-4.8/qml-repeater.html
21http://qt-project.org/doc/qt-4.8/qml-column.html
22http://qt-project.org/doc/qt-4.8/qml-grid.hrml
23http://qt-project.org/doc/qt-4.8/qml-repeater.html
24http://qt-project.org/doc/qt-4.8/qml-repeater.html
25http://qt-project.org/doc/qt-4.8/qml-column.html
26http://qt-project.org/doc/qt-4.8/qml-views.html
27http://qt-project.org/doc/qt-4.8/qml-repeater.html
28http://qt-project.org/doc/qt-4.8/qml-gridview.html

7.2. Repeater and Views 48

http://qt-project.org/wiki/Qt_Quick_Carousel
http://qt-project.org/doc/qt-4.8/qml-repeater.html
http://qt-project.org/doc/qt-4.8/qml-repeater.html
http://qt-project.org/doc/qt-4.8/qml-column.html
http://qt-project.org/doc/qt-4.8/qml-grid.hrml
http://qt-project.org/doc/qt-4.8/qml-repeater.html
http://qt-project.org/doc/qt-4.8/qml-repeater.html
http://qt-project.org/doc/qt-4.8/qml-column.html
http://qt-project.org/doc/qt-4.8/qml-views.html
http://qt-project.org/doc/qt-4.8/qml-repeater.html
http://qt-project.org/doc/qt-4.8/qml-gridview.html

Introduction to Application Development with Qt Quick, Release 1.0

looks like this:

The same items displayed by a Repeater29 looks like this:

29http://qt-project.org/doc/qt-4.8/qml-repeater.html

7.2. Repeater and Views 49

http://qt-project.org/doc/qt-4.8/qml-repeater.html

Introduction to Application Development with Qt Quick, Release 1.0

The weatherModelCurrent contains just one item. Due to this, a Repeater30 is sufficient
for displaying it and we keep this approach. The complete source code of the application:

(Weather/weather.qml in qt_quick_app_dev_intro_src.zip, see Downloads
(page 2) section)

import QtQuick 1.1

Item {
id: root
property string location: "Munich"
property bool tempInC: true
property string baseURL: "http://www.google.com"
property string dataURL: "/ig/api?weather="
// some other values: "de", "es", "fi", "fr", "it", "ru"
property string language: "en"

width: 300
height: 700

function f2C (tempInF) {
return (5/9*(tempInF - 32)).toFixed(0)

}

XmlListModel {
id: weatherModelCurrent
source: baseURL + dataURL + location + "&hl=" + language
query: "/xml_api_reply/weather/current_conditions"

XmlRole { name: "condition"; query: "condition/@data/string()" }
XmlRole { name: "temp_f"; query: "temp_f/@data/string()" }
XmlRole { name: "humidity"; query: "humidity/@data/string()" }
XmlRole { name: "icon_url"; query: "icon/@data/string()" }
XmlRole { name: "wind_condition"; query: "wind_condition/@data/string()" }

}

Component {
id: currentConditionDelegate
Column {

Text { text: qsTr("Today"); font.bold: true }
Text { text: model.condition }
Image { source: baseURL + model.icon_url }
Text { text: model.temp_f + " F° / " + f2C (model.temp_f) + " C°" }
Text { text: model.humidity }
Text { text: model.wind_condition }

}
}

XmlListModel {
id: weatherModelForecast
source: baseURL + dataURL + location + "&hl=" + language
query: "/xml_api_reply/weather/forecast_conditions"

XmlRole { name: "day_of_week"; query: "day_of_week/@data/string()" }
XmlRole { name: "low"; query: "low/@data/string()" }
XmlRole { name: "high"; query: "high/@data/string()" }

30http://qt-project.org/doc/qt-4.8/qml-repeater.html

7.2. Repeater and Views 50

http://qt-project.org/doc/qt-4.8/qml-repeater.html

Introduction to Application Development with Qt Quick, Release 1.0

XmlRole { name: "icon_url"; query: "icon/@data/string()" }
XmlRole { name: "condition"; query: "condition/@data/string()" }

}

Component {
id: forecastConditionDelegate
Column {

spacing: 2
Text { text: model.day_of_week; font.bold: true }
Text { text: model.condition }
Image { source: baseURL + model.icon_url }
Text { text: qsTr("Lows: ") +

model.low +
" F° / "
+ f2C (model.low) + " C°"}

Text { text: qsTr("Highs: ") +
model.high +
" F° / " +
f2C (model.high) + " C°"}

}
}

Column {
id: allWeather
anchors.centerIn: parent
anchors.margins: 10
spacing: 10

Repeater {
id: currentReportList
model: weatherModelCurrent
delegate: currentConditionDelegate

}

/* we can use a GridView...*/
GridView {

id: forecastReportList
width: 220
height: 220
cellWidth: 110; cellHeight: 110
model: weatherModelForecast
delegate: forecastConditionDelegate

}
/**/

/* ..a Repeater
Repeater {

id: forecastReportList
model: weatherModelForecast
delegate: forecastConditionDelegate

}

*/
}

MouseArea {
anchors.fill: parent
onClicked: Qt.quit()

7.2. Repeater and Views 51

Introduction to Application Development with Qt Quick, Release 1.0

}
}

We do not need this feature in our application, but it is important to mention. In the current
version, Qt Quick does not provide direct access to the local file system unless you hard-code
a name of the file you would like to load.

A FolderListModel C++ plug-in is provided as a lab project in Qt 4.7.4 and higher to
provide access to the file system. See “FolderListModel - a C++ model plugin” article31 in Qt
Documentation for details. An earlier version of this plugin is used to develop a text editor in a
getting started tutorial32.

What’s Next?

In the next chapter, we start to combine the clock and the weather forecast features into one
application. We make components based on the code we have developed so far and use these
components to compose the final application.

31http://qt-project.org/doc/qt-4.8/src-imports-folderlistmodel.html
32http://qt-project.org/doc/qt-4.8/gettingstartedqml.html

7.2. Repeater and Views 52

http://qt-project.org/doc/qt-4.8/src-imports-folderlistmodel.html
http://qt-project.org/doc/qt-4.8/gettingstartedqml.html

CHAPTER 8

Components and Modules

The next step is to get a version that combines the features of the weather forecast application
and the clock application we have already developed. Fortunately, we need not implement
those features again or copy the code. We can slightly modify the available applications and
re-use them as components. This will be the focus of this chapter.

In the next chapter, we will take another step forward and further enhance the application by
adding more components while learning more about how they can be used.

8.1 Creating Components and Collecting Modules

The notion of components in Qt Quick is very simple: any item composed from other elements
or components can become a component itself. Components are building blocks for any larger
application. When using modules, it is possible to create component collections (libraries).

In order to create a component, you have to create a new file saved as
<NameOfComponent>.qml with only one root element in it (the same as you would
do with an ordinary Qt Quick application). It is important to underline that the name of the
file has to start with a capital letter. From now on, the new component will be available under
the name <NameOfComponent> to all other Qt Quick applications residing in the same
directory. Generally, files with a qml extension are referred to as QML Documents1.

When your work progresses, you will probably get many files in the application’s folder. Later
on, you might even have the need to host components in different versions. This is where Qt
Quick modules come to the rescue. The first step is to move all components (basically, files)
which belong to the same group of functionality in a new folder. Then you need to create a
qmldir file containing meta-information about these components in that folder. Afterwards
this folder becomes a module, which can be imported into your application the same way as
you would import the standard Qt Quick elements:

import QtQuick 1.1
import "components" 1.0

1http://qt-project.org/doc/qt-4.8/qdeclarativedocuments.html

53

http://qt-project.org/doc/qt-4.8/qdeclarativedocuments.html

Introduction to Application Development with Qt Quick, Release 1.0

See Defining New Components2 in Qt documentation for more details about components.

If you move the directory with modules, you have to change the path in all QML documents
using them. It is also possible to provision modules for global use by any application. See the
QML Modules3 article for more details.

Note: Components can also be developed as C++ plug-ins, which is beyond the scope of this
guide. See this article4 if you are interested.

In some cases, you must define in-line components, for example, when you pass a reference to
a component to another element in the same QML file. This is used more frequently for dele-
gates in views. See the main item’s code of the final application in the Integrated Application
(page 58) section.

If you experience problems while importing modules or separate components, set the envi-
ronment variable QML_IMPORT_TRACE to 1 (see “Debugging QML”5) for more debugging
tips.

Let’s take a look at how this is used in our application.

We move NightClock.qml to a new folder called components, which also contains two
new components: Weather and WeatherModelItem. As mentioned above, we also add a
qmldir file to describe a new module:

(components/qmldir in qt_quick_app_dev_intro_src.zip, see Downloads
(page 2) section)

Configure 1.0 Configure.qml
NightClock 1.0 NightClock.qml
WeatherModelItem 1.0 WeatherModelItem.qml
Weather 1.0 Weather.qml

Weather and WeatherModelItem include the code from the previous sections in a re-
worked and extended form. We will take a closer look at the changes in the next section.

8.2 Defining Interfaces and Default Behavior

Moving code into a separate file is just the first step in making a component. You should decide
and define how a new component should be used, i.e. which interfaces are provided to change
its appearance and behavior. If you have used Qt with C++, you should keep in mind that using
components in Qt Quick is different from using classes and libraries in C++. Qt Quick follows
JavaScript in this as well. If you use an external component in your item, it is loaded almost as
if it had been defined in-line taking over all its properties, handlers, signals, and so on. You can
bind that existing property to another value, and use existing signals and handlers. You can also
extend that component by declaring additional properties, new signals, handlers, and JavaScript

2http://qt-project.org/doc/qt-4.8/qmlreusablecomponents.html#qml-define-components
3http://qt-project.org/doc/qt-4.8/qdeclarativemodules.html
4http://qt-project.org/doc/qt-4.8/qml-extending.html
5http://qt-project.org/doc/qt-4.8/qdeclarativedebugging.html

8.2. Defining Interfaces and Default Behavior 54

http://qt-project.org/doc/qt-4.8/qmlreusablecomponents.html#qml-define-components
http://qt-project.org/doc/qt-4.8/qdeclarativemodules.html
http://qt-project.org/doc/qt-4.8/qml-extending.html
http://qt-project.org/doc/qt-4.8/qdeclarativedebugging.html

Introduction to Application Development with Qt Quick, Release 1.0

functions. As all these steps are optional, a component has to have a default appearance and
behavior if loaded as is. For example:

import QtQuick 1.1
import "components" 1.0

Item {
id: root
NightClock {

id: clock
}

}

This is the same as executing NightClock as a stand-alone Qt Quick application.

Let’s try this out and create a new application called clock-n-weather, which uses three compo-
nents based on the code we developed earlier:

• NightClock - the digital clock

• WeatherModelItem - a new weather model that combines the forecast and current
weather

• Weather - the delegate for drawing the weather data for one day

Most of the code for these components should not be new to you as we discussed them in
the previous sections. NightClock remained unchanged. We are just binding a few of its
properties (for example, showDate, showSeconds) to values from the root item and add
new values to customize NightClock:
...
NightClock {

id: clock
height: 80
width: 160
showDate: root.showDate
showSeconds: root.showSeconds
textColor: Style.onlineClockTextColor

}
...

Properties showDate and showSeconds are configuration parameters, which we are used
as property values of the root element. In a later section, we will add a Configure component
to manage these as well as a few other values.

8.3 Handling Scope

As mentioned above, the WeatherModelItem component uses the code from the applica-
tion in the previous section, but works very differently. The rationale for making this change is
to unite the forecast model and the current condition model in one component so that we can
use them as a universal weather model:

(components/WeatherModelItem.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

8.3. Handling Scope 55

Introduction to Application Development with Qt Quick, Release 1.0

import QtQuick 1.1

Item {
id: root
property alias forecastModel: forecast
property alias currentModel: current
property string location: "Munich"
property bool forceOffline: false
property string baseURL: "http://www.google.com"
property string dataURL: "/ig/api?weather="
property string source: baseURL + dataURL + location.split(’ ’).join(’%20’)
property int interval: 5
property bool modelDataError: false
property string statusMessage: ""

XmlListModel {
id: forecast
source: root.source
query: "/xml_api_reply/weather/forecast_conditions"

XmlRole { name: "day_of_week"; query: "day_of_week/@data/string()" }
XmlRole { name: "low"; query: "low/@data/string()" }
XmlRole { name: "high"; query: "high/@data/string()" }
XmlRole { name: "condition"; query: "condition/@data/string()" }
XmlRole { name: "temp_c"; query: "temp_c/@data/string()" }

onStatusChanged: {
root.modelDataError = false
if (status == XmlListModel.Error) {

root.state = "Offline"
root.statusMessage = "Error occurred: " + errorString()
root.modelDataError = true
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Ready) {
// check if the loaded model is not empty, and post a message
if (get(0) === undefined) {

root.state = "Offline"
root.statusMessage = "Invalid location \"" + root.location + "\""
root.modelDataError = true

} else {
root.state = "Live Weather"
root.statusMessage = "Live current weather is available"

}
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Loading) {
root.state = "Loading"
root.statusMessage = "Forecast data is loading..."
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Null) {
root.state = "Loading"
root.statusMessage = "Forecast data is empty..."
//console.log("Weather Clock: " + root.statusMessage)

} else {
root.modelDataError = false
console.log("Weather Clock: unknown XmlListModel status:" + status)

}
}

8.3. Handling Scope 56

Introduction to Application Development with Qt Quick, Release 1.0

}

XmlListModel {
id: current
source: root.source
query: "/xml_api_reply/weather/current_conditions"

XmlRole { name: "condition"; query: "condition/@data/string()" }
XmlRole { name: "temp_c"; query: "temp_c/@data/string()" }

onStatusChanged: {
root.modelDataError = false
if (status == XmlListModel.Error) {

root.state = "Offline"
root.statusMessage = "Error occurred: " + errorString()
root.modelDataError = true
//console.log("Weather Clock: Error reading current: " + root.statusMessage)

} else if (status == XmlListModel.Ready) {
// check if the loaded model is not empty, and post a message
if (get(0) === undefined) {

root.state = "Offline"
root.statusMessage = "Invalid location \"" + root.location + "\""
root.modelDataError = true

} else {
root.state = "Live Weather"
root.statusMessage = "Live current weather is available"

}
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Loading) {
root.state = "Loading"
root.statusMessage = "Current weather is loading..."
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Null) {
root.state = "Loading"
root.statusMessage = "Current weather is empty..."
//console.log("Weather Clock: " + root.statusMessage)

} else {
root.modelDataError = true
console.log("Weather Clock: unknown XmlListModel status:" + status)

}
}

}

Timer {
// note that this interval is not accurate to a second on a full minute
// since we omit adjustment on seconds like in the clock interval
// to simplify the code
interval: root.interval*60000
running: Qt.application.active && !root.forceOffline
repeat: true
onTriggered: {

current.reload()
forecast.reload()

}
}

}

8.3. Handling Scope 57

Introduction to Application Development with Qt Quick, Release 1.0

In the code block above, you can see the two models being hosted under one item.
We need to access them separately later when using them in views. If the imported
WeatherModelItem has the weatherModelItem id, you might suggest to access them
as weatherModelItem.forecast and weatherModelItem.current. Unfortu-
nately, this will not work. The problem is that the child items of an imported component
are by default not visible. A way to solve this problem is to use alias properties to export their
id:

property alias forecastModel: forecast
property alias currentModel: current

Our models can now be accessed as weatherModelItem.forecastModel and
weatherModelItem.forecastModel.

Scope and visibility of items, their properties and JavaScript objects are a very important aspect
in Qt Quick. We strongly advise reading the QML Scope6 article in Qt Documentation.

The article referenced above also explains how Qt Quick scope mechanism resolves name
conflicts. It is important to keep those rules in mind. A good practice in a daily work is to
always qualify the properties you bind to. This makes your application’s code easier for others
to understand and avoid unexpected side effects. Doing this, you should write for example:

Item {
id: myItem
...
enable: otherItem.visible

}

instead of just:

Item {
id: myItem
...
enable: visible

}

8.4 Integrated Application

There are other enhancements made to the code from the previous sections which are worth
noting.

The most important one is that we’ve added a timer that triggers the reloading of both models:

Timer {
// note that this interval is not accurate to a second on a full minute
// as we omit adjustment on seconds like in the clock interval
// to simplify the code
interval: root.interval 60000
running: Qt.application.active && !root.forceOffline
repeat: true
onTriggered: {

6http://qt-project.org/doc/qt-4.8/qdeclarativescope.html

8.4. Integrated Application 58

http://qt-project.org/doc/qt-4.8/qdeclarativescope.html

Introduction to Application Development with Qt Quick, Release 1.0

current.reload()
forecast.reload()

}
}

This timer is similar to the timer in the clock application and updates the weather data in
the modes each root.interval seconds. root.interval is a configuration parameter
defined as a property and bound to according value in the parent item.

We also have an updated delegate component for drawing weather conditions. The major
change is to use local weather icons instead of loading them from the Internet. This has many
advantages such as saving the bandwidth (if the application is running on a mobile device) or
just a different look-n-feel which better meets our expectations and is less dependent on exter-
nal content. We use a very nice set of weather icons from the KDE7 project. We rename them
to match weather condition descriptions and add just a few statements in JavaScript to load
them from the local file system:

Image {
id: icon
anchors.fill: parent
smooth: true
fillMode: Image.PreserveAspectCrop
source: "../content/resources/weather_icons/" +

conditionText.toLowerCase().split(’ ’).join(’_’) + ".png"
onStatusChanged: if (status == Image.Error) {

// we set the icon to an empty image
// if we failed to find one
source = ""
console.log("no icon found for the weather condition: \""

+ conditionText + "\"")
}

}

Notice that the Weather component can also be started as a stand alone Qt Quick application if
needed. It uses the default property values in this case. This is useful for testing the component
under various conditions. The weather component looks like this:

The main item of the complete application using components looks like this:

(clock-n-weather/ClockAndWeather.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

7http://www.kde.org

8.4. Integrated Application 59

http://www.kde.org

Introduction to Application Development with Qt Quick, Release 1.0

import QtQuick 1.1

import "../components" 1.0
import "../js/logic.js" as Logic
import "../js/style.js" as Style

Rectangle {
id: root
property string defaultLocation: "Munich"
property int defaultInterval: 60 // in seconds
property bool showSeconds: true
property bool showDate: true

width: 360
height: 640

Image {
id: background
source: "../content/resources/background.png"
fillMode: "Tile"
anchors.fill: parent
onStatusChanged: if (background.status == Image.Error)

console.log("Background image \"" +
source +
"\" cannot be loaded")

}

WeatherModelItem {
id: weatherModelItem
location: root.defaultLocation
interval: root.defaultInterval

}

Component {
id: weatherCurrentDelegate
Weather {

id: currentWeatherItem
labelText: root.defaultLocation
conditionText: model.condition
tempText: model.temp_c + "C°"

}
}

Component {
id: weatherForecastDelegate
Weather {

id: forecastWeatherItem
labelText: model.day_of_week
conditionText: model.condition
tempText: Logic.f2C (model.high) +

"C° / " +
Logic.f2C (model.low) +
"C°"

}
}

Column {

8.4. Integrated Application 60

Introduction to Application Development with Qt Quick, Release 1.0

id: clockAndWeatherScreen
anchors.centerIn: root

NightClock {
id: clock
height: 80
width: 160
showDate: root.showDate
showSeconds: root.showSeconds
textColor: Style.onlineClockTextColor

}

Repeater {
id: currentWeatherView
model: weatherModelItem.currentModel
delegate: weatherCurrentDelegate

}

GridView {
id: forecastWeatherView
width: 300
height: 300
cellWidth: 150; cellHeight: 150
model: weatherModelItem.forecastModel
delegate: weatherForecastDelegate

}
}

MouseArea {
anchors.fill: parent
onClicked: Qt.quit()

}
}

We load WeatherModelItem as weatherModelItem and define two delegates based on
the Weather component. Then we have a Column8 with our NightClock component, a
Repeater9 with the current weather condition data, and a GridView10 with the forecast. That’s
it! This is how it looks on the screen:

8http://qt-project.org/doc/qt-4.8/qml-column.html
9http://qt-project.org/doc/qt-4.8/qml-repeater.html

10http://qt-project.org/doc/qt-4.8/qml-gridview.html

8.4. Integrated Application 61

http://qt-project.org/doc/qt-4.8/qml-column.html
http://qt-project.org/doc/qt-4.8/qml-repeater.html
http://qt-project.org/doc/qt-4.8/qml-gridview.html

Introduction to Application Development with Qt Quick, Release 1.0

8.5 Further Readings

Using components is a powerful way to extend Qt Quick functionality. Qt Quick components
are used to create a full set of UI elements on Symbian11. There is a dedicated page about this
topic12 on the Qt Project wiki. The Qt Components project13 on Gitorious hosts several other
implementations, including Qt Components for desktop14.

What’s Next?

In the next chapter, we will focus on the interaction with the user. We will learn how Qt Quick
supports this and how we can create simple UI components that suit our needs.

11http://doc.qt.digia.com/qtquick-components-symbian-1.1/index.html
12http://qt-project.org/wiki/Qt_Quick_Components
13http://qt.gitorious.org/qt-components
14http://qt.gitorious.org/qt-components/desktop

8.5. Further Readings 62

http://doc.qt.digia.com/qtquick-components-symbian-1.1/index.html
http://qt-project.org/wiki/Qt_Quick_Components
http://qt-project.org/wiki/Qt_Quick_Components
http://qt.gitorious.org/qt-components
http://qt.gitorious.org/qt-components/desktop

CHAPTER 9

Interactive UI with Multiple Top-Level
Windows

Now that our application is becoming more complete, we need to add some functionality to
make it usable on a daily basis. First of all, we need a real button to quit and stop using the
entire application window for this. Additionally, we need a new top-level window where we
can manage configuration settings. When the user changes settings, the application should
verify changes and let the user know if something is wrong. To implement this, we need some
basic UI elements.

9.1 A Button

The first thing is to create a button component, which will be used to quit the application, open
the configuration window, close it, and so on. Our button should have basic visual parameters
and send a signal when it is clicked. The button should also give some visual response that it
has received user input. Certainly, a button can have many more features. There may be dozens
of approaches for implementing a button, but we’ll just describe one which suits our needs.

Our button can be a simple click-sensitive rectangle with rounded corners. In previous sections,
we saw that an element can receive mouse events if we include a MouseArea1 element and let
it fill the entire surface of that element. We are going to use this approach for the button.
Additionally, our button has to emit a signal notifying relevant parts of the application that it
has been clicked. We need to use Qt Quick signals to implement this. Let’s take a look at how
they work first.

We already got in touch with a related Qt Quick functionality when we saw that it is possible
to implement a handler which reacts to property changes, for example, the status property
of Image2:

Image {
id: background

1http://qt-project.org/doc/qt-4.8/qml-mousearea.html
2http://qt-project.org/doc/qt-4.8/qml-image.html

63

http://qt-project.org/doc/qt-4.8/qml-mousearea.html
http://qt-project.org/doc/qt-4.8/qml-image.html

Introduction to Application Development with Qt Quick, Release 1.0

source: "./content/resources/light_background.png"
fillMode: "Tile"
anchors.fill: parent
onStatusChanged: if (background.status == Image.Error)

console.log (qsTr("Background image \"") +
source +
qsTr("\" cannot be loaded"))

}

Signals are very similar to the property notification changes. Signal handlers work the same,
whereas they process a signal explicitly emitted in an item instead of a property change. Signal
handlers can also receive signal parameters, which is not the case in property change handlers.
Emitting a signal is a function call.

This is how it works for our Button component:

(src/utils/Button.qml in qt_quick_app_dev_intro_src.zip, see Down-
loads (page 2) section)

import QtQuick 1.1
import "../js/style.js" as Style

Rectangle {
id: root

property string text: "Button"

color: "transparent"

width: label.width + 15
height: label.height + 10

border.width: Style.borderWidth
border.color: pressedColor(Style.penColor)
radius: Style.borderRadius

signal clicked (variant mouse)
signal pressedAtXY (string coordinates)

function pressedColor (color) {
return mouseArea.pressed ? Qt.darker(color, 5.0) : color

}

function logPresses (mouse) {
pressedAtXY (mouse.x + "," + mouse.y)

}

Component.onCompleted: {
mouseArea.clicked.connect(root.clicked)

}

Text {
id: label
anchors.centerIn: parent
color: pressedColor(Style.penColor)
text: parent.text
font.pixelSize: Style.textPixelSize

9.1. A Button 64

Introduction to Application Development with Qt Quick, Release 1.0

}

MouseArea {
id: mouseArea
anchors.fill: parent
Connections {

onPressed: logPresses(mouse)
}
// this works as well instead of using Connections
// onPressed: logPresses(mouse)

}
}

Button defines two signals: clicked and pressedAtXY. We only use clicked in our
application, and pressedAtXY has been added for demonstration purposes. Both signals
are emitted in different ways. pressedAtXY is called from a JavaScript function called
as an onPressed handler. clicked is connected directly to the clicked signal of the
mouseArea item. Both ways have their own use cases. A direct signal-to-signal connection
allows simple signal forwarding. This is what is needed in our Button, which should behave
like a MouseArea when processing mouse events. In some other cases, you might have the
need to add some additional processing before emitting a signal, like in the logPresses
function.

A very important point to note here is the naming of signal parameters. If you take a look at the
code for mouseArea above, you might wonder where the mouse parameter comes from. We
did not declare it in our application. It actually belongs to the definition of clicked signal of
the MouseArea3 element. The same happens with our pressedAtXY signal, which defines
a coordinates parameter. All items using Button and processing the pressedAtXY
signal has to access its parameter under the exact name. For example:

Button {
id: toggleStatesButton
...
onPressedAtXY: {

console.log ("pressed at: " + coordinates)
}

}

Note that we define the clicked signal as:

signal clicked (variant mouse)

We do this even though mouse is of the MouseEvent4 type (according to the documentation
for MouseArea5). In the current version of Qt Quick, signal parameters can only be of basic
types6. This should not concern you as the type is converted to the appropriate type when it
arrives.

For more details about using signals in Qt Quick, see the QML Signal and Handler Event

3http://qt-project.org/doc/qt-4.8/qml-mousearea.html
4http://qt-project.org/doc/qt-4.8/qml-mouseevent.html
5http://qt-project.org/doc/qt-4.8/qml-mousearea.html
6http://qt-project.org/doc/qt-4.8/qdeclarativebasictypes.html

9.1. A Button 65

http://qt-project.org/doc/qt-4.8/qml-mousearea.html
http://qt-project.org/doc/qt-4.8/qml-mouseevent.html
http://qt-project.org/doc/qt-4.8/qml-mousearea.html
http://qt-project.org/doc/qt-4.8/qdeclarativebasictypes.html
http://qt-project.org/doc/qt-4.8/qdeclarativebasictypes.html
http://qt-project.org/doc/qt-4.8/qmlevents.html
http://qt-project.org/doc/qt-4.8/qmlevents.html
http://qt-project.org/doc/qt-4.8/qmlevents.html
http://qt-project.org/doc/qt-4.8/qmlevents.html
http://qt-project.org/doc/qt-4.8/qmlevents.html
http://qt-project.org/doc/qt-4.8/qmlevents.html

Introduction to Application Development with Qt Quick, Release 1.0

System7 article in Qt documentation. You should also check the documentation of MouseArea8

as well as the QML Mouse Events9 article to discover more possibilities such as getting other
mouse events, tracing hovering, and implementing drag-drop.

As any proper button, our Button should provide some visual feedback when it is clicked.
We do this by tweaking its colors a bit. We have a small JavaScript function which modifies
the color value to a new, pressed value. It makes the color darker in our case:

function pressedColor (color) {
return mouseArea.pressed ? Qt.darker(color, 5.0) : color

}

We are going to toggle the color of the button border and of its label text. We bind the return
value of this function to the border of the button:

border.color: pressedColor(Style.penColor)

Then we bind it to a color property of its label text:

color: pressedColor(Style.penColor)

That’s it! This is how our Button looks when unpressed:

and pressed:

9.2 A Simple Dialog

The Dialog is another utility component that we need. We use it to notify the user about
critical situations. Our Dialog is very simple. It pops up on top of another element and just
displays a text message that must be confirmed by clicking the OK button. This is the code for
the new Dialog component:

(src/utils/Dialog.qml in qt_quick_app_dev_intro_src.zip, see Down-
loads (page 2) section)

import QtQuick 1.1
import "../js/style.js" as Style

7http://qt-project.org/doc/qt-4.8/qmlevents.html
8http://qt-project.org/doc/qt-4.8/qml-mousearea.html
9http://qt-project.org/doc/qt-4.8/mouseevents.html

9.2. A Simple Dialog 66

http://qt-project.org/doc/qt-4.8/qmlevents.html
http://qt-project.org/doc/qt-4.8/qmlevents.html
http://qt-project.org/doc/qt-4.8/qml-mousearea.html
http://qt-project.org/doc/qt-4.8/mouseevents.html

Introduction to Application Development with Qt Quick, Release 1.0

Rectangle {
id: root

property string message: "Error! This is a long message with details"

width: 100
height: 40

color: Style.backgroundColor
border.color: Style.penColor
border.width: Style.borderWidth
radius: Style.borderRadius

visible: true

function show(text) {
root.message = text;
root.visible = true;

}

function hide() {
root.visible = false;

}

Text {
id: messageText
anchors.top: parent.top
anchors.topMargin: Style.baseMargin
anchors.left: parent.left
anchors.right: parent.right
horizontalAlignment: Text.AlignHCenter
wrapMode: "WordWrap"
text: root.message
font.pixelSize: Style.textPixelSize
color: Style.penColor
onPaintedHeightChanged: {

root.height = messageText.paintedHeight + okButton.height + 3*Style.baseMargin
}

}

Button {
id: okButton
text: qsTr("OK")
anchors.top: messageText.bottom
anchors.topMargin: Style.baseMargin
anchors.horizontalCenter: parent.horizontalCenter
onClicked: root.hide()

}
}

The Dialog is used by adding it as a child item to another element where it will pop-up from:

Item {
id: root
...

Dialog {

9.2. A Simple Dialog 67

Introduction to Application Development with Qt Quick, Release 1.0

id: errorDialog
width: root.width
anchors.centerIn: parent
z: root.z+1
visible: false

}
...

Button {
id: exitButton
...
onClicked: {

...
errorDialog.show (qsTr("The location cannot be empty"));
...

}
}
...

}

When loaded, the Dialog initially stays invisible. It goes on top of its parent (root in the
code segment above). z: root.z+1 does this trick. We bind its z property to a value
which is always higher than the value of root.z. Later, we call show with a message to be
displayed. show makes the Dialog visible and stores the message text to be displayed. When
the user clicks the OK button, the Dialog hides itself again.

Note: The TabWidget Example10 in Qt documentation shows another approach toward dy-
namically showing and hiding elements on top of others.

Our Dialog has a few other features which are useful to know. In order to use the screen
space efficiently, it copies the width from its parent. We also set the messageText property,
wrapMode to the WordWrap value. When the Dialog opens with a long message text, the
message wraps it to the Dialog width. The messageText element changes the height of
the root Dialog when its height has changed due to wrapping:

Rectangle {
id: root
...
Text {

id: messageText
...
onPaintedHeightChanged: {

root.height = messageText.paintedHeight +
okButton.height +
3 Style.baseMargin

}
...

}

This is how it looks on the screen:
10http://qt-project.org/doc/qt-4.8/declarative-ui-components-tabwidget.html

9.2. A Simple Dialog 68

http://qt-project.org/doc/qt-4.8/declarative-ui-components-tabwidget.html

Introduction to Application Development with Qt Quick, Release 1.0

9.3 A Checkbox

We can use the Text Input11 element to get text or digit based user input, but we need something
else for on-off type of settings. Usually, this is done using the checkbox UI elements. There
is no checkbox element in Qt Quick, and we are going to make it from scratch. It is not a
problem at all as we can easily create one using Qt Quick. This is the complete code for our
new CheckBox component:

(src/utils/CheckBox.qml in qt_quick_app_dev_intro_src.zip, see Down-
loads (page 2) section)

import QtQuick 1.1

Item {
id: root
property bool checked: true
// we should pre-set the size to get it working perperly in a positioner
width: checkBox.width
height: checkBox.height

Image {
id: checkBox
source: root.checked ?

"../content/resources/checkbox.png" :
"../content/resources/draw-rectangle.png"

Keys.onPressed: {
if (event.key == Qt.Key_Return ||

event.key == Qt.Key_Enter ||
event.key == Qt.Key_Space)

root.checked = !root.checked;
}
MouseArea {

anchors.fill: parent
onClicked: {

root.checked = !root.checked;
}

}
}

11http://qt-project.org/doc/qt-4.8/qml-textinput.html

9.3. A Checkbox 69

http://qt-project.org/doc/qt-4.8/qml-textinput.html

Introduction to Application Development with Qt Quick, Release 1.0

//onValueChanged: console.log ("value: " + root.value)
}

Our CheckBox is based on Item12. It extends it just by one boolean property called checked.
If the box is checked, checked is true. Otherwise it is false. The entire visual implemen-
tation of the CheckBox consists of two images which are flipped back and forth. This is done
by binding the source property of the checkBox Image13 item to a checkbox image or to
an image of a normal rectangle depending on the checked property.

This is how our CheckBox looks on the screen when checked and unchecked:

Further on, there is a section of code, which includes the keyboard navigation handling. This
topic will be discussed in the next section.

9.4 Handling Keyboard Input and Navigation

Another important aspect of interaction with the user is handling the keyboard input and nav-
igation. We will explore this while walking through the implementation of the Configure
component based on the new UI components we introduced earlier.

Meanwhile, we have several hard-coded property values which actually should be changeable
by the user:

• Location name for the weather forecast

• Time interval in which the weather data should be updated

• Turning off the seconds and date display to make the clock more compact

The name and interval properties require a text input field, whereas the last one can be imple-
mented using the Checkbox.

Text input is straightforward: Qt Quick provides the Text Input14 element for this. We use it
to get a new value for the forecast location and new value for the forecast update interval. The
Text Input15 element binds the captured keyboard input to the text property. When we load
this element, we preset according to text properties with the locationTextInput and

12http://qt-project.org/doc/qt-4.8/qml-item.html
13http://qt-project.org/doc/qt-4.8/qml-image.html
14http://qt-project.org/doc/qt-4.8/qml-textinput.html
15http://qt-project.org/doc/qt-4.8/qml-textinput.html

9.4. Handling Keyboard Input and Navigation 70

http://qt-project.org/doc/qt-4.8/qml-item.html
http://qt-project.org/doc/qt-4.8/qml-image.html
http://qt-project.org/doc/qt-4.8/qml-textinput.html
http://qt-project.org/doc/qt-4.8/qml-textinput.html

Introduction to Application Development with Qt Quick, Release 1.0

forecastUpdateInterval values to display the current settings to the user. Users can
start editing and we do not need to take care of any details for text input handling:
...
TextInput {

id: locationTextInput
...
width: controlElements.width - locationTextInput.x - controlElements.spacing
text: locationText
focus: true

}
...
TextInput {

id: updateTextInput
...
text: forecastUpdateInterval
maximumLength: 3
// we use IntValidator just to filter the input. onAccepted is not used here
validator: IntValidator{bottom: 1; top: 999;}

}
...

The code above has a few things on top.

updateTextInput uses a validator to limit the length of the text and ensure that we get
digits in a proper range.

Location names do not need a validator, but they need something to handle text input which
is longer than just a few digits in updateTextInput. This can be achieved limiting the
width to ensure that a long text does not leave the boundaries of the top-level item. If we do
not do this and keep width undefined, Text Input16 will expand, follow the entered text and at
some time leave the visual boundaries.

Note: If you have a multi-line text that needs to be edited by the user, you can use the Text
Edit17 element.

locationTextInput receives the keyboard focus explicitly, because we set focus to
true. When Configure is loaded, the user can start changing the location name:

16http://qt-project.org/doc/qt-4.8/qml-textinput.html
17http://qt-project.org/doc/qt-4.8/qml-textedit.html

9.4. Handling Keyboard Input and Navigation 71

http://qt-project.org/doc/qt-4.8/qml-textinput.html
http://qt-project.org/doc/qt-4.8/qml-textedit.html
http://qt-project.org/doc/qt-4.8/qml-textedit.html

Introduction to Application Development with Qt Quick, Release 1.0

The elements Text Input18 and our new CheckBoxes react to mouse clicks. How can the
user navigate from one input element to another if we would like to support navigation with
keyboard in addition to the mouse? What should we do if we need to enable keyboard input in
CheckBoxes as well? .

Qt Quick provides key navigation and raw key processing for these cases. Let’s take a look at
key navigation first.

These are the changes in the code for our two Text Input19 elements to support key navigation:

TextInput {
id: locationTextInput
...
focus: true
KeyNavigation.up: offlineCheckBox
KeyNavigation.down: updateTextInput

}
...
TextInput {

id: updateTextInput
...
KeyNavigation.up: locationTextInput
KeyNavigation.down: secondsCheckBox

}

locationTextInput explicitly pulls the focus by setting its focus property to
‘‘true. The Key Navigation20 items provide attached properties, which monitor key presses
and move of the input focus from one element to another. Key Navigation21 is a big help in our
case where we have many elements and need to organize the movement of the input focus in a
certain way.

In the code sample above, the input focus is moved from the locationTextInput item to
the updateTextInput item if the down* arrow key is pressed. The focus goes back from

18http://qt-project.org/doc/qt-4.8/qml-textinput.html
19http://qt-project.org/doc/qt-4.8/qml-textinput.html
20http://qt-project.org/doc/qt-4.8/qml-keynavigation.html
21http://qt-project.org/doc/qt-4.8/qml-keynavigation.html

9.4. Handling Keyboard Input and Navigation 72

http://qt-project.org/doc/qt-4.8/qml-textinput.html
http://qt-project.org/doc/qt-4.8/qml-textinput.html
http://qt-project.org/doc/qt-4.8/qml-keynavigation.html
http://qt-project.org/doc/qt-4.8/qml-keynavigation.html

Introduction to Application Development with Qt Quick, Release 1.0

updateTextInput to locationTextInput if the user presses the up key and so on. We
add such statements to all relevant elements in the Configure component.

While processing user input, you sometimes need to capture particular keys. This is the case
with our Checkboxes. Working with desktop applications, users have learned that it is pos-
sible to toggle a check box with the space key*. We should implement this feature in our
application.

This is where the Keys22 items can be used. It is basically a kind of signal sender for al-
most every key on the keyboard. Its signals have KeyEvent23 as a parameter, and it contains
detailed information about the key pressed. We use Keys24 in our checkboxes. The code seg-
ment in the previous section uses the attached Keys.onPressed property, which toggles the
Checkbox state on Return, Enter and Space keys.

More details about keyboard input processing is available in the Keyboard Focus in QML25

article in Qt Documentation.

By now we have got all input elements and can process user input. One step is still needed to
finish our Configure component. This is a verification and storing of the new values.

When the user clicks the exitButton, we need to check the new setting values and pass
them to the application if they are ok. This is also a place where we use our Dialog to inform
the user that the new values are not OK if needed. In this case, the Configure does not close
and stays open until the user provides the correct values. See the onClicked handler code
for exitButton to learn how this is achieved:

(src/components/Configure.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1
import "../utils" 1.0
import "../js/style.js" as Style

Rectangle {
id: root
property bool showSeconds: true
property bool showDate: true
property int forecastUpdateInterval: 5 // minutes
property string locationText: "Munich"
property bool forceOffline: false

width: 320
height: 480

Image {
id: background
source: Style.backgroundImage
fillMode: "Tile"
anchors.fill: parent

}

22http://qt-project.org/doc/qt-4.8/qml-keys.html
23http://qt-project.org/doc/qt-4.8/qml-keyevent.html
24http://qt-project.org/doc/qt-4.8/qml-keys.html
25http://qt-project.org/doc/qt-4.8/qdeclarativefocus.html

9.4. Handling Keyboard Input and Navigation 73

http://qt-project.org/doc/qt-4.8/qml-keys.html
http://qt-project.org/doc/qt-4.8/qml-keyevent.html
http://qt-project.org/doc/qt-4.8/qml-keys.html
http://qt-project.org/doc/qt-4.8/qdeclarativefocus.html

Introduction to Application Development with Qt Quick, Release 1.0

Grid {
id: controlElements
spacing: 10
columns: 2
anchors.left: root.left
anchors.leftMargin: spacing
anchors.verticalCenter: root.verticalCenter
anchors.right: root.right

Text {
id: locationLabel
text: qsTr("Forecast for:
(city name)")
color: locationTextInput.focus?

Qt.lighter(Style.penColor) : Style.penColor
font.pixelSize: Style.textPixelSize

}

TextInput {
id: locationTextInput
width: controlElements.width - locationTextInput.x - controlElements.spacing
text: locationText
font.pixelSize: Style.textPixelSize
color: Style.penColor
focus: true
KeyNavigation.up: offlineCheckBox
KeyNavigation.down: updateTextInput

}

Text {
id: updateLabel
height: 90
text: qsTr("update interval:
(in min)")
color: updateTextInput.focus?

Qt.lighter(Style.penColor) : Style.penColor
font.pixelSize: Style.textPixelSize

}

TextInput {
id: updateTextInput
width: locationTextInput.width
text: forecastUpdateInterval
font.pixelSize: Style.textPixelSize
color: Style.penColor
maximumLength: 3
// we use IntValidator just to filter the input
// onAccepted is not used here
validator: IntValidator{bottom: 1; top: 999;}
KeyNavigation.up: locationTextInput
KeyNavigation.down: secondsCheckBox

}

Text {
id: secondsLabel
text: qsTr("Show seconds:")
color: secondsCheckBox.focus?

Qt.lighter(Style.penColor) : Style.penColor
font.pixelSize: Style.textPixelSize

9.4. Handling Keyboard Input and Navigation 74

Introduction to Application Development with Qt Quick, Release 1.0

}

CheckBox {
id: secondsCheckBox
checked: showSeconds
KeyNavigation.up: updateTextInput
KeyNavigation.down: dateCheckBox

}

Text {
id: dateLabel
text: qsTr("Show date:")
color: dateCheckBox.focus?

Qt.lighter(Style.penColor) : Style.penColor
font.pixelSize: Style.textPixelSize

}

CheckBox {
id: dateCheckBox
checked: showDate
KeyNavigation.up: secondsCheckBox
KeyNavigation.down: offlineCheckBox

}

Text {
id: offlineLabel
text: qsTr("Clock only")
color: offlineCheckBox.focus?

Qt.lighter(Style.penColor) : Style.penColor
font.pixelSize: Style.textPixelSize

}

CheckBox {
id: offlineCheckBox
checked: forceOffline
KeyNavigation.up: secondsCheckBox
KeyNavigation.down: locationTextInput

}
}

Dialog {
id: errorDialog
width: root.width
anchors.centerIn: parent
z: root.z+1
visible: false

}

Button {
id: exitButton
text: qsTr("OK")
anchors.right: parent.right
anchors.bottom: parent.bottom
anchors.margins: 10
onClicked: {

// update interval and location cannot be empty
// update interval cannot be zero

9.4. Handling Keyboard Input and Navigation 75

Introduction to Application Development with Qt Quick, Release 1.0

if (updateTextInput.text == "" || updateTextInput.text == 0)
errorDialog.show (qsTr("The update interval cannot be empty"))

else if (locationTextInput.text == "")
errorDialog.show (qsTr("The location cannot be empty"))

else {
forecastUpdateInterval = updateTextInput.text
root.locationText = locationTextInput.text
root.visible = false

}
// update check box relevant settings
root.showSeconds = secondsCheckBox.checked
root.showDate = dateCheckBox.checked
root.forceOffline = offlineCheckBox.checked

}
}

}

What’s Next?

You’ve probably noticed that the offlineCheckBox item with the magical
forceOffline setting associated with it. This setting is new. It is used to toggle the
states in the next version of our application which will be the topic for the next chapter. We
also will take a look at animations in Qt Quick and use them to implement some nice effects in
the final version of our application.

9.4. Handling Keyboard Input and Navigation 76

CHAPTER 10

UI Dynamics and Dynamic UI

In the previous sections, we learned how to add items while developing an application and make
them invisible when needed. What should we do if we’d like our applications to look totally
different depending on how the data and user input changes? These changes might be aimed
toward modifying more then just visibility. This might be quite complex with Qt Quick as we
need to change all related elements. How do we make dynamic changes in the application UI
visually appealing or even make them a part of the user experience? We have not covered this
at all.

10.1 Using States

Access to the network is essential for the weather related part of our application in the current
version. It visualizes data received from the internet. If your computer is offline and you
start the clock-n-weather application in qt_quick_app_dev_intro_src.zip
(see Downloads (page 2) section), you will see just the clock and a lot of empty space around
it:

77

Introduction to Application Development with Qt Quick, Release 1.0

This is because WeatherModelItem failed to get the weather data. Due to this, there are
no model items to display. If you use this application on a notebook or on a mobile device,
this situation might occur very frequently. It would be great if our application would be able to
handle situations when the network is down. We can accomplish this by using the State1 item
provided by Qt Quick.

Each item in Qt Quick has a state property which holds the name of the current state. There
is also a states property which is a list of States2. This property contains all states known for
that item. Each of the States3 in the list has a string name and defines a set of property values.
If required, it can even contain some script code, which is executed when that state becomes
the current one. An item can be set to a state just by assigning the name of a selected state to
the state property. See the documentation for State4 and QML States5 for more details.

We will add three states to the main item of our application:

• Offline* - It is an initial state in the startup phase. It is also applied if there is no network
connection or the if application should stay offline

• Loading* - A network connection is available, but WeatherModelItem is still loading
weather data. This state is useful on slow network connections (on mobile devices for
example).

• Live Weather* - Updated weather data is available and displayed.

In the Offline* and Loading states, the application should show just the clock in a larger size in
the middle of the screen. When Live Weather is active, the application should show the weather
data as well.

1http://qt-project.org/doc/qt-4.8/qml-state.html
2http://qt-project.org/doc/qt-4.8/qml-state.html
3http://qt-project.org/doc/qt-4.8/qml-state.html
4http://qt-project.org/doc/qt-4.8/qml-state.html
5http://qt-project.org/doc/qt-4.8/qdeclarativestates.html

10.1. Using States 78

http://qt-project.org/doc/qt-4.8/qml-state.html
http://qt-project.org/doc/qt-4.8/qml-state.html
http://qt-project.org/doc/qt-4.8/qml-state.html
http://qt-project.org/doc/qt-4.8/qml-state.html
http://qt-project.org/doc/qt-4.8/qdeclarativestates.html

Introduction to Application Development with Qt Quick, Release 1.0

As our new states are so closely related to the status of the WeatherModelItem, we just
bind them directly. The WeatherModelItem does not define any real states. We hijack its
states property to store Offline, Loading and Live Weather values depending on the status
of the current or forecast models:

(src/components/WeatherModelItem.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

Item {
id: root
property alias forecastModel: forecast
property alias currentModel: current
property string location: "Munich"
property bool forceOffline: false
property string baseURL: "http://www.google.com"
property string dataURL: "/ig/api?weather="
property string source: baseURL + dataURL + location.split(’ ’).join(’%20’)
property int interval: 5
property bool modelDataError: false
property string statusMessage: ""

XmlListModel {
id: forecast
source: root.source
query: "/xml_api_reply/weather/forecast_conditions"

XmlRole { name: "day_of_week"; query: "day_of_week/@data/string()" }
XmlRole { name: "low"; query: "low/@data/string()" }
XmlRole { name: "high"; query: "high/@data/string()" }
XmlRole { name: "condition"; query: "condition/@data/string()" }
XmlRole { name: "temp_c"; query: "temp_c/@data/string()" }

onStatusChanged: {
root.modelDataError = false
if (status == XmlListModel.Error) {

root.state = "Offline"
root.statusMessage = "Error occurred: " + errorString()
root.modelDataError = true
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Ready) {
// check if the loaded model is not empty, and post a message
if (get(0) === undefined) {

root.state = "Offline"
root.statusMessage = "Invalid location \"" + root.location + "\""
root.modelDataError = true

} else {
root.state = "Live Weather"
root.statusMessage = "Live current weather is available"

}
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Loading) {
root.state = "Loading"
root.statusMessage = "Forecast data is loading..."
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Null) {

10.1. Using States 79

Introduction to Application Development with Qt Quick, Release 1.0

root.state = "Loading"
root.statusMessage = "Forecast data is empty..."
//console.log("Weather Clock: " + root.statusMessage)

} else {
root.modelDataError = false
console.log("Weather Clock: unknown XmlListModel status:" + status)

}
}

}

XmlListModel {
id: current
source: root.source
query: "/xml_api_reply/weather/current_conditions"

XmlRole { name: "condition"; query: "condition/@data/string()" }
XmlRole { name: "temp_c"; query: "temp_c/@data/string()" }

onStatusChanged: {
root.modelDataError = false
if (status == XmlListModel.Error) {

root.state = "Offline"
root.statusMessage = "Error occurred: " + errorString()
root.modelDataError = true
//console.log("Weather Clock: Error reading current: " + root.statusMessage)

} else if (status == XmlListModel.Ready) {
// check if the loaded model is not empty, and post a message
if (get(0) === undefined) {

root.state = "Offline"
root.statusMessage = "Invalid location \"" + root.location + "\""
root.modelDataError = true

} else {
root.state = "Live Weather"
root.statusMessage = "Live current weather is available"

}
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Loading) {
root.state = "Loading"
root.statusMessage = "Current weather is loading..."
//console.log("Weather Clock: " + root.statusMessage)

} else if (status == XmlListModel.Null) {
root.state = "Loading"
root.statusMessage = "Current weather is empty..."
//console.log("Weather Clock: " + root.statusMessage)

} else {
root.modelDataError = true
console.log("Weather Clock: unknown XmlListModel status:" + status)

}
}

}

Timer {
// note that this interval is not accurate to a second on a full minute
// since we omit adjustment on seconds like in the clock interval
// to simplify the code
interval: root.interval*60000
running: Qt.application.active && !root.forceOffline

10.1. Using States 80

Introduction to Application Development with Qt Quick, Release 1.0

repeat: true
onTriggered: {

current.reload()
forecast.reload()

}
}

}

The actual states are introduced in the main item, WeatherClock. This item gets two new
child items holding all elements to be displayed in states with different visualization:

• clockScreen item - shows a bigger clock when the main item is in Offline or Loading
state

• weatherScreen item - shows clock and the weather forecast during the Live Weather
state, which is basically the same as we had in the clock-n-weather application.

As a final step, we just bind the states of WeatherClock to the values of the
WeatherModelItem state:
...
Rectangle {

id: root
...
state: forceOffline ? "Offline" : weatherModelItem.state
...
states: [

State {
name: "Offline"
PropertyChanges {target: clockScreen; visible: true}
PropertyChanges {target: weatherScreen; visible: false}

},
State {

name: "Live Weather"
PropertyChanges {target: clockScreen; visible: false}
PropertyChanges {target: weatherScreen; visible: true}

},
State {

name: "Loading"
PropertyChanges {target: clockScreen; visible: true}
PropertyChanges {target: weatherScreen; visible: false}
PropertyChanges {target: busyIndicator; on: true}

}
]

...
}

Our State6 definitions contain PropertyChanges7 items which change the visibility of our new
screens and turn on the busyIndicator in the Loading* state.

The Loading state might be active for quite some time. If the clock does not show seconds, the
whole application might appear as if it were hanging. We need a animated busy indicator to
show the user that the application is still running. The Qt example RSS News Reader8 provides

6http://qt-project.org/doc/qt-4.8/qml-state.html
7http://qt-project.org/doc/qt-4.8/qml-propertychanges.html
8http://qt-project.org/doc/qt-4.8/demos-declarative-rssnews-qml-rssnews-content-rssfeeds-qml.html

10.1. Using States 81

http://qt-project.org/doc/qt-4.8/qml-state.html
http://qt-project.org/doc/qt-4.8/qml-propertychanges.html
http://qt-project.org/doc/qt-4.8/demos-declarative-rssnews-qml-rssnews-content-rssfeeds-qml.html

Introduction to Application Development with Qt Quick, Release 1.0

a very nice one. We can use that with minor modifications. Our busyIndicator becomes
visible in the Loading state and informs the user that the application is processing data in the
background.

You may have noticed that we use the new forceOffline setting here, which was first
spotted in the last chapter. If forceOffline is set to true, the application stays in the
Offline state regardless of changes in weatherModelItem.

If we now change states, changes occur instantly. The application would look more attractive if
there were transitions and animation effects applied during state changes. We will take a look
at this in the next section.

10.2 Adding Animations

Animations are not only useful for visual effects. They can also serve as a base for features
that could be difficult to get done by other means (for example, our busy indicator mentioned
in the last section). Qt Quick provides a very rich animation framework that is simple to use.
Covering it in great detail is beyond the scope of this guide, but we can spend some time
understanding what animations do and how to start using them.

Generally, all animations manipulate one or more properties of an element, thereby modifying
its visual appearance. This modification can have various dynamics and run in various time
spans. There can be numerous animations running in parallel or sequentially applied to the
same or to different elements. You can start an animation explicitly or implicitly upon a prop-
erty change. You can also permanently assign an animation to a property so that an animation
starts as soon as a property changes. Although there is a generic Animation9 element, most
of the time, you will probably use one of the predefined animation elements10 provided by Qt
Quick. It’s very easy to add animations to an application. The major challenge is to find out
which animations to use and how to use them to compose the required visual effect.

Animations are very related to Transitions11, which defines how an element is transformed from
one State12 to another. In most cases, a transition includes an animation.

Qt documentation provides an overview of all animations and transitions, and provides details
about using them in the QML Animation and Transitions13 article.

The code segment below shows two transitions between the Offline and Live Weather states in
our application:

transitions: [
Transition {

from: "Offline"
to: "Live Weather"
PropertyAnimation {

target: weatherScreen
property: "opacity"

9http://qt-project.org/doc/qt-4.8/qml-animation.html
10http://qt-project.org/doc/qt-4.8/qml-animation-transition.html
11http://qt-project.org/doc/qt-4.8/qml-transition.html
12http://qt-project.org/doc/qt-4.8/qml-state.html
13http://qt-project.org/doc/qt-4.8/qdeclarativeanimation.html

10.2. Adding Animations 82

http://qt-project.org/doc/qt-4.8/qml-animation.html
http://qt-project.org/doc/qt-4.8/qml-animation-transition.html
http://qt-project.org/doc/qt-4.8/qml-transition.html
http://qt-project.org/doc/qt-4.8/qml-state.html
http://qt-project.org/doc/qt-4.8/qdeclarativeanimation.html

Introduction to Application Development with Qt Quick, Release 1.0

from: 0
to: 1
easing.type: Easing.Linear
duration: 5000

}
},
Transition {

from: "Live Weather"
to: "Offline"
PropertyAnimation {

target: clockScreen
property: "opacity"
from: 0
to: 1
easing.type: Easing.Linear
duration: 5000

}
}

]

The state changes swap the visibility of the off-line view and the full view with weather data.
On top of this, we add an animation which changes the opacity property. This fades the
screen out letting it disappear fully in 5 seconds.

Note: Theoretically, a slight flickering might be visible on the screen in the beginning of
transitions as the target element becomes fully visible first and immediately after this its opacity
is turned to 0 in the beginning of the animation.

The functionality of our busy indicator is completely based on animations! There is almost no
other code in its implementation:

(utils/BusyIndicator.qml in qt_quick_app_dev_intro_src.zip, see
Downloads (page 2) section)

// This is taken from the "RSS News" demo provided in Qt
// The original code has been modified to adapt to the application structure

import QtQuick 1.1

Image {
id: root
property bool on: false

source: "../content/resources/busy.png"
visible: root.on

NumberAnimation on rotation {
running: root.on; from: 0; to: 360; loops: Animation.Infinite; duration: 1200

}
}

We load BusyIndicator as follows:

10.2. Adding Animations 83

Introduction to Application Development with Qt Quick, Release 1.0

// it is off and invisible by default
BusyIndicator {

id: busyIndicator
anchors.horizontalCenter: root.horizontalCenter
anchors.bottom: statusText.top
anchors.margins: 10

}

And this is how it looks in our application when it starts up:

Another animation is used to implement a visual effect on the clock and weather items in the
reworked main item of our application. This is discussed in the next section.

10.3 Supporting the Landscape Mode

If our application is to run on a mobile device, it should have a layout of the clockScreen
and weatherScreen tailored to the landscape display orientation. We do not need
many changes in clockScreen for this, as it contains only one item. Changes in
weatherScreen might be larger...

An interesting approach toward simplifying the implementation is to use Flow14 instead of the
previously used Column15. Flow16 arranges its children dynamically depending on its own size.
If needed, it wraps children into the appropriate rows and columns.

Flow17 has one more cool feature. This is the move property where we can define a

14http://qt-project.org/doc/qt-4.8/qml-flow.html
15http://qt-project.org/doc/qt-4.8/qml-column.html
16http://qt-project.org/doc/qt-4.8/qml-flow.html
17http://qt-project.org/doc/qt-4.8/qml-flow.html

10.3. Supporting the Landscape Mode 84

http://qt-project.org/doc/qt-4.8/qml-flow.html
http://qt-project.org/doc/qt-4.8/qml-column.html
http://qt-project.org/doc/qt-4.8/qml-flow.html
http://qt-project.org/doc/qt-4.8/qml-flow.html

Introduction to Application Development with Qt Quick, Release 1.0

Transition18, which is applied when the children in a Flow19 start moving. We use a
NumberAnimation20 applied to the coordinates of the children and select a bounce effect
(Easing.OutBounce) for easing.type:
...
move: Transition {

NumberAnimation {
properties: "x,y"
duration: 500
easing.type: Easing.OutBounce

}
}
...

This is how our application looks on the screen if we resize the main window:

10.4 Finalizing the Main Item

We need to rework on the main item to add a few new features. You’ve seen parts of the related
code in this and in the earlier sections. Let’s put them all together and take a look at some other
details.

First, we take the code from the main item, ClockAndWeather.qml
(see clock-n-weather/ClockAndWeather.qml in
qt_quick_app_dev_intro_src.zip, see Downloads (page 2) section) and add
animations and transitions as discussed in this chapter.

Additionally, the reworked main item gets three buttons and a status text at the bottom of the
screen.

Clicking this exitButton is now used to quit the application. Clicks inside the root items
are not used for this anymore.

18http://qt-project.org/doc/qt-4.8/qml-transition.html
19http://qt-project.org/doc/qt-4.8/qml-flow.html
20http://qt-project.org/doc/qt-4.8/qml-numberanimation.html

10.4. Finalizing the Main Item 85

http://qt-project.org/doc/qt-4.8/qml-transition.html
http://qt-project.org/doc/qt-4.8/qml-flow.html
http://qt-project.org/doc/qt-4.8/qml-numberanimation.html

Introduction to Application Development with Qt Quick, Release 1.0

The toggleStatesButton allows the user to force the Offline state. This is useful to use
the screen space for a bigger clock by hiding the weather forecast. It prevents regular data
transfer over Internet as well.

The configureButton displays the the configure element, which holds and manipu-
lates the configuration parameters. The main item just binds them to the appropriate properties
of other items. This implements a kind of global application state. We will discuss alternative
solutions for this in the last chapter.

The status text is updated upon changes to the states.

The complete code of the new main item looks like this:

(WeatherClock/WeatherClock.qml in qt_quick_app_dev_intro_src.zip,
see Downloads (page 2) section)

import QtQuick 1.1

import "../utils" 1.0
import "../components" 1.0
import "../js/style.js" as Style
import "../js/logic.js" as Logic

Rectangle {
id: root
property string defaultLocation: configure.locationText
property int defaultInterval: configure.forecastUpdateInterval
property bool showSeconds: configure.showSeconds
property bool showDate: configure.showDate
property bool forceOffline: configure.forceOffline
state: forceOffline ? "Offline" : weatherModelItem.state

width: 360
height: 640

onStateChanged: {
if (state == "Offline")

statusText.showStatus ("offline");
else if (state == "Loading")

statusText.showStatus ("loading...");
else if (state == "Live Weather")

statusText.showStatus ("live weather");
}

Image {
id: background
source: Style.backgroundImage
fillMode: "Tile"
anchors.fill: parent
onStatusChanged: if (background.status == Image.Error)

console.log("Background image \"" +
source +
"\" cannot be loaded")

}

Dialog {
id: errorDialog

10.4. Finalizing the Main Item 86

Introduction to Application Development with Qt Quick, Release 1.0

width: root.width
anchors.centerIn: parent
z: root.z+1
visible: false

}

WeatherModelItem {
id: weatherModelItem
location: root.defaultLocation
interval: root.defaultInterval
forceOffline: root.forceOffline

onModelDataErrorChanged: {
if (weatherModelItem.modelDataError)

errorDialog.show(weatherModelItem.statusMessage)
}

}

Component {
id: weatherCurrentDelegate
Weather {

id: currentWeatherItem
labelText: root.defaultLocation
conditionText: model.condition
tempText: model.temp_c + "C°"

}
}

Component {
id: weatherForecastDelegate
Weather {

id: forecastWeatherItem
labelText: model.day_of_week
conditionText: model.condition
tempText: Logic.f2C (model.high) +

"C° / " +
Logic.f2C (model.low) +
"C°"

}
}

NightClock {
id: clockScreen
height: 130
anchors.centerIn: root
showDate: root.showDate
showSeconds: root.showSeconds
textColor: Style.offlineClockTextColor

}

Flow {
id: weatherScreen
width: root.width
height: root.height
anchors.fill: parent
anchors.margins: Style.baseMargin
spacing: 30

10.4. Finalizing the Main Item 87

Introduction to Application Development with Qt Quick, Release 1.0

NightClock {
id: clock
height: 80
width: 190
showDate: root.showDate
showSeconds: root.showSeconds
textColor: Style.onlineClockTextColor

}

ListView {
id: currentWeatherView
width: 100
height: 100
model: weatherModelItem.currentModel
delegate: weatherCurrentDelegate
interactive: false

}

Repeater {
id: forecastWeatherView
model: weatherModelItem.forecastModel
delegate: weatherForecastDelegate

}

move: Transition {
NumberAnimation {

properties: "x,y"
duration: 500
easing.type: Easing.OutBounce

}
}

}

Text {
id: statusText
anchors.horizontalCenter: root.horizontalCenter
anchors.bottom: exitButton.top
anchors.margins: Style.baseMargin
color: Qt.lighter(Style.penColor)
font.pixelSize: Style.textPixelSize*0.8
text: qsTr("Status: starting...")

function showStatus (newStatusText) {
text = qsTr("Status: " + newStatusText);

}
}

// it is off and invisible by default
BusyIndicator {

id: busyIndicator
anchors.horizontalCenter: root.horizontalCenter
anchors.bottom: statusText.top
anchors.margins: Style.baseMargin

}

Button {
id: configureButton

10.4. Finalizing the Main Item 88

Introduction to Application Development with Qt Quick, Release 1.0

text: qsTr("Config")
anchors.left: root.left
anchors.bottom: root.bottom
anchors.margins: Style.baseMargin
onClicked: {

configure.visible = true;
}

}

Button {
id: exitButton
text: qsTr("Exit")
width: configureButton.width
anchors.right: root.right
anchors.bottom: root.bottom
anchors.margins: Style.baseMargin
onClicked: Qt.quit()

}

Button {
id: toggleStatesButton
anchors.right: exitButton.left
anchors.left: configureButton.right
anchors.bottom: root.bottom
anchors.margins: Style.baseMargin
// simple binding like this "text: root.state" works here to, but it is more diifcult to translate then.
// we use explicit strngs instead
text: root.state == "Offline" ? qsTr("Get weather") : qsTr("Go offline")
onClicked: {

if (root.state == "Offline")
configure.forceOffline = false;

else
configure.forceOffline = true;

}
// for experimental purposes...
// onPressedAtXY: {
// console.log ("pressed at: " + coordinates)
// }

}

Configure {
id: configure
anchors.fill: root
z: root.z + 1
visible: false
showSeconds: true
showDate: true
forecastUpdateInterval: 5
locationText: qsTr("Munich")
forceOffline: false

}

states: [
State {

name: "Offline"
PropertyChanges {target: clockScreen; visible: true}

10.4. Finalizing the Main Item 89

Introduction to Application Development with Qt Quick, Release 1.0

PropertyChanges {target: weatherScreen; visible: false}
},
State {

name: "Live Weather"
PropertyChanges {target: clockScreen; visible: false}
PropertyChanges {target: weatherScreen; visible: true}

},
State {

name: "Loading"
PropertyChanges {target: clockScreen; visible: true}
PropertyChanges {target: weatherScreen; visible: false}
PropertyChanges {target: busyIndicator; on: true}

}
]

transitions: [
Transition {

from: "Offline"
to: "Live Weather"
PropertyAnimation {

target: weatherScreen
property: "opacity"
from: 0
to: 1
easing.type: Easing.Linear
duration: 5000

}
},
Transition {

from: "Live Weather"
to: "Offline"
PropertyAnimation {

target: clockScreen
property: "opacity"
from: 0
to: 1
easing.type: Easing.Linear
duration: 5000

}
}

]
}

What’s Next?

Our application is now complete and you have learned major aspects of Qt Quick!

Certainly, our final application can be enhanced and extended with many features. We selected
a minimal subset to cover the scope of this guide without going into too many details. The next
and the last chapter discuss a few selected enhancements.

10.4. Finalizing the Main Item 90

CHAPTER 11

Doing More, Learning More

11.1 Porting to Qt5

Qt5 contains a new version Qt Quick: 2.0. Additionally, due to modularization, there are a few
changes in the location pre-installed components. We need to make two changes to get our
application running on Qt5:

1. Replace import QtQuick 1.x with import QtQuick 2.0

2. When using XmlListModel we need to add import QtQuick.XmlListModel
2.0

11.2 Porting to a mobile device

It is very easy to get our application running on Symbian Anna or Belle devices as well as on
N9.

You can use the template application in Qt Creator while creating a new project. Go the the
menu, File → New File or Project and select Qt Quick Application (Build-In Elements) project
type in the Applications project category.

Note: These steps apply to the project wizard in Qt Creator 2.6. The project wizard in older
versions of Qt Creator has a slightly different layout

The wizard creates a simple application showing “Hello World”, similar to one we discussed at
the beginning of this guide. This simple application also contains some C++ code and all other
files required to compile and package the application.

You can just replace the “Hello World” QML code with the the final application code. The
major steps to do this are:

• Copy the QML files from the WeatherClock folder as well as from
the js, components, content and utils folders (available in

91

Introduction to Application Development with Qt Quick, Release 1.0

qt_quick_app_dev_intro_src.zip; see the Downloads (page 2) section)
to the qml/<name_of_the_project> sub-folder in the project folder.

• Delete the main.qml file created by the wizard in that folder and rename the
WeatherClock.qml into main.qml

• Adapt paths to the new location of the QML component and resources:

– remove ”../” in imports in main.qml

– remove ”../” in front of the value of backgroundImage in
./js/style.js

– add ”../ + ” in the front of the source property value of the background
item in Configure.qml in the components sub-folder

• The current layout and sizes are tailored for devices with 360x640 screen resultion. For
example, Nokia N8. If your device has another screen resolution, you need to change all
size-related properties accordingly.

That’s it! You can now compile and run the application! The is how it looks in the Simulator
in portrait and landscape modes:

11.2. Porting to a mobile device 92

Introduction to Application Development with Qt Quick, Release 1.0

11.3 Enhancements and New Features

Better handling of configuration parameters*

We currently keep configuration parameters in the Configure component, which provides a
UI as well. All configuration changes are lost when the user quits the application.

A much better implementation would be to split the Configure component in a UI element
and a configuration item. The latter can be loaded in any other item that needs access to
the configuration parameters. The user can change configuration parameters via the new UI
element. Loading of default values and saving them before the application quits can be done
by a dedicated setting item that uses the Offline Storage APIs1) provided by Qt Quick. The
“Qt Quick Application Developer Guide for Desktop”2 explains this in detail in the 4.2. Store
and Load Data from a Database Using Javascript section. When the application starts for the
first time, a set of default values is stored in the database. During the next startup, the values
from the database are read and assigned to the appropriate properties of the configuration item.
All this can be done in the onCompleted handler in the main item. We can store current
configuration parameters before we call Qt.quit() on click of exitButton.

Internationalization*

A new version of the application could be available in multiple languages. We already use the
qsTr() macro. Google weather data can be queried in multiple languages as well. This can
save quite some effort. Unfortunately, there is a small issue in our application concerning this.
Our weather icons are named after weather condition names in English. If the weather data is
in another language, icons will not be found with the current implementation as the file names
do not match the condition names. A possible solition would be to use file names in URLs for
default icons referred in the weather data as file names for the local icons.

Using Mobility APIs to get the current location automatically*

Instead of a predefined location, we could use Mobility API3 and get the location automatically
if the application is running on a mobile device.

Using other weather feeds*

It might be a good idea to support at least one additional weather feed. Most of them require
registration and in some cases a fee payment as well if the application is used for commercial
purposes. You can consider adding other feeds in your version of the application. You can find
more information about other weather feeds here:

• 5 Weather APIs – From WeatherBug to Weather Channel4

• Add Weather To Your Website With Autobrand® : Weather Underground5

• A Weather API Designed for Developers6

1http://qt-project.org/doc/qt-4.8/qdeclarativeglobalobject.html
2http://qt-project.org/wiki/Developer-Guides/
3http://doc.qt.digia.com/qtmobility/index.html
4http://blog.programmableweb.com/2009/04/15/5-weather-apis-from-weatherbug-to-weather-channel/
5http://www.wunderground.com/autobrand/info.asp
6http://www.wunderground.com/weather/api

11.3. Enhancements and New Features 93

http://qt-project.org/doc/qt-4.8/qdeclarativeglobalobject.html
http://qt-project.org/wiki/Developer-Guides/
http://doc.qt.digia.com/qtmobility/index.html
http://blog.programmableweb.com/2009/04/15/5-weather-apis-from-weatherbug-to-weather-channel/
http://www.wunderground.com/autobrand/info.asp
http://www.wunderground.com/weather/api

Introduction to Application Development with Qt Quick, Release 1.0

What’s Next?

This is the end of the guide! The next chapter concludes it!

11.3. Enhancements and New Features 94

CHAPTER 12

Lesson Learned and Further Reading

This guide has given you an introduction to application programming in Qt Quick. We’ve
touched all major aspects of Qt Quick by extending the code of a very simple “Hello World”
application to become a real application, which can be used on a daily basis. This is it:

The main purpose of this guide was to help you get started and show where you can go if
you need more details. The guide does not cover all details as that would overlap with Qt
documentation1 and other resources on the internet.

We did not touch one very import point in detail, but at least mentioned it a few times. This is
about using C++ to extend Qt Quick and provide interfaces to existing software systems. The
following articles in Qt Documentation are a good starting point to learn more about this:

• QML for Qt Programmers2

1http://qt-project.org/doc/qt-4.8/index.html
2http://qt-project.org/doc/qt-4.8/qtprogrammers.html

95

http://qt-project.org/doc/qt-4.8/index.html
http://qt-project.org/doc/qt-4.8/index.html
http://qt-project.org/doc/qt-4.8/qtprogrammers.html

Introduction to Application Development with Qt Quick, Release 1.0

• Using QML Bindings in C++ Applications3

• Extending QML Functionality using C++4

In addition to the Qt Quick examples provided with Qt, many other interesting examples are
included in the Qt training materials:

• “Qt Quick - Introduction to Qt Quick”5

• “Qt Quick - Rapid User Interface Prototyping”6

Good luck and have fun using Qt Quick!

3http://qt-project.org/doc/qt-4.8/qtbinding.html
4http://qt-project.org/doc/qt-4.8/qml-extending.html
5http://qt-project.org/videos/watch/qt_quick_introduction_to_qt_quick_part_1_4
6http://qt-project.org/videos/watch/qt_quick_rapid_user_interface_prototyping

96

http://qt-project.org/doc/qt-4.8/qtbinding.html
http://qt-project.org/doc/qt-4.8/qml-extending.html
http://qt-project.org/videos/watch/qt_quick_introduction_to_qt_quick_part_1_4
http://qt-project.org/videos/watch/qt_quick_rapid_user_interface_prototyping

CHAPTER 13

Annexure: JavaScript Language
Overview

This article provides an overview of the JavaScript language. The idea is to provide a thorough
overview of all of the language’s features supported by Qt Quick. You may want to read through
this article from start to finish to learn about all the basic features of this language - especially
when you are getting started with a related technology such as QML.

This article is a slightly modified copy of the “JavaScript Language Overview”1 article on the Qt
Project Wiki. Its content has been tested on Qt 4.8 with Qt Quick 1.1. Additionally, this article
provides a Qt Quick application which runs all code examples listed below. This application
is available in the js_basics folder in qt_quick_app_dev_intro_src.zip, see the
Downloads (page 2) section.

13.1 Introduction

JavaScript is a minimalistic dynamically typed scripting language. It is truly object-oriented,
although it lacks support for classes. Frequently associated with client-side web development,
JavaScript is a language of its own. Originally developed at Netscape and nowadays stan-
dardized as “ECMAScript-262 (3rd and 5th edition)”2 , the language has found wide-spread
use and circulates under various names. “JScript” is Microsoft’s derivative of the language.
“JavaScript” was the original name chosen by Netscape when the language was introduced
with Netscape 2. Adobe’s ActionScript was also based on ECMAScript-262 before version 3
was released.

Qt has been supporting a JavaScript engine compatible with ECMAScript-262 since Qt 4.3.
This engine is called “QtScript” and was originally an independent implementation. Since Qt
4.5, QtScript has been based on JavaScriptCore from WebKit. Qt Quick makes intense use of
QtScript.

1http://qt-project.org/wiki/JavaScript
2http://www.ecma-international.org/publications/standards/Ecma-262.htm

97

http://qt-project.org/wiki/JavaScript
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Introduction to Application Development with Qt Quick, Release 1.0

13.2 The Type System

JavaScript supports the following fundamental types:

boolean number string object function

New variables are introduced into the current scope using the var statement:

var flag = false // a boolean
var x = 1., y = 2 // numbers can be integers and reals
var s1 = ’abc’; // a string

To query the type of a variable, use the typeof keyword. typeof returns the name of the
type as a string.

var x = 0; typeof x // ’number’
typeof { x: 1 } // ’object’
typeof typeof { x : 1 } // ’string’
typeof JSON.parse(’{"a": 7}’) // ’object’

Everything in JavaScript acts like an object.

1.3333333.toFixed(2) // ’1.33’
7..toString() // ’7’

Note that in JavaScript the expression 7.toString() can’t be interpreted correctly. 7. is
parsed into a number and thereafter results in a syntax error.

The primitive types boolean, number, and string are implicitly converted into objects
when needed. For this purpose, the global object provides special constructor functions, which
can also be invoked manually:

typeof 1. // ’number’
typeof new Number(1.) // ’object’
typeof new String(’Hi!’) // ’object’

Functions are special kinds of objects. They only differ from objects because they can be called
and used as constructors. Properties can be added to functions dynamically:

function f(x) { return f.A x * x }
f.A = 2.7

function Buffer() {}
Buffer.MAX_LINE_LENGTH = 4096

Usually those properties serve as global constants and therefore are written in uppercase.

Objects themselves can be expressed using an array or object literal. Arrays have no separate
type, but are specialized objects which use array indexes as properties:

var o = { name: ’Werner’, age: 84 } // allocate simple object
print(o.name, o[age])
// both notations are valid, but [] notation allows generated strings
var a = [’a’, ’b’, 7, 11.]
// an array, equivalent to {’0’: ’a’, ’1’: ’b’, ’2’: 7, ’3’: 11.}
typeof o, a // ’object’, ’object’

13.2. The Type System 98

Introduction to Application Development with Qt Quick, Release 1.0

13.3 Expressions

The expression syntax follows mostly “C” syntax (as in C++ or Java). As a major difference,
there is no sharp distinction between statements and expressions. Basically everything evalu-
ates to something. Function declarations and compounds can be included on-the-fly:

function f() {} // evaluates ’undefined’
function f() {} + 1 // evaluates to 1, because ’undefined’ is casted to 0
(function() {}) // evaluates to a function object
(function() { return 0; })() // evaluates to 0

Expressions are separated by semicolons or line breaks.

13.4 Branching

Conditional branches follow “C” syntax.

if (<expression>)
<statement1>

else // optional
<statement2> // optional

The switch statement follows the same fall through semantics as in “C”:

switch(<expression>) {
case <expression>:

<statement-list-1>
break;

case <expression>:
<statement-list-2>
break;

...
default:

<statement-list-n>
}

13.5 Repetitions and Iterators

Repeated actions can be expressed using do, while and for loops:
...
do <statement> while (<expression>)
...
while (<expression>) <statement>
...
for (<init-expression>;<test-expression>;<step-expression>) <statement>
...

For iterating objects JavaScript provides a special for-in statement:

13.3. Expressions 99

Introduction to Application Development with Qt Quick, Release 1.0

for (<expression>; in <object>;) <statement>

The given expression needs to be suitable for the left-hand side of an assignment. In the sim-
plest case, it is just a variable declaration. Consider the following example:

var a = [1,2,3,4]
for (var i in a)

print(i, a[i] a[i])
// ’0’, 1
// ’1’, 4
// ’2’, 9
// ’3’, 16

Here the variable i is assigned to all keys of the array a consecutively. In the next example,
the left-hand expression is dynamically generated:

var o = {a0: 11, a1: 7, a2: 5}
var k = []
for(k[k.length] in o);

The keys of o are copied to k. The loop statement itself is left empty. For each member in o,
the name is assigned to another member of k.

13.6 Labeled Loops, Break and Continue

In JavaScript, loop statements can be given labels. The break and continue statements
break or continue the current loop. It is possible to break an outer loop from the inner loop by
using the label name as shown in the following example:

label_x:
for (var x = 0; x < 11; ++x) {

for (var y = 0; y < 11; ++y) {
if ((x + y) % 7 == 0) break label_x;

}
}

13.7 Objects and Functions

Objects are created using an object literal or the new operator.

In the following example, a point coordinate is expressed as an object literal:

var p = { x: 0.1, y: 0.2 }

Objects are entirely dynamic sets of properties. New properties are introduced on first assign-
ment. They can be deleted again by using the delete operator. To query if an object contains
a certain property, use the in operator.

’z’ in p // false
p.z = 0.3 // introduce new property ’z’

13.6. Labeled Loops, Break and Continue 100

Introduction to Application Development with Qt Quick, Release 1.0

’z’ in p // true
delete p.z // remove ’z’ from p
p.z // undefined

Property values can be of any type - including the function type. Methods in JavaScript are
just function properties. When a function is invoked in method notation, it gets a reference to
the object as an implicit argument called, this.

p.move = function(x, y) {
this.x = x
this.y = y

}
p.move(1, 1) // invoke a method

JavaScript allows any function to be called as a method of any object by using the call
method, however, there are only a few cases in which you would want to use the call method.

p2 = { x: 0, y: 0 }
p.move.call(p2, 1, 1)

13.8 Prototype-based Inheritance

The second way of creating objects is by using the new keyword together with a constructor
function*:

var p = new Object
p.x = 0.1
p.y = 0.2

The new operator allocates a new object and calls the given constructor to initialize the object.
In this case, the constructor is called Object, but it could be any other function as well.
The constructor function gets passed the newly created object as the implicit this argument.
In JavaScript there are no classes, but hierarchies of constructor functions which operate like
object factories. Common constructor functions are written with a starting capital letter to
distinguish them from average functions. The following example shows how to create point
coordinates using a constructor function:

function Point(x, y) {
this.x = x
this.y = y

}
var p = new Point(1, 2)

Each function in JavaScript can be used as a constructor in combination with the new operator.
To support inheritance, each function has a default property named prototype. Objects
created from a constructor inherit all properties from the constructor’s prototype. Consider the
following example:

function Point(x, y) {
this.x = x
this.y = y

}

13.8. Prototype-based Inheritance 101

Introduction to Application Development with Qt Quick, Release 1.0

Point.prototype = new Object // can be omitted here
Point.prototype.translate = function(dx, dy) {

this.x += dx
this.y += dy

}

First we declared a new function called Point, which is meant to initialize a point. Thereafter
we create our own prototype object, which in this case is redundant. The prototype of a function
already defaults to an empty object. Properties which should be shared among all points are
assigned to the prototype. In this case, we define the translate function which moves a
point by a certain distance.

We can now instantiate points using the Point constructor:

var p0 = new Point(1, 1)
var p1 = new Point(0, 1)
p1.translate(1, -1)
p0 === p1 // false
p0.translate === p1.translate // true

The p0 and p1 objects carry their own x and y properties, but they share the translate
method. Whenever an object’s property value is requested by name, the underlying JavaScript
engine first looks into the object itself and, if it doesn’t contain that name, it falls back to the
object’s prototype. Each object carries a copy of its constructor’s prototype for this purpose.

If an object actually contains a certain property, or if it is inherited, it can be inquired using the
Object.hasOwnProperty() method.

p0.hasOwnProperty("x") // true
p0.hasOwnProperty("translate") // false

So far, we have only defined a single constructor with no real object hierarchy. We will now
introduce two additional constructors to show how to chain prototypes and thereby build up
more complex relationships between objects:

function Point(x, y) {
this.x = x
this.y = y

}
Point.prototype = {

move: function(x, y) {
this.x = x
this.y = y

},
translate: function(dx, dy) {

this.x += dx
this.y += dy

},
area: function() { return 0; }

}

function Ellipsis(x, y, a, b) {
Point.call(this, x, y)
this.a = a
this.b = b

}

13.8. Prototype-based Inheritance 102

Introduction to Application Development with Qt Quick, Release 1.0

Ellipsis.prototype = new Point
Ellipsis.prototype.area = function() { return Math.PI this.a * this.b; }

function Circle(x, y, r) {
Ellipsis.call(this, x, y, r, r)

}
Circle.prototype = new Ellipsis

Here we have three constructors which create points, ellipsis and circles. For each constructor,
we have set up a prototype. When a new object is created using the new operator, the object
is given an internal copy of the constructor’s prototype. The internal reference to the prototype
is used when resolving property names which are not directly stored in an object. Thereby
properties of the prototypes are reused among the objects created from a certain constructor.
For instance, let us create a circle and call its move method:

var circle = new Circle(0, 0, 1)
circle.move(1, 1)

The JavaScript engine first looks into the circle object to see if it has a move property.
As it can’t find one, it asks for the prototype of circle. The circle object’s internal pro-
totype reference was set to Circle.prototype during construction. It was created using
the Ellipsis constructor, but that doesn’t contain a move property either. Therefore, the
name resolution continues with the prototype’s prototype, which is created with the Point
constructor. This time the name resolution succeeds as the Point constructor contains the
move property. The internal prototype references are commonly referred to as the prototype
chain of an object.

To query information about the prototype chain, JavaScript provides the instanceof opera-
tor.

circle instanceof Circle // true
circle instanceof Ellipsis // true
circle instanceof Point // true
circle instanceof Object // true
circle instanceof Array // false, is not an Array

As properties are introduced when they are first assigned, properties delivered by the prototype
chain are overloaded when newly assigned. The Object.hasOwnProperty method and
the in operator allow the place where a property is stored to be investigated.

circle.hasOwnProperty("x") // true, assigned by the Point constructor
circle.hasOwnProperty("area") // false
"area" in circle // true

As can be seen, the in operator resolves names using the prototype chain, while the
Object.hasOwnProperty only looks into the current object.

In most JavaScript engines, the internal prototype reference is called __proto__ and is ac-
cessible from the outside. In our next example, we will use the __proto__ reference to
explore the prototype chain. You should avoid using this property in all other contexts as it is a
non-standard. First let us define a function to inspect an object by iterating its members:

13.8. Prototype-based Inheritance 103

Introduction to Application Development with Qt Quick, Release 1.0

function inspect(o) { for (var n in o) if (o.hasOwnProperty(n)) print(n, "=", o[n]); }

The inspect function prints all members stored in an object so if we now apply this function
to the circle object as well as to its prototypes, we obtain the following output:

js> inspect(circle)
x = 1
y = 1
a = 1
b = 1
js> inspect(circle.__proto__)
x = undefined
y = undefined
a = undefined
b = undefined
js> inspect(circle.__proto__.__proto__)
x = undefined
y = undefined
area = function () { return Math.PI this.a * this.b; }
js> inspect(circle.__proto__.__proto__.__proto__)
move = function (x, y) {

this.x = x
this.y = y;

}
translate = function (dx, dy) {

this.x += dx
this.y += dy;

}
area = function () { return 0; }
js> inspect(circle.__proto__.__proto__.__proto__.__proto__)
js>

As you can see, the move method is actually stored in
circle.__proto__.__proto__.__proto__. You can also see a lot of redun-
dant undefined members, but this shouldn’t cause you any concern as prototype objects are
shared among instances.

13.9 Scopes, Closures and Encapsulation

In JavaScript, execution starts in the global scope. Predefined global functions such as Math
or String are properties of the global object. The global object serves as the root of the
scope chain and is the first object created. In addition to the standard properties of the global
object (see Qt Quick ECMAScript Reference3), Qt Quick provides a Qt global object4 with
some additional properties.

Usually, the global object can be referenced from the global scope by explicitly using the this
keyword. The value of this is currently undefined in Qt Quick in the majority of contexts.
See “QML JavaScript Restrictions” in Integrating JavaScript5 in Qt documentation.

3http://qt-project.org/doc/qt-4.8/ecmascript.html
4http://qt-project.org/doc/qt-4.8/qdeclarativeglobalobject.html
5http://qt-project.org/doc/qt-4.8/qdeclarativejavascript.html

13.9. Scopes, Closures and Encapsulation 104

http://qt-project.org/doc/qt-4.8/ecmascript.html
http://qt-project.org/doc/qt-4.8/qdeclarativeglobalobject.html
http://qt-project.org/doc/qt-4.8/qdeclarativejavascript.html

Introduction to Application Development with Qt Quick, Release 1.0

Further scopes are created on-demand whenever a function is called. Scopes are destroyed as
any other object when they are no longer needed. When a function is defined, the enclosing
scope is kept with the function definition and used as the parent scope for the function invoca-
tion scope. The new scope that is created upon function invocation is commonly referred to as
the activation object*. The scope in which functions are defined is commonly referred to as the
lexical scope.

The following example shows how to use lexical scopes to hide private members:

function Point(x, y) {
this.getX = function() { return x; }
this.setX = function(x2) { x = x2; }
this.getY = function() { return y; }
this.setY = function(y2) { y = y2; }

}

When the Point constructor is invoked, it creates get and set methods. The newly generated
scope for the invocation of the Point constructor carries the x and y members. The getters
and setters reference this scope and therefore it is retained for the lifetime of the newly created
object. Interestingly there is no other way to access x and y other than via the set and get
methods. This way JavaScript supports data encapsulation.

The concept of a function referencing the enclosing scope and retaining it for the lifetime of
the function is commonly called a closure. Low-level programming languages such as “C” do
not support closures because local scopes are created using stack frames and therefore need to
be destroyed when the function returns.

13.10 Namespaces

Functions play a pivotal role in JavaScript. They serve as simple functions, methods, and
constructors, and are used to encapsulate private properties. Additionally functions serve as
anonymous namespaces:

(function() {
// my code
var smth = new Smth // safe
other = [1,2,3] // bad, goes into global scope
Array = function() {} // forbidden

}) ()
var smthElse = {} // bad, goes into global scope

An anonymous function is defined and executed on-the-fly. Global initialization code in partic-
ular is commonly wrapped in such a way to prevent polluting the global scope. As the global
object can be modified as any other object in JavaScript, wrapping code in such a way re-
duces the risk of accidentally overwriting a global variable. To ensure that it actually works, all
variables need to be duly introduced using the var statement.

Named namespaces can also be created with functions. If for instance we wanted to write a
utility library for painting applications, we could write:

13.10. Namespaces 105

Introduction to Application Development with Qt Quick, Release 1.0

function PaintUtil() {
PaintUtil.Point = function(x, y) {

this.move = function(x2, y2) { x = x2; y = y2 }
this.getX = function() { return x; }
this.getY = function() { return y; }

}
// Ellipsis, Circle, other painting utility methods

}
PaintUtil()

Once this little library module is executed, it provides the single PaintUtil object, which
makes the utility functions accessible. A point can be instantiated using the constructor pro-
vided by PaintUtil as follows:

var p = new PaintUtil.Point(0.1, 0.2)

Reusable JavaScript modules should only introduce a single global object with a distinguishable
name.

13.11 Common Methods

JavaScript allows the default behavior of an object to be changed using the valueOf() and
the toString() methods. valueOf() is expected to return a value of fundamental type.
It is used to compare objects (when sorting them) and to evaluate expressions comprising of
objects and fundamental types. toString() is invoked when an object is cast to a string.
In JavaScript, objects are compared for equality differently than for being greater or lower.
Comparison for equality always compares the object references. Comparison for being lower
or greater, on the other hand, converts objects by first converting the objects to values of funda-
mental types. First valueOf() is invoked, and if it doesn’t return a fundamental type, it calls
toString() instead.

For our Point class, we could define the methods as follows:

Point.prototype.valueOf = function () {
return Math.sqrt(this.getX() this.getX() + this.getY() * this.getY());

}
Point.prototype.toString = function () {

return this.getX().toString() + "," + this.getY().toString();
}

13.12 Exceptions

JavaScript provides an exception handling mechanism like most other high-level languages.
Exceptions are thrown using the throw statement. Any value can be used as an exception
object:

throw <expression>;

13.11. Common Methods 106

Introduction to Application Development with Qt Quick, Release 1.0

When an exception is thrown, JavaScript unwinds the current scope until it arrives at a try-catch
scope:

try {
<statement-list>

}
catch (<name for exception object>) {

// handle exception
}
finally {

// always go through here
}

The name of the exception object is only locally defined inside the catch scope. Exceptions can
be re-thrown.

13.13 Resources

Useful web links:

• “The JavaScript Reference”6 on the Mozilla Developer Network

• “JavaScript. The core.” by Dmitry A. Soshnikov”7

• “Changes to JavaScript: EcmaScript 5 by Mark Miller”8 - a video from Google Tech
Talk, May 18, 2009

• “Standard ECMA-262”9 - PDF download of the official standard

Recommended Books:

*“JavaScript: The Good Parts” by Douglas Crockford10 * “Part I - Core JavaScript” in
“JavaScript: The Definitive Guide” by David Flanagan11

genindex

6https://developer.mozilla.org/en/JavaScript/Reference
7http://dmitrysoshnikov.com/ecmascript/javascript-the-core/
8http://www.youtube.com/watch?v=Kq4FpMe6cRs
9http://www.ecma-international.org/publications/standards/Ecma-262.htm

10http://oreilly.com/catalog/9780596517748.do
11http://shop.oreilly.com/product/9780596805531.do

13.13. Resources 107

https://developer.mozilla.org/en/JavaScript/Reference
http://dmitrysoshnikov.com/ecmascript/javascript-the-core/
http://www.youtube.com/watch?v=Kq4FpMe6cRs
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://oreilly.com/catalog/9780596517748.do
http://shop.oreilly.com/product/9780596805531.do

	Introduction
	Who should read this tutorial and why
	The journey is the target
	Downloads
	Help us help you
	Related material
	License

	Work Environment Setup
	Installing the tools
	Creating Qt Quick applications
	Qt Quick Application* project type
	Tracing what is going on

	Qt Quick Core Principles for Application Development
	Qt Quick Compared to Classical Qt
	Declarative vs imperative programming
	Four cornerstones
	Moving from a concept to a real application

	Elements as building blocks
	Composing a basic UI with nested elements
	Ordering elements on the screen
	Arranging application elements on the screen
	Properties
	Other Visual Composition Elements

	Loading and Displaying Content
	Accessing and loading content
	Basic Image Parameters
	Basic Text Parameters
	Get ready for translation
	Static Clock Application Code

	Using JavaScript
	JavaScript is not JavaScript
	More About JavaScript
	Adding Logic to Make the Clock Tick
	Importing JavaScript Files

	Acquire and Visualize Data
	Models
	Repeater and Views

	Components and Modules
	Creating Components and Collecting Modules
	Defining Interfaces and Default Behavior
	Handling Scope
	Integrated Application
	Further Readings

	Interactive UI with Multiple Top-Level Windows
	A Button
	A Simple Dialog
	A Checkbox
	Handling Keyboard Input and Navigation

	UI Dynamics and Dynamic UI
	Using States
	Adding Animations
	Supporting the Landscape Mode
	Finalizing the Main Item

	Doing More, Learning More
	Porting to Qt5
	Porting to a mobile device
	Enhancements and New Features

	Lesson Learned and Further Reading
	Annexure: JavaScript Language Overview
	Introduction
	The Type System
	Expressions
	Branching
	Repetitions and Iterators
	Labeled Loops, Break and Continue
	Objects and Functions
	Prototype-based Inheritance
	Scopes, Closures and Encapsulation
	Namespaces
	Common Methods
	Exceptions
	Resources

