#include <dune/fem/quadrature/elementpointlistbase.hh>
|
static const int | codimension = 0 |
| codimension of the integration point list
|
|
static const int | dimension = GridPartType::dimension |
| dimension of the grid
|
|
◆ CoordinateType
template<class GridPartImp , class IntegrationTraits >
◆ GridPartType
template<class GridPartImp , class IntegrationTraits >
type of the grid partition
◆ IntegrationPointListType
template<class GridPartImp , class IntegrationTraits >
type of the integration point list
◆ LocalCoordinateType
template<class GridPartImp , class IntegrationTraits >
◆ QuadratureKeyType
template<class GridPartImp , class IntegrationTraits >
◆ RealType
template<class GridPartImp , class IntegrationTraits >
◆ Side
template<class GridPartImp , class IntegrationTraits >
◆ ElementPointListBase() [1/2]
template<class GridPartImp , class IntegrationTraits >
constructor
- Parameters
-
[in] | geometry | geometry type, the quadrature lives on |
[in] | order | desired minimal order of the quadrature |
◆ ElementPointListBase() [2/2]
template<class GridPartImp , class IntegrationTraits >
constructor
- Parameters
-
[in] | geometry | geometry type, the quadrature lives on |
[in] | order | desired minimal order of the quadrature |
◆ cachingPoint()
template<class GridPartImp , class IntegrationTraits >
◆ cachingPointStart()
template<class GridPartImp , class IntegrationTraits >
◆ elementGeometry()
template<class GridPartImp , class IntegrationTraits >
obtain GeometryType of the corresponding codim-0 the integration point list belongs to
An element integration point list can return the coordinates of integration points with resepct to the codim-0 reference element and the reference element corresponding to the subentity the quadrature actually lives on. This method returns the geometry of the codim-0 entity.
- Note
- Calling this method yields a virtual function call, so do not call this method unnecessarily.
- Returns
- GeometryType for this integration point list
◆ geometry()
template<class GridPartImp , class IntegrationTraits >
◆ geometryType()
template<class GridPartImp , class IntegrationTraits >
◆ id()
template<class GridPartImp , class IntegrationTraits >
obtain the identifier of the integration point list
The identifier of an integration point list must be globally unique. Even integration point lists for different dimensions must have different identifiers.
- Note
- Quadratures are considered distinct if they differ in one of the following points: geometry type, order, dimension or implementation.
- Returns
- globally unique identifier of the integration point list
◆ localCachingPoint()
template<class GridPartImp , class IntegrationTraits >
◆ localFaceIndex()
template<class GridPartImp , class IntegrationTraits >
◆ localPoint()
template<class GridPartImp , class IntegrationTraits >
obtain local coordinates of i-th integration point
This method returns a reference to the local coordinates of the i-th integration point for 0 <= i < nop(). Here, local coordinates means coordinates with respect to the reference element of the subentity.
- Parameters
-
[in] | i | number of the integration point, 0 <= i < nop() |
- Returns
- reference to i-th integration point
◆ nCachingPoints()
template<class GridPartImp , class IntegrationTraits >
◆ nop()
template<class GridPartImp , class IntegrationTraits >
obtain the number of integration points
- Returns
- number of integration points within this list
◆ order()
template<class GridPartImp , class IntegrationTraits >
obtain order of the integration point list
The order of a quadrature is the maximal polynomial degree that is guaranteed to be integrated exactly by the quadrature.
In case of an integration point list, the definition of this value is left to the implementor.
- Note
- Calling this method yields a virtual function call, so do not call this method unnecessarily.
- Returns
- the order of the integration point list
◆ quadImp()
template<class GridPartImp , class IntegrationTraits >
obtain the actual implementation of the quadrature
- Note
- This method may only be used in derived classes.
- Returns
- a reference to the actual implementation of the quadrature
◆ twisted()
template<class GridPartImp , class IntegrationTraits >
◆ twistId()
template<class GridPartImp , class IntegrationTraits >
◆ type()
template<class GridPartImp , class IntegrationTraits >
◆ codimension
template<class GridPartImp , class IntegrationTraits >
codimension of the integration point list
◆ dimension
template<class GridPartImp , class IntegrationTraits >
◆ quad_
template<class GridPartImp , class IntegrationTraits >
The documentation for this class was generated from the following file: