
Netatalk 2.0 Manual

17th May 2005

2.0.3

Legal Notice

This documentation is distributed under the GNU General Public License (GPL) version 2. A copy of the license
is included in this documentation, as well as within the Netatalk source distribution. An on-line copy can be
found at <http://www.fsf.org/licenses/gpl.txt>

iii

http://www.fsf.org/licenses/gpl.txt

Contents

1 Introduction to Netatalk 1

2 Installation 3
2.1 How to obtain Netatalk . 3

2.1.1 Binary packages . 3
2.1.2 Source packages . 3

2.1.2.1 Tarballs . 3
2.1.2.2 Anonymous CVS . 3

2.2 Compiling Netatalk . 4
2.2.1 Prerequisites . 4

2.2.1.1 System requirements . 4
2.2.1.2 Required third party software . 5
2.2.1.3 Optional third party software . 5

2.2.2 Compiling Netatalk . 6
2.2.2.1 Configuring the build . 6

2.2.3 Compiling a new Berkeley DB for Netatalk . 7
2.2.3.1 Using a statically linked Berkeley DB . 7
2.2.3.2 Using a dynamically linked Berkeley DB . 7

3 Setting up Netatalk 9
3.1 Appletalk . 9

3.1.1 To use AppleTalk or not . 9
3.1.2 No AppleTalk routing . 9
3.1.3 atalkd acting as an AppleTalk router . 11

3.2 File Services . 13
3.2.1 Setting up the AFP file server . 13

3.2.1.1 afpd.conf . 14
3.2.1.2 AppleVolumes.default . 14

3.2.2 CNID backends . 14
3.2.2.1 cdb . 15
3.2.2.2 dbd . 15
3.2.2.3 last . 15

3.2.3 Charsets/Unicode . 16
3.2.3.1 Why Unicode? . 16
3.2.3.2 character sets used by Apple . 16
3.2.3.3 afpd and character sets . 17

3.2.4 Authentication . 18
3.2.4.1 AFP authentication basics . 18
3.2.4.2 UAMs supported by Netatalk . 18
3.2.4.3 Which UAMs to activate? . 19
3.2.4.4 Using different authentication sources with specific UAMs 19
3.2.4.5 Netatalk UAM overview table . 20
3.2.4.6 SSH tunneling . 21

3.3 Printing . 22
3.3.1 Setting up the PAP print server . 22

3.3.1.1 Integrating papd with SysV lpd . 22
3.3.1.2 Using pipes with papd . 22

v

vi

3.3.1.3 Using direct CUPS support . 23
3.3.2 Using AppleTalk printers . 23

3.4 Time Services . 24
3.4.1 Using Netatalk as a time server for Macintoshes . 24

3.5 Starting and stopping Netatalk . 24

4 Upgrading from a previous version of Netatalk 25
4.1 Overview . 25
4.2 Volumes and filenames . 25

4.2.1 How to upgrade a volume to 2.0 . 26
4.2.2 How to use a 1.x CAP encoded volume with 2.0 . 26
4.2.3 How to use a 1.x NLS volume with 2.0 . 27

4.3 Choosing a CNID storage scheme . 27
4.3.1 How to upgrade if no persistent CNID storage was used . 28
4.3.2 How to upgrade if a persistent CNID storage scheme was used 29
4.3.3 How to upgrade if a persistent CNID storage scheme was used, the brute force approach . 30

4.4 Setting up a test server on the same machine . 30
4.4.1 Setting up an empty test share . 30
4.4.2 Duplicating an already existing share . 30
4.4.3 Configuring and running the test afpd . 31

5 Manual Pages 33
5.1 achfile . 33
5.2 acleandir . 34
5.3 aecho . 35
5.4 afile . 36
5.5 afpd . 37
5.6 afpd.conf . 39
5.7 afppasswd . 46
5.8 AppleVolumes.default . 47
5.9 apple_cp . 53
5.10 apple_mv . 54
5.11 apple_rm . 55
5.12 asip-status.pl . 56
5.13 atalk . 57
5.14 atalkd . 58
5.15 atalkd.conf . 59
5.16 atalk_aton . 60
5.17 cnid_dbd . 61
5.18 cnid_index . 63
5.19 cnid_metad . 64
5.20 getzones . 65
5.21 megatron . 66
5.22 nbp . 67
5.23 nbp_name . 68
5.24 netatalk.conf . 69
5.25 netatalk-config . 70
5.26 pap . 71
5.27 papd . 73
5.28 papd.conf . 75
5.29 papstatus . 78
5.30 psf . 79
5.31 psorder . 80

vii CONTENTS

5.32 timelord . 81
5.33 timeout . 82
5.34 uniconv . 82

6 The GNU General Public License 85

Index 93

Chapter 1

Introduction to Netatalk

Netatalk is an OpenSource software package, that can be used to turn an inexpensive *NIX machine into an
extremely performant and reliable file and print server for Macintosh computers.

Using Netatalk’s AFP 3.1 compliant file-server leads to significantly higher transmission speeds compared with
Macs accessing a server via SaMBa/NFS while providing clients with the best possible user experience (full
support for Macintosh metadata, flawlessly supporting mixed environments of classic MacOS and MacOS X
clients)

Due to Netatalk speaking AppleTalk, the print-server task can provide printing clients with full AppleTalk sup-
port as well as the server itself with printing capabilities for AppleTalk-only printers. Starting with version 2.0,
Netatalk seamlessly interacts with CUPS on the server.

After all, Netatalk can be used to act as an AppleTalk router, providing both segmentation and zone names in
Macintosh networks.

1

Chapter 2

Installation

WARNING

If you have previously used an older version of Netatalk, please read the chapter about upgrading
first !!!

2.1 How to obtain Netatalk

Please have a look at the netatalk page on sourceforge for the most recent informations on this issue.

<http://sourceforge.net/projects/netatalk/>

2.1.1 Binary packages

Binary packages of Netatalk are included in some Linux and UNIX distributions. You might want to have a look
at the usual locations, too (<http://rpmfind.net/>, <http://packages.debian.org/>, <http://www.blastwave.org/
> <http://www.freebsd.org/ports/index.html>, etc.)

2.1.2 Source packages

2.1.2.1 Tarballs

Prepacked tarballs in .tar.gz and tar.bz2 format are available on the netatalk page on sourceforge

2.1.2.2 Anonymous CVS

Downloading of the CVS source can be done quickly and easily.

3

http://sourceforge.net/projects/netatalk/
http://rpmfind.net/
http://packages.debian.org/
http://www.blastwave.org/
http://www.blastwave.org/
http://www.freebsd.org/ports/index.html

2.2. Compiling Netatalk 4

1. Make sure you have cvs installed. which cvs should produce a path to cvs.

$> which cvs
/usr/bin/cvs

2. If you don’t have one make a source directory. cd to this directory.

$> mkdir /path/to/new/source/dir
$> cd /path/to/new/source/dir

3. Authenticate yourself with cvs. Just hit enter for the password for the anonymous user.

$> cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/netatalk login
Logging in to :pserver:anonymous@cvs.sourceforge.net:2401/cvsroot/netatalk
CVS password: [Enter]

4. Now get the source:

$> cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/netatalk
-r branch-netatalk-2-0 co netatalk

cvs server: Updating netatalk
U netatalk/.cvsignore
U netatalk/CONTRIBUTORS
U netatalk/COPYING
...

This will create a local directory called "netatalk" and downloads a complete and fresh copy of the netatalk
source from the CVS repository.

5. Now cd to the netatalk directory and run ./autogen.sh. This will create the configure script required in the
next step.

$> ./autogen.sh

2.2 Compiling Netatalk

2.2.1 Prerequisites

2.2.1.1 System requirements

Your system needs to meet the following requirements:

• A C compiler, Netatalk compiles fine with gcc > 2.7.95

To be able to compile with AFP3 support, your system has to support large files (>2GB).

5 Chapter 2. Installation

NOTE

On linux systems glibc > 2.2 is required.

2.2.1.2 Required third party software

Netatalk makes use of sleepycats’ Berkeley DB. At the time of writing, the following versions are supported:

• 4.1.25

• 4.2.52 (recommended)

In case Berkeley DB is not installed on your system, please download it from:

<http://www.sleepycat.com/download/db/index.shtml>

and follow the installation instructions.

2.2.1.3 Optional third party software

Netatalk can use the following third party software to enhance it’s functionality.

• OpenSSL (recommended)

OpenSSL is required for encrypted passwords. Without it, the password will be sent over the network in
clear text.

• TCP wrappers

Wietse Venema’s network logger, also known as TCPD or LOG_TCP.

Security options are: access control per host, domain and/or service; detection of host name spoofing or
host address spoofing; booby traps to implement an early-warning system.

TCP Wrappers can be downloaded from: <ftp://ftp.porcupine.org/pub/security>/

• PAM

PAM provides a flexible mechanism for authenticating users. PAM was invented by SUN Microsystems.
Linux-PAM is a suite of shared libraries that enable the local system administrator to choose how applica-
tions authenticate users.

You can get the Linux PAM documentation and sources from <http://www.kernel.org/pub/linux/libs/
pam/>.

• OpenSLP

SLP (Service Location Protocol) is an IETF standards track protocol that provides a framework to allow
networking applications to discover the existence, location, and configuration of networked services in
enterprise networks.

Mac OS X uses it to locate AFP servers, even though newer version prefer Rendezvous.

You can download OpenSLP from: <http://www.openslp.org/>.

http://www.sleepycat.com/download/db/index.shtml
ftp://ftp.porcupine.org/pub/security
http://www.kernel.org/pub/linux/libs/pam/
http://www.kernel.org/pub/linux/libs/pam/
http://www.openslp.org/

2.2. Compiling Netatalk 6

• iconv

iconv provides conversion routines for many character encodings. Netatalk uses it to provide charsets
it does not have built in conversions for, like ISO-8859-1. On glibc systems, Netatalk can use the glibc
provided iconv implementation. Otherwise you can use the GNU libiconv implementation.

You can download GNU libiconv from: <http://www.gnu.org/software/libiconv/>.

2.2.2 Compiling Netatalk

2.2.2.1 Configuring the build

To build the binaries, first run the program ./configure in the source directory. This should automatically config-
ure Netatalk for your operating system. If you have unusual needs, then you may wish to run

$> ./configure --help

to see what special options you can enable.

The most used configure options are:

• –enable-[redhat/suse/cobalt/netbsd/fhs]

This option helps netatalk to determine where to install the start scripts.

• -with-bdb=/path/to/bdb/installation/

In case you installed Berkeley DB in a non-standard location, you will have to give the install location to
netatalk, using this switch.

Now run configure with any options you need

$> ./configure [arguments] [--with-bdb=/bdb/install/path]

Configure will end up in an overview showing the settings the Netatalk Makefiles have been created with.

If this step fails please visit the troubleshooting guide <http://netatalk.sourceforge.net/wiki/index.php/Troubleshooting>.

NOTE

With recent RedHat releases, Berkeley DB links to libpthread. Netatalk does not link to libpthread,
so detection of Berkeley DB fails when running configure. It’s recommended to (re)compile Berkeley
DB with -with-mutex="x86/gcc-assembly" (on x86 platforms) to disable the use of libpthread.
Alternatively you could use

$> LIBS="-lpthread" ./configure [arguments]

to trick Netatalk into linking to libpthread. However, this is not recommended, as there have been
some trouble reports indicating that linking to libpthread badly damages performance.

Next, running

$> make

http://www.gnu.org/software/libiconv/
http://netatalk.sourceforge.net/wiki/index.php/Troubleshooting

7 Chapter 2. Installation

should produce the Netatalk binaries (this step can take several minutes to complete).

When the process finished you can use

$> make install

to install the binaries and documentation (must be done as "root" when using default locations).

2.2.3 Compiling a new Berkeley DB for Netatalk

Netatalk 2.0 requires Berkeley DB version 4.1.25 or newer. Even if you already have a supported version of
Berkeley DB installed on your system, there are several reasons, why you might still want to consider building a
new version for Netatalk.

Many linux distributions provide a precompiled Berkeley DB version. This is usually nice, but also has one major
drawback: If you update your system to a newer release, the installed version of Berkeley DB may change. This
can lead to a number of problems, starting with strange behaviour of Netatalk, unreadable CNID Databases.
Most likely Netatalk(afpd) won’t start anymore, so you’ll have to recompile Netatalk.

For instructions compiling Berkeley DB, you should generally refer to the documentation provided by Sleepycat.
The following information is meant to help you avoid problems, users experienced in the past.

In case you are building on a recent RedHat release, please use -with-mutex="x86/gcc-assembly" on x86 plat-
forms to prevent Berkeley DB from linking against libpthread.

2.2.3.1 Using a statically linked Berkeley DB

To link Netatalk statically to Berkeley DB, you have to disable shared libraries when building Berkeley DB. If
shared libraries exist, Netatalk will always link to them, even if a static version exists in the same location.

root# cd build_unix
root# ../dist/configure --prefix=/install/path --disable-shared
root# make
root# make install

You should now continue with building Netatalk.

2.2.3.2 Using a dynamically linked Berkeley DB

Building a shared version of Berkeley DB is rather straightforward. However, especially under Linux, some care
needs to be taken. Underlying system libraries, i.e. libnss_db, might be using Berkeley DB as well. As these
libraries have likely been build with another, i.e. older, version of Berkeley DB, linking afpd to a newer version
can lead to unexpected results.

You need to configure Berkeley DB with the -with-uniquename configure switch to avoid these kind of problems.
This insures your new version will not interfere with another installation of Berkeley DB on your system.

root# cd build_unix
root# ../dist/configure --prefix=/install/path --with-uniquename
root# make
root# make install

2.2. Compiling Netatalk 8

If you select an install path other than /usr/local, you will have to configure your linker to look for libraries in
this directory.

On many operating systems, this is done by adding a new entry to /etc/ld.so.conf.

root# echo /install/path/lib >/etc/ld.so.conf
root# ldconfig

You should now continue with building Netatalk.

Chapter 3

Setting up Netatalk

3.1 Appletalk

AppleTalk, the network protocol family founded by Apple, contains different protocols for different uses (address
resolution, address/name mapping, service location, establishing connections, and the like)

A complete overview can be found inside the developer documentation.

3.1.1 To use AppleTalk or not

You’ll need the AppleTalk support built into netatalk in case you want to provide printing services via PAP by
papd(8) or file services via AppleTalk via afpd(8) for older AFP clients not capable of using AFP over TCP. You’ll
need it also, if you want to use the deprecated AppleTalk-based timeserver timelord(8) for older Mac clients.

But even if you don’t need PAP or AFP over AppleTalk, you might consider using AppleTalk for service prop-
agation/location, having the ease of use for your network clients in mind. The Apple engineers implemented a
way to easily locate an AFP server via AppleTalk but establishing the AFP connection itself via AFP over TCP
(see the developer documentation for details on this cool feature, too).

To use the different base AppleTalk protocols with netatalk, one has to use atalkd(8). It can also be used as an
AppleTalk router to connect different independent network segments to each other.

To use AppleTalk/atalkd, your system has to have kernel support for AppleTalk. On some systems supported
by netatalk, this isn’t currently true (notably True64 Unix) so you can use only netatalk services that do not rely
on AppleTalk (which means "AFP over TCP" and requires the -noddp switch in afpd.conf).

3.1.2 No AppleTalk routing

This is the most simple form, you can use AppleTalk with netatalk. In case, you have only one network interface
up and running, you haven’t to deal with atalkd’s config at all: atalkd will use AppleTalk’s self-configuration
features to get an AppleTalk address and to register itself in the network automagically.

In case, you have more than one active network interface, you have to make a decision:

• Using only one interface: Just add the interface name (en1, le0, eth2, ... for example) to atalkd.conf on a
single line. Do only list one interface here.

9

3.1. Appletalk 10

Example 3.1.1: atalkd.conf containing one entry

eth0

Appletalk networking should be enabled on eth0 interface. All the necessary configuration will be fetched from
the network

At startup time, atalkd will add the real settings (address and network and eventually a zone) to atalkd.conf
on its own

Example 3.1.2: atalkd.conf containing one entry after atalkd started

eth0 -phase 2 -net 0-65534 -addr 65280.166

atalkd filled in the AppleTalk settings that apply to this network segment. A netrange of 0-65534 indicates that
there is no AppleTalk router present, so atalkd will fetch an address that matches the following criteria: netrange
from inside the so called "startup range" 65280-65533 and a node address between 142 and 255.

• When using several interfaces you have to add them line by line following the "-dontroute" switch in
atalkd.conf.

Example 3.1.3: atalkd.conf containing several entries with the -dontroute option

eth0 -dontroute
eth1 -dontroute
eth2 -dontroute

Appletalk networking should be enabled on all three interfaces, but no routing should be done between the
different segments. Again, all the necessary configuration will be fetched from the connected networks.

Example 3.1.4: atalkd.conf containing several entries with the -dontroute option after atalkd started

eth0 -dontroute -phase 2 -net 0-65534 -addr 65280.152
eth1 -dontroute -phase 2 -net 0-65534 -addr 65280.208
eth2 -dontroute -phase 2 -net 1-1000 -addr 10.142 -zone "Printers"

On eth0 and eth1, there are no other routers present, so atalkd chooses an address from within the startup range.
But on eth2 there lives an already connected AppleTalk router, publishing one zone called "Printers" and forcing
clients to assign themselves an address in a netrange between 1 and 1000.

In this case, atalkd will handle each interface as it would be the only active one. This can have some side
effects when it comes to the point where AFP clients want to do the magic switch from AppleTalk to TCP,
so use this with caution.

In case, you have more than one active network interface and do not take special precautions as outlined above,
then autoconfiguration of the interfaces might fail in a situation where one of your network interfaces is connected
to a network where no other active AppleTalk router is present and supplies appropriate routing settings.

For further information see atalkd.conf(5) and the developer documentation.

11 Chapter 3. Setting up Netatalk

3.1.3 atalkd acting as an AppleTalk router

There exist several types of AppleTalk routers: seed, non-seed and so called soft-seed routers.

• A seed router has its own configuration and publishes this into the network segments it is configured for.

• A non-seed router needs a seed router on the interface to which it is connected to learn the network config-
uration. So this type of AppleTalk router can work completely without manual configuration.

• A so called soft-seed router is exactly the same as a non-seed router except the fact, that it can also remember
the configuration of a seed router and act as a replacement in case, the real seed router disappears from the
net.

Netatalk’s atalkd can act as both a seed and a soft-seed router, even in a mixed mode, where it acts on one
interface in this way and on the other in another.

If you leave your atalkd.conf completely empty or simply add all active interfaces line by line without using
seed settings (atalkd will act identically in both cases), then atalkd is forced to act as a soft-seed router on each
interface, so it will fail on the first interface, where no seed router is accessible to fetch routing information from.

In this case, other services, that depend on atalkd, might also fail.

So you should have atalkd act as a seed router on one or all active interfaces. A seed router has to supply
informations about:

• The specific netrange on this segment

• Its own AppleTalk address

• The zones (one to many) available in this segment

• The so called "default zone" for this segment

WARNING

Unless you are the network admin yourself, consider asking her/him before changing anything re-
lated to AppleTalk routing, as changing these settings might have side effects for all of your AppleTalk
network clients!

In an AppleTalk network netranges have to be unique and must not overlap each other. Fortunately netatalk’s
atalkd is polite enough to check whether your settings are in conflict with already existing ones on the net. In
such a case it simply discards your settings and tries to adapt the already established ones on the net (if in doubt,
always check syslog for details).

Netranges, you can use, include pretty small ones, eg. 42-42, to very large ones, eg. 1-65279 - the latter one
representing the maximum. In routed environments you can use any numbers in the range between 1 and 65279
unless they do not overlap with settings of other connected subnets.

The own AppleTalk address consists of a net part and a node part (the former 16 bit, the latter 8 bit, for example
12057.143). Apple recommends using node addresses of 128 or above for servers, letting client Macs assign them-
selves an address faster (as they will primarily search for a node address within 1-127 in the supplied netrange).
As we don’t want to get in conflict with Apple servers, we prefer using node addresses of 142 or above.

AppleTalk zones have nothing to do with physical networks. They’re just a hint for your client’s convenience,
letting them locate network resources in a more comfortable/faster way. You can either use one zone name across

3.1. Appletalk 12

multiple physical segments as well as more than one zone name on a single segment (and various combinations
of this).

So all you have to do is to draw a network chart containing the physical segments, the netranges you want to assign
to each one, the zone names you want to publish in which segments and the default zone per segment (this is
always the first zone name, you supply with the "-zone" switch in atalkd.conf).

Given, you finished the steps outlined above, you might want to edit atalkd.conf to fit your needs.

You’ll have to set the following options in atalkd.conf:

• -net (use reasonable values between 1-65279 for each interface)

In case, this value is suppressed but -addr is present, the netrange from this specific address will be used

• -addr (the net part must match the -net settings if present, the node address should be between 142 and
255)

• -zone (can be used multiple times in one single line, the first entry is the default zone)

Note that you are able to set up "zone mapping", that means publishing exactly the same zone name on all Ap-
pleTalk segments, as well as providing more than one single zone name per interface. Dumb AppleTalk devices,
like LaserWriters, will always register themselves in the default zone (the first zone entry you use in atalkd.conf
per interface), more intelligent ones will have the ability to choose one specific zone via a user interface.

Example 3.1.5: atalkd.conf making netatalk a seed router on two interfaces

eth0 -seed -phase 2 -net 1-1000 -addr 1000.142 -zone "Printers" -zone "Spoolers"
eth1 -seed -phase 2 -net 1001-2000 -addr 2000.142 -zone "Macs" -zone "Servers"

The settings for eth0 force AppleTalk devices within the connected network to assign themselves an address in
the netrange 1-1000. Two zone names are published into this segment, "Printers" being the so called "standard
zone", forcing dumb AppleTalk devices like Laser printers to show up automatically into this zone. AppleTalk
printer queues supplied by netatalk’s papd can be registered into the zone "Spoolers" simply by adjusting the
settings in papd.conf(5). On eth1 we use the different and non-overlapping netrange 1001-2000, set the default
zone to "Macs" and publish a fourth zone name "Servers".

Example 3.1.6: atalkd.conf configured for "zone mapping"

eth0 -seed -phase 2 -net 1-1000 -addr 1000.142 -zone "foo"
lo0 -phase 1 -net 1 -addr 1.142 -zone "foo"

We use the same network settings as in the example above but let atalkd publish the same zone name on both
segments. As the same zone name will be used on all segments of the AppleTalk network no zone names will
show up at all... but AppleTalk routing will still be active. In this case, we connect a so called "non-extended"
LocalTalk network (phase 1) to an EtherTalk "extended" network (phase 2) transparently.

13 Chapter 3. Setting up Netatalk

Example 3.1.7: atalkd.conf for a soft-seed router configuration

eth0
eth1
eth2

As we have more than one interface, atalkd will try to act as an AppleTalk router between both segments. As
we don’t supply any network configuration on our own we depend on the availability of seed routers in every
connected segment. If only one segment is without such an available seed router the whole thing will fail.

Example 3.1.8: atalkd.conf for a soft-seed router configuration after atalkd started

eth0 -phase 2 -net 10-10 -addr 10.166 -zone "Parking"
eth1 -phase 2 -net 10000-11000 -addr 10324.151 -zone "No Parking" -zone "Parking"
eth2 -phase 2 -net 65279-65279 -addr 65279.142 -zone "Parking" -zone "No Parking"

In this case, active seed routers are present in all three connected networks, so atalkd was able to fetch the network
configuration from them and, since the settings do not conflict, act as a soft-seed router from now on between the
segments. So even in case, all of the three seed routers would disappear from the net, atalkd would still supply
the connected network with the network configuration once learned from them. Only in case, atalkd would be
restarted afterwards, the routing information will be lost (as we’re not acting as seed router).

Example 3.1.9: atalkd.conf ready for mixed seed/soft-seed mode

eth0
eth1 -seed -phase 2 -net 99-100 -addr 99.200 -zone "Testing"

In case in the network connected to eth0 lives no active seed router or one with a mismatching configuration (eg.
an overlapping netrange of 1-200) atalkd will fail. Otherwise it will fetch the configuration from this machine
and will route between eth0 and eth1, on the latter acting as a seed router itself.

By the way: It is perfectly legal to have more than one seed router connected to a network segment. But in this
case, you should take care that the configuration of all connected routers is exactly the same regarding netranges,
published zone names and also the "standard zone" per segment

3.2 File Services

Netatalk supplies two different transport protocols for AFP services and both can run at the same time. Classic
AFP over AppleTalk requires the afpd and atalkd daemons. AFP over IP only requires afpd.

3.2.1 Setting up the AFP file server

AFP (the Apple Filing Protocol) is the protocol Apple Macintoshes use for file services. The protocol has evolved
over the years, at the time of this writing 7 different "versions" exist. The latest changes to the protocol, called
"AFP 3.1", were added with the release of Panther (Mac OS X 10.3).

3.2. File Services 14

AFP3 brought some big changes. For the first time, AppleShare Clients can use filenames up to 255 characters
(actually 255 bytes leading to 85-255 chars depending on the glyphs used), UTF-8 is used on the wire and large
files (>4GB) are supported.

The afpd daemon offers the fileservices to Apple Clients. It’s configured using the afpd.conf and the AppleVolumes.
* files.

3.2.1.1 afpd.conf

afpd.conf is the configuration file used by afpd to determine the behaviour and configuration of the different
virtual file servers that it provides. Any line not prefixed with ’#’ is interpreted.

If afpd switches set on the command line are in conflict with afpd.conf settings, the latter will have higher priority.

Format: - [options] to specify options for the default server and/or "Server name" [options] to specify an addi-
tional server.

Leaving the afpd.conf file empty equals to the following configuration:

- -transall -uamlist uams_guest.so,uams_clrtxt.so,uams_dhx.so -nosavepassword

For a more detailed explanation of the available options, please refer to the afpd.conf(5) man page.

3.2.1.2 AppleVolumes.default

The AppleVolumes.default file is used to define volumes that will by default be shown to all users, including
users logged in as guest. A volume will not be presented in the chooser, if the user has no read access to the
specified volume path.

You can limit access to a specific volume by using the allow and deny options.

For a more detailed explanation of the available options, please refer to the AppleVolumes.default(5) man page.

3.2.2 CNID backends

Unlike other protocols like smb or nfs, the AFP protocol mostly refers to files and directories by ID and not by a
path (the IDs are also called CNID, that means Catalog Node ID). A typical AFP request uses a directory ID and
a filename, something like "server, please open the file named ’Test’ in the directory with id 167". For example
"Aliases" on the Mac basically work by ID (with a fallback to the absolute path in more recent AFP clients. But
this applies only to Finder, not to applications).

Every file in an AFP volume has to have a unique file ID, IDs must, according to the specs, never be reused, and
IDs are 32 bit numbers (Directory IDs use the same ID pool). So, after ~4 billion files/folders have been written
to an AFP volume, the ID pool is depleted and no new file can be written to the volume. No whining please :-)

Netatalk needs to map IDs to files and folders in the host filesystem. To achieve this, several different CNID back-
ends are available and can be choosed by the cnidscheme option in the AppleVolumes.default(5) configuration
file. A CNID backend is basically a database storing ID <-> name mappings.

In the past, many users used the so called "last" CNID scheme. However, this scheme has some serious draw-
backs, as it is based on the device and inode of a file. Therefore, IDs will be eventually be reused and you can get
duplicate IDs as well.

The CNID Databases are by default located in the .AppleDB folder in every afpd volume root. With the new
ADv2 format, afpd stores the files/directories ID in the corresponding .AppleDouble file as well.

15 Chapter 3. Setting up Netatalk

NOTE

There are some CNID related things you should keep in mind when working with netatalk:

• Don’t use unix symlinks. Just don’t. With a symlink a file/directory "exists" twice, something
AFP doesn’t allow. There’s currently no way this can be resolved, as we either end up with
two file/dirs having the same id, or a file having two parents. If you still insist on using them,
be aware you’re heavily violating the specs. You have been warned...

• Don’t nest volumes.

• CNID backends are databases, so they turn afpd into a file server/database mix. Keep this in
mind, killing an afpd process with kill -9 will likely leave the database unusable.

• If there’s no more space on the filesystem left, the database will get corrupted. You can work
around this by either using the -dbpath option and put the database files into another location
or, if you use quotas, make sure the .AppleDB folder is owned by a user/group without a
quota.

• Be careful with CNID databases for volumes that are mounted via NFS. That is a pretty auda-
cious decision to make anyway, but putting a database there as well is really asking for trouble,
i.e. database corruption. Use the dbpath: directive in the AppleVolumes.* configuration files
to put the databases onto a local disk if you must use NFS mounted volumes.

3.2.2.1 cdb

The "concurrent database" backend is based on sleepycat’s Berkeley DB. With this backend, several afpd daemons
access the CNID database directly. Berkeley DB locking is used to synchronize access, if more than one afpd
process is active for a volume. The drawback is, that the crash of a single afpd process might corrupt the database.

3.2.2.2 dbd

Access to the CNID database is restricted to the cnid_dbd daemon process. afpd processes communicate with
the daemon for database reads and updates. If built with Berkeley DB transactions, the probability for database
corruption is practically zero, but performance can be slower than with cdb. As a database process gets spawned
for each volume, you’re probably better off using cdb for sharing home directories for a larger number of users.

3.2.2.3 last

The last backend is a semi-persistent backend. IDs will be reused and, what is much worse, you can get duplicate
IDs. You should use it for sharing cdroms only, don’t use it for sharing normal volumes.

3.2. File Services 16

3.2.3 Charsets/Unicode

3.2.3.1 Why Unicode?

Internally, computers don’t know anything about characters and texts, they only know numbers. Therefore, each
letter is assigned a number. A character set, often referred to as charset or codepage, defines the mappings between
numbers and letters.

If two or more computer systems need to communicate with each other, the have to use the same character set.
In the 1960s the ASCII (American Standard Code for Information Interchange) character set was defined by the
American Standards Association. The original form of ASCII represented 128 characters, more than enough to
cover the English alphabet and numerals. Up to date, ASCII has been the normative character scheme used by
computers.

Later versions defined 256 characters to produce a more international fluency and to include some slightly es-
oteric graphical characters. Using this mode of encoding each character takes exactly one byte. Obviously, 256
characters still wasn’t enough to map all the characters used in the various languages into one character set.

As a result localized character sets were defined later, e.g the ISO-8859 character sets. Most operating system ven-
dors introduced their own characters sets to satisfy their needs, e.g. IBM defined the codepage 437 (DOSLatinUS),
Apple introduced the MacRoman codepage and so on. The characters that were assigned number larger than 127
were referred to as extended characters. These character sets conflict with another, as they use the same number
for different characters, or vice versa.

Almost all of those characters sets defined 256 characters, where the first 128 (0-127) character mappings are
identical to ASCII. As a result, communication between systems using different codepages was effectively limited
to the ASCII charset.

To solve this problem new, larger character sets were defined. To make room for more character mappings, these
character sets use at least 2 bytes to store a character. They are therefore referred to as multibyte character sets.

One standardized multibyte charset encoding scheme is known as unicode <http://www.unicode.org/>. A big
advantage of using a multibyte charset is that you only need one. There is no need to make sure two computers
use the same charset when they are communicating.

3.2.3.2 character sets used by Apple

In the past, Apple clients used single-byte charsets to communicate over the network. Over the years Apple
defined a number of codepages, western users will most likely be using the MacRoman codepage.

Codepages defined by Apple include:

• MacArabic, MacFarsi

• MacCentralEurope

• MacChineseSimple

• MacChineseTraditional

• MacCroation

• MacCyrillic

• MacDevanagari

• MacGreek

• MacHebrew

http://www.unicode.org/

17 Chapter 3. Setting up Netatalk

• MacIcelandic

• MacKorean

• MacJapanese

• MacRoman

• MacRomanian

• MacThai

• MacTurkish

Starting with Mac OS X and AFP3, UTF-8 <http://www.utf-8.com/> is used. UTF-8 encodes Unicode characters
in an ASCII compatible way, each Unicode character is encoded into 1-6 ASCII characters. UTF-8 is therefore not
really a charset itself, it’s an encoding of the Unicode charset.

To complicate things, Unicode defines several normalization <http://www.unicode.org/reports/tr15/index.html> forms.
While samba <http://www.samba.org> uses precomposed Unicode, which most Unix tools prefer as well, Apple
decided to use the decomposed normalization.

For example lets take the German character ’ä’. Using the precomposed normalization, Unicode maps this char-
acter to 0xE4. In decomposed normalization, ’ä’ is actually mapped to two characters, 0x61 and 0x308. 0x61 is
the mapping for an ’a’, 0x308 is the mapping for a COMBINING DIAERESIS.

Netatalk refers to precomposed UTF-8 as UTF8 and to decomposed UTF-8 as UTF8-MAC.

3.2.3.3 afpd and character sets

To support new AFP 3.x and older AFP 2.x clients at the same time, afpd needs to be able to convert between the
various charsets used. AFP 3.x clients always use UTF-8, AFP 2.2 clients use one of the Apple codepages.

At the time of this writing, netatalk supports the following Apple codepages:

• MAC_CENTRALEUROPE

• MAC_CYRILLIC

• MAC_HEBREW

• MAC_ROMAN

• MAC_TURKISH

afpd handles three different character set options:

unixcodepage This is the codepage used internally by your operating system. If not specified and your system
support Unix locales, afpd tries to detect the codepage, otherwise it defaults to ASCII. afpd uses this code-
page to read its configuration files, so you can use extended characters for volume names, login messages,
etc. see afpd.conf(5).

maccodepage As already mentioned, older MacOS clients (up to AFP 2.2) use codepages to communicate with
afpd. However, there is no support for negotiating the codepage used by the client in the AFP protocol. If
not specified otherwise, afpd assumes the MacRoman codepage is used. In case you’re clients use another
codepage, e.g. MacCyrillic, you’ll have to explicitly configure this. see afpd.conf(5).

http://www.utf-8.com/
http://www.unicode.org/reports/tr15/index.html
http://www.samba.org

3.2. File Services 18

volcharset This defines the charset afpd should use for filenames on disk. The default is UTF8. If you have iconv
<http://www.gnu.org/software/libiconv/> installed, you can use any iconv provided charset as well.

afpd needs a way to preserve extended macintosh characters, or characters illegal in unix filenames, when
saving files on a unix filesystem. Earlier versions used the the so called CAP encoding. An extended
character (>0x7F) would be converted to a :xx hex sequence, e.g. the Apple Logo (MacRoman: 0XF0) was
saved as :f0. Some special characters will be converted as to :xx notation as well. ’/’ will be encoded to
:2f, if -usedots is not specified, a leading dot ’.’ will be encoded as :2e. Even though this version now uses
UTF-8 as the default encoding for filenames, special characters, like ’/’ and a leading ’.’ will still be CAP
style encoded. For western users another useful setting could be -volcharset ISO-8859-15.

If a character cannot be converted from the mac codepage to the selected volcharset, afpd will save it as a
CAP encoded character. For AFP3 clients, afpd will convert the UTF-8 character to maccodepage first. If this
conversion fails, you’ll receive a -50 error on the mac. Note: Whenever you can, please stick with the default
UTF-8 volume format. see AppleVolumes.default(5).

3.2.4 Authentication

3.2.4.1 AFP authentication basics

Apple chose a flexible model called "User Authentication Modules" (UAMs) for authentication purposes between
AFP client and server. An AFP client initially connecting to an AFP server will ask for the list of UAMs which the
server provides, and will choose the one with strongest encryption that the client supports.

Several UAMs have been developed by Apple over the time, some by 3rd-party developers.

3.2.4.2 UAMs supported by Netatalk

Netatalk supports the following ones by default:

• "No User Authent" UAM (guest access without authentication)

• "Cleartxt Passwrd" UAM (no password encryption)

• "Randnum exchange"/"2-Way Randnum exchange" UAMs (weak password encryption, separate password
storage)

• "DHCAST128" UAM (stronger password encryption, should be used these days)

There exist other optional UAMs as well:

• "PGPuam 1.0" UAM (PGP-based authentication for pre-Mac OS X clients. You’ll also need the PGPuam
client <http://www.vmeng.com/vinnie/papers/pgpuam.html> to let this work)

You’ll have to add "--enable-pgp-uam" to your configure switches to have this UAM available.

• "Kerberos IV"/"AFS Kerberos" UAMs (suitable to use Kerberos v4 based authentication <http://web.mit.edu/
macdev/KfM/Common/Documentation/faq.html> and AFS file servers)

Use "--enable-krb4-uam" at compile time to activate the build of this UAM.

• "Client Krb v2" UAM (Kerberos V, suitable for "Single Sign On" Scenarios with Mac OS X clients – see below)

"--enable-krbV-uam" will provide you with the ability to use this UAM.

http://www.gnu.org/software/libiconv/
http://www.vmeng.com/vinnie/papers/pgpuam.html
http://web.mit.edu/macdev/KfM/Common/Documentation/faq.html
http://web.mit.edu/macdev/KfM/Common/Documentation/faq.html

19 Chapter 3. Setting up Netatalk

You can configure which UAMs should be activated by defining $AFPD_UAM_LIST in netatalk.conf(5). afpd will log
which UAMs it’s using and if problems occur while activating them in either netatalk.log or syslog at startup
time. asip-status.pl(1) can be used to query the available UAMs of AFP servers as well.

Having a specific UAM available at the server does not automatically mean that a client can use it. Client-side
support is also necessary. Fortunately this isn’t such a problem these days since Mac OS X’ AFP-client supports
DHCAST128 from the beginning on. For older Macintoshes running Mac OS < X DHCAST128 support exists
since AppleShare client 3.8.x.

On Mac OS X, there exist some client-side techniques to make the AFP-client more verbose, so one can have a
look what’s happening while negotiating the UAMs to use. Compare with this hint <http://article.gmane.org/
gmane.network.netatalk.devel/7383/>.

3.2.4.3 Which UAMs to activate?

It depends primarily on your needs and on the kind of Mac OS versions you have to support. Basically one
should try to use DHCAST128 where possible because of its strength of password encryption.

• Unless you really have to supply guest access to your server’s volumes ensure that you disable "No User
Authent" since it might lead accidentally to unauthorized access. In case you must enable guest access take
care that you enforce this on a per volume base using the access controls the AppleVolumes.default(5) config
file supplies or think about setting up an own server definition serving these public shares in afpd.conf(5).

• The "ClearTxt Passwrd" UAM is as bad as it sounds since passwords go unencrypted over the wire. Try
to avoid it at both the server’s side as well as on the client’s. Note: If you want to provide Mac OS 8/9
clients with NetBoot-services then you need uams_cleartext.so since the AFP-client integrated into the
Mac’s firmware can only deal with this basic form of authentication.

• Since "Randnum exchange"/"2-Way Randnum exchange" uses only 56 bit DES for encryption it should
be avoided as well. Another disadvantage is the fact that the passwords have to be stored in cleartext
on the server and that it doesn’t integrate into both PAM scenarios or classic /etc/shadow (you have to
administrate passwords separately by using the afppasswd(1) utility, if clients should use these UAMs)

• "DHCAST128" should be a good compromise for most people since it combines stronger encryption with
PAM integration. Hopefully Netatalk will support its successor "DHX2" (Diffie Hellman Exchange 2) in the
future, which provides even stronger encryption.

• Using the Kerberos V ("Client Krb v2") UAM, it’s possible to implement real single sign on scenarios using
Kerberos tickets. The password is not sent over the network. Instead, the user password is used to decrypt a
service ticket for the appleshare server. The service ticket contains an encryption key for the client and some
encrypted data (which only the appleshare server can decrypt). The encrypted portion of the service ticket
is sent to the server and used to authenticate the user. Because of the way that the afpd service principal
detection is implemented, this authentication method is vulnerable to man-in-the-middle attacks.

For a more detailed overview over the technical implications of the different UAMs, please have a look at Apple’s
File Server Security <http://developer.apple.com/documentation/Networking/Conceptual/AFP/Chapter_1/
chapter_2_section_6.html> pages.

3.2.4.4 Using different authentication sources with specific UAMs

Some UAMs provide the ability to use different authentication "backends", namely uams_cleartext.so and uams_
dhx.so. They can both use either classic Unix passwords from /etc/passwd (/etc/shadow) or PAM if the system
supports that. uams_cleartext.so can be symlinked to either uams_passwd.so or uams_pam.so, uams_dhx.so to
uams_dhx_passwd.so or uams_dhx_pam.so. So, if it looks like this in Netatalk’s UAMs folder (per default /etc/
netatalk/uams/):

http://article.gmane.org/gmane.network.netatalk.devel/7383/
http://article.gmane.org/gmane.network.netatalk.devel/7383/
http://developer.apple.com/documentation/Networking/Conceptual/AFP/Chapter_1/chapter_2_section_6.html
http://developer.apple.com/documentation/Networking/Conceptual/AFP/Chapter_1/chapter_2_section_6.html

3.2. File Services 20

uams_clrtxt.so -> uams_pam.so
uams_dhx.so -> uams_dhx_pam.so

then you’re using PAM, otherwise classic Unix passwords. The main advantage of using PAM is that one can
integrate Netatalk in centralized authentication scenarios, eg. via LDAP, NIS and the like. Please always keep
in mind that the protection of your user’s login credentials in such scenarios also depends on the strength of
encryption that the UAM in question supplies. So think about eliminating weak UAMs like "ClearTxt Passwrd"
and "Randnum exchange" completely from your network.

3.2.4.5 Netatalk UAM overview table

A small overview of the most common used UAMs.

Table 3.1: Netatalk UAM overview

UAM No User Authent Cleartxt Passwrd (2-Way) Rand-
num exchange

DHCAST128 Client Krb v2

pssword
length

guest access max.8 characters max.8 characters max.64
characters

Kerberos tickets

Client
support

built-in into all
Mac OS versions

built-in in all
Mac OS versions
except 10.0.Has
to be activated

explicitly in
recent Mac

OS X versions

built-in into
almost all Mac

OS versions

built-in since
AppleShare
client 3.8.4,
available as
a plug-in for

3.8.3, integrated
in Mac OS X’

AFP client

built-in since
MacOS X 10.2

Encryption Enables guest
access without
authentication
between client

and server.

Password will be
sent in cleartext
over the wire.

Just as bad
as it sounds,

therefore avoid
at all if possible
(note:providing
NetBoot services

requires the
ClearTxt UAM)

8-byte random
numbers are sent

over the wire,
comparable with

DES, 56 bits.
Vulnerable to

offline dictionary
attack.Requires

passwords
in clear on
the server.

Password will
be encrypted
with 128 bit

SSL, user will be
authenticated

against the
server but not

vice versa.
Therefor

weak against
man-in-the-

middle attacks.

Password is
not sent over
the network.
Due to the

service principal
detection

method, this
authentication

method is
vulnerable to
man-in-the-

middle attacks.
Server

support
uams_guest.so uams_cleartxt.so uams_randnum.so uams_dhx.so uams_gss.so

Password
storage
method

None Either
/etc/passwd

(/etc/shadow)
or PAM

Passwords
stored in clear

text in a separate
text file

Either
/etc/passwd

(/etc/shadow)
or PAM

At the Kerberos
Key Distribution

Center*

* Have a look at this Kerberos overview <http://cryptnet.net/fdp/admin/kerby-infra/en/kerby-infra.html>

http://cryptnet.net/fdp/admin/kerby-infra/en/kerby-infra.html

21 Chapter 3. Setting up Netatalk

3.2.4.6 SSH tunneling

Tunneling and all sort of VPN stuff has nothing to do with AFP authentication and UAMs in general. But since
Apple introduced an option called "Allow Secure Connections Using SSH" and many people tend to confuse both
things, we’ll speak about that here too.

Manually tunneling an AFP session

This works since the first AFP servers that spoke "AFP over TCP" appeared in networks. One simply tunnels
the remote server’s AFP port to a local port different than 548 and connects locally to this port afterwards. On
MacOS X this can be done by

ssh -l $USER $SERVER -L 10548:127.0.0.1:548 sleep 3000

After establishing the tunnel one will use "afp://127.0.0.1:10548" in the "Connect to server" dialog. All AFP
traffic including the initial connection attempts will be sent encrypted over the wire since the local AFP client
will connect to the Mac’s local port 10548 which will be forwarded to the remote server’s AFP port (we used the
default 548) over SSH.

These sorts of tunnels are an ideal solution if you’ve to access an AFP server providing weak authentications
mechanisms through the Internet without having the ability to use a "real" VPN. Note that you can let ssh com-
press the data by using its "-C" switch and that the tunnel endpoints can be different from both AFP client and
server (compare with the SSH documentation for details).

Automatically establishing a tunneled AFP connection

Starting with Mac OS X 10.2 Apple added an "Allow Secure Connections Using SSH" checkbox to the "Connect
to Server" dialog. The idea behind: When the server signals that it can be contacted by SSH then Mac OS X’ AFP
client tries to establish the tunnel and automagically sends all AFP traffic through it.

But it took until the release of Mac OS X 10.3 that this feature worked the first time... partly. In case, the SSH
tunnel can’t be established the AFP client silently fell back to an unencrypted AFP connection attempt.

Netatalk’s afpd will report that it is capable of handling SSH tunneled AFP requests, when both -advertise_ssh
and -fqdn options are set in afpd.conf(5) (double check with asip-status.pl(1) after you restarted afpd when you
made changes to the settings). But there are a couple of reasons why you don’t want to use this option at all:

• Tunneling TCP over TCP (as SSH does) is not the best idea. There exist better solutions like VPNs based on
the IP layer.

• Since this SSH kludge isn’t a normal UAM that integrates directly into the AFP authentication mechanisms
but instead uses a single flag signalling clients whether they can try to establish a tunnel or not, it makes
life harder to see what’s happening when things go wrong.

• You cannot control which machines are logged on by Netatalk tools like nu or macusers since all connection
attempts seem to be made from localhost.

• On the other side you’ve to limit access to afpd to localhost only (TCP wrappers) and disable AFP over
DDP when you want to ensure that all AFP sessions are SSH encrypted or...

• ...when you’re using 10.2 - 10.3.3 then you get the opposite of what you’d expect: potentially unencrypted
AFP communication (including logon credentials) on the network without a single notification that estab-
lishing the tunnel failed. Apple fixed that not until Mac OS X 10.3.4.

• Encrypting all AFP sessions via SSH can lead to a significantly higher load on the Netatalk server

3.3. Printing 22

3.3 Printing

Netatalk can act as both a PAP client to access AppleTalk-capable printers and a PAP server. The former by using
the pap(1) utility and the latter by starting the papd(8) service.

The "Printer Access Protocol" as part of the AppleTalk protocol suite is a fully 8 bit aware and bidirectional print-
ing protocol, developed by Apple in 1985. 8 bit aware means that the whole set of bytes can be used for printing (bi-
nary encoding). This has been a great advantage compared with other protocols like Adobe’s Standard Protocol to
drive serial and parallel PostScript printers (compare with Adobe TechNote 5009 <http://partners.adobe.com/
asn/tech/ps/specifications.jsp>) or LPR which made only use of the lower 128 bytes for printing because the 8th
bit has been reserved for control codes.

Bidirectional means that printing source (usually a Macintosh computer) and destination (a printer or spooler
implementation) communicate about both destination’s capabilities via feature queries (compare with Adobe
TechNote 5133 <http://partners.adobe.com/asn/tech/ps/archive.jsp>) and device status. This allows the Laser-
Writer driver on the Macintosh to generate appropriate device specific PostScript code (color or b/w, only embed-
ding needed fonts, and so on) on the one hand and notifications about the printing process or problems (paper
jam for example) on the other.

3.3.1 Setting up the PAP print server

Netatalk’s papd is able to provide AppleTalk printing services for Macintoshes or, to be more precise, PAP clients
in general. Netatalk does not contain a full-blown spooler implementation itself, papd only handles the bidirec-
tional communication and submittance of printjobs from PAP clients. So normally one needs to integrate papd
with a Unix printing system like eg. classic SysV lpd, BSD lpr, LPRng, CUPS or the like.

Since it is so important to answer the client’s feature queries correctly, how does papd achieve this? By parsing
the relevant keywords of the assigned PPD file. That said, it’s always necessary to carefully choose the right PPD
at the server’s side.

Netatalk formerly had built-in support for System V lpd printing in a way that papd saved the printed job directly
into the spooldir and calls lpd afterwards, to pick up the file and do the rest. Due to incompatibilities with many
lpd implementations the normal behaviour was to print directly into a pipe instead of specifying a printer by
name and using lpd interaction. With Netatalk 2.0 another alternative has been implemented: direct interaction
with CUPS (Note: when CUPS support is compiled in, then the SysV lpd support doesn’t work at all). Detailed
examples can be found in the papd.conf(5) manual page.

3.3.1.1 Integrating papd with SysV lpd

Unless CUPS support has been compiled in (which is default from Netatalk 2.0 on) one simply defines the lpd
queue in question by setting the pr parameter to the queue name. If no pr parameter is set, the default printer
will be used.

3.3.1.2 Using pipes with papd

An alternative to the technique outlined above is to direct papd’s output via a pipe into another program. Using
this mechanism almost all printing systems can be driven. Netatalk supplies three "wildcards" that get substi-
tuted with values of the already printed job:

%F will be substituted with the contents of the %%For: comment in the PostScript stream.

http://partners.adobe.com/asn/tech/ps/specifications.jsp
http://partners.adobe.com/asn/tech/ps/specifications.jsp
http://partners.adobe.com/asn/tech/ps/archive.jsp

23 Chapter 3. Setting up Netatalk

%U If authenticated printing has been enabled then this will be substituted with the user name of the printjob’s
originator.

%J will be substituted with the contents of the %%Title: comment of the PostScript stream.

Using these wildcards, one can pass those parameters directly to programs or implement small wrapper scripts
to call the printing system in question.

3.3.1.3 Using direct CUPS support

Starting with Netatalk 2.0, direct CUPS integration is available. In this case, defining only a queue name as pr
parameter won’t invoke the SysV lpd daemon but uses CUPS instead. Unless a specific PPD has been assigned
using the pd switch, the PPD configured in CUPS will be used by papd, too.

There exists one special share named "cupsautoadd". If this is present in papd.conf, then all available CUPS
queues will be served automagically using the parameters assigned to this global share. But subsequent printer
definitions can be used to override these global settings for individual spoolers.

3.3.2 Using AppleTalk printers

Netatalk’s papstatus(8) can be used to query AppleTalk printers, pap(1) to print to them. With psf(8) there exists
a lpd filter program suitable for converting other formats (like text) to PostScript output, do page accounting and
eventually change the page order using psorder(1). But these days, modern printing systems like CUPS can do
the latter tasks for themselves in a more reliable way.

pap can be used stand-alone or as part of an output filter or a CUPS backend (which is the preferred method
since one does not have to deal with all the options).

Example 3.3.1: pap printing to a PostScript LaserWriter

pap -p"ColorLaserWriter 16/600@*" /usr/share/doc/gs/examples/tiger.ps

The file /usr/share/doc/gs/examples/tiger.ps is sent to a printer called "ColorLaserWriter 16/600" in the stan-
dard zone "*". The device type is "LaserWriter" (can be suppressed since it is the default).

Example 3.3.2: pap printing to a non-PostScript printer

gs -q -dNOPAUSE -sDEVICE=cdjcolor -sOutputFile=- test.ps | pap -E

GhostScript is used to convert a PostScript job to PCL3 output suitable for a Color DeskWriter. Since no
file has been supplied on the command line, pap reads the data from stdin. The printer’s address will be
read from the .paprc file in the same directory, pap will be called (in our example simply containing "Color
DeskWriter:DeskWriter@Printers"). The -E switch forces pap to not wait for an EOF from the printer.

3.4. Time Services 24

3.4 Time Services

3.4.1 Using Netatalk as a time server for Macintoshes

timelord, an AppleTalk based time server, is deprecated these days. Use NTP instead.

For further information please have a look at the timelord(8) manual page.

3.5 Starting and stopping Netatalk

The Netatalk distribution comes with several operating system specific startup script templates that are tailored
according to the options given to the "configure" script before compiling. Currently, templates are provided for
NetBSD, BSD, RedHat, SuSE and True64. You can select to install the generated startup script(s) by specifying a
system type to "configure". To automatically install startup scripts for e.g. the SuSE Linux distribution try to give
the -enable-suse option to "configure". Some of the scripts can be further parametrized by the configuration file
netatalk.conf (described in the netatalk.conf(5) manual page), some obtain that information in another, operating
system specific way (like Netbsd).

Since new releases of Linux distributions appear all the time and the startup procedure for the other systems
mentioned above might change as well, it is probably a good idea to not blindly install a startup script but to look
at it first to see if it will work on your system. If you use Netatalk as part of a fixed setup, like a Linux distribution,
an RPM or a BSD package, things will probably have been arranged properly for you. The following therefore
applies mostly for people who have compiled Netatalk themselves.

The following daemons need to be started by whatever startup script mechanism is used:

• atalkd (if you use the AppleTalk protocol)

• afpd

• cnid_metad (if the dbd CNID backend is used)

• papd (if you want to provide print services via AppleTalk)

• timelord (for old style time synchronisation via AppleTalk)

Additionally, make sure that the various configuration files (afpd.conf, AppleVolumes.default, papd.conf etc.)
are in the right place and that netatalk.conf (if used) contains the right entries. If you want e.g. papd to be
started using this mechanism, set the environment variable "PAPD_RUN" to "yes" in netatalk.conf. See the manual
pages for details.

Chapter 4

Upgrading from a previous version of
Netatalk

4.1 Overview

Version 2.0 of the Netatalk suite includes significant changes and enhancements in functionality compared to
previous versions. AFP 3.x is now supported which allows UTF-8 encoded filenames of up to 255 bytes (85-255
chars) in length amongst other things. The Catalogue Node ID (CNID) subsystem has been reworked as well and
should now be much more robust. For an overview of what CNIDs are and why you need them please see the
CNID section in the manual.

The downside of these enhancements is that upgrading to Netatalk 2.0 is not a process that can be easily auto-
mated. Too many factors depend on site specific configuration and administrators have to make choices that suit
their requirements. This document attempts to clarify the issues and outline the steps that need to be taken for
a successful upgrade. As usual, the first of these steps should be to make a complete backup of all volumes and
home directories that were in use with Netatalk before. Afterwards, you’ll have to decide

1. what encoding to use for filenames in the future and how to convert existing filenames

2. what storage scheme to use for CNIDs and maybe convert an existing database to that scheme

The following two sections deal with each of these areas in turn.

4.2 Volumes and filenames

Previous Netatalk versions saved filenames in the so called CAP encoding by default. Alternatively, there was
the NLS system, that allowed you to convert filenames to other codepages, like ISO-8859-1.

For Netatalk 2.0 the charset conversion routines had to be completely rewritten to support AFP 3.x. For more
indepth information on character sets please read the Unicode/charsets section in the manual.

As a consequence, Netatalk 2.0 now stores filenames in UTF-8 by default. Additionally you have to specify a
maccodepage in afpd.conf, if your Mac clients are not using MacRoman.

The format of the metadata files stored in the .AppleDouble folders has changed from AppleDouble v1 to Apple-
Double v2. Netatalk 2.0 is still able to use AD1 files, if configured. Otherwise ADv1 files will silently be updated
to the new ADv2 format, which will prevent you from using this volume with 1.x again.

25

4.2. Volumes and filenames 26

WARNING

Do not share a 1.x volume with Netatalk 2.0 without setting the proper options!

NOTE

You should consider ’upgrading’ your volumes using the new defaults UTF-8 and AppleDouble v2,
even if this is a time consuming process. AFP 3.x uses UTF-8 and it is impossible to fully map
UTF-8 to any of the old volume formats.

4.2.1 How to upgrade a volume to 2.0

To convert the 1.x CAP or NLS encoded volumes on the server, we provide the uniconv(1) utility. Please see the
man page for details.

Another option to perform an upgrade, is to copy all files using a Mac client. Either copy the volume to a Mac
while you are still running 1.6, then install 2.0 and copy the data back to a fresh share, or try to set up the volume
with the compatibility options described below and do a share to share copy.

4.2.2 How to use a 1.x CAP encoded volume with 2.0

Using a 1.x CAP encoded volume is still possible with Netatalk 2.0. To work properly, the following options need
to be set, matching your 1.x setup:

afpd.conf:

• maccodepage

AppleVolumes.default:

• volcharset

• adouble

You have to make sure maccodepagematches your Apple clients codepage. For western users the default Mac_Roman
should be fine.

Set volcharset to ASCII.

Set adouble:v1, this will make sure the metadata files will not be changed to AppleDouble v2. If you do not set
this option, it will not be possible to use the volume with Netatalk 1.x anymore.

Example:

afpd.conf:

- -transall -maccodepage:MAC_CENTRALEUROPE

27 Chapter 4. Upgrading from a previous version of Netatalk

AppleVolumes.default:

/path/to/share "1.x Volume" adouble:v1 volcharset:ASCII

4.2.3 How to use a 1.x NLS volume with 2.0

Whether you can still use an 1.x NLS encoded volume with Netatalk 2.0 mainly depends on which NLS setting
you used with 1.x.

Make sure you set the correct maccodepage in afpd.conf !

maccode.iso8859-1 Use the following settings in AppleVolumes.default:

/path/to/share "1.x Volume" adouble:v1 volcharset:ISO-8859-1

maccode.iso8859-1.adapted Sorry, you’re out of luck. This NLS contains a non standard mapping and is not
supported by afpd anymore. You’ll have to convert the volume to a supported encoding.

maccode.437 Using the following settings in AppleVolumes.default might work, but is untested:

/path/to/share "1.x Volume" adouble:v1 volcharset:CP437

maccode.850 Using the following settings in AppleVolumes.default might work, but is untested:

/path/to/share "1.x Volume" adouble:v1 volcharset:CP850

maccode.koi8-r Using the following settings in AppleVolumes.default might work, but is untested:

/path/to/share "1.x Volume" adouble:v1 volcharset:KOI8-R

NOTE

All of the above require iconv <http://www.gnu.org/software/libiconv/> to be installed and to supply
the volcharset codepage!

4.3 Choosing a CNID storage scheme

Previous versions of Netatalk allocated CNIDs either on the fly or CNIDs were recorded in a persistent database.
"On the fly methods" work by either generating a CNID from the device and inode number or simply by using

http://www.gnu.org/software/libiconv/

4.3. Choosing a CNID storage scheme 28

a counter that is increased by one on each access to a file or directory from the client. The counter only lasts for
the lifetime of an afpd daemon process and inode numbers are reused for a different file once the original file has
been deleted. These methods therefore violate a fundamental assumption: A CNID once assigned must never be
reused for the lifetime of a volume. Netatalk 2.0 supports one "On the fly scheme" called last. It computes CNIDs
for files from device and inode of the file and uses a counter for directories. You should think twice about using
it in production. Depending on your needs and the semantics of the underlying file system it might be OK on
read only volumes, but even there we are not certain if OS X clients will work properly.

That leaves the CNID schemes that use persistent storage for CNIDs. Netatalk 2.0 supports two: cdb and dbd. Both
are based on the Berkeley DB database library as before. One difference is, though, that you are not restricted to
using a single scheme for all of your volumes that has to be determined at compile time. The CNID scheme (also
called a "CNID backend") is now a runtime option for a volume. That means that you can make the choice per
volume based on your requirements. Here are the properties as well as the advantages and disadvantages of the
three supported schemes:

1. last: See above. Avoid, if at all possible.

2. cdb:Roughly analogous to the Netatalk 1.6.x versions with what was called then the "DID scheme" option
set to "cnid" and the "CNID with Concurrent Data Store" option set to "yes". Access to the CNID database for
a volume happens directly from the Netatalk afpd daemons. A Berkeley DB locking scheme (the "Concur-
rent Data Store" bit) is used to avoid database inconsistencies. Robustness is much improved compared to
previous releases. The CNID database can only become corrupted if an afpd daemon crashes unexpectedly,
is killed by the administrator or the whole machine crashes.

3. dbd: There is only a single daemon that accesses the CNID database for a given volume. Any afpd process
that wishes to retrieve or update CNIDs for that volume needs to do it via the daemon. The CNID can
database be (this is a compile time option) updated under Berkeley DB transactional protection. This design
combined with the transactional updates makes the CNID database crashproof: Any of the participating
afpd daemons, the database daemon itself or the whole machine can crash and the CNID database should
still be in a consistent state. The downside to this is that the speed of updates and retrieval is slower
than with the cdb scheme. If this is a problem, you might want to disable transactions at Netatalk compile
time (currently, the default is to compile without transactions anyway). That will give you safety against
afpd crashing, but not if the machine goes down unexpectedly. Also, have a look at the nosync option
documented in the cnid_dbd manual page.

It is also possible to switch between cdb and dbd for a given volume, since they use the same database format. You
just have to shut down all processes accessing the database cleanly, make the necessary configuration changes and
restart. Please note, that you can easily specify a default CNID backend for all shares by applying the cnidscheme
option to the ":DEFAULT:" share (compare with the AppleVolumes.default(5) manual page for details).

Note that the dbd backend needs an auxiliary daemon, called cnid_metad, to work. It should be started together
with afpd. If the dbd backend is compiled into afpd (the default), this should happen automatically. If you cannot
find it in the process list even though the dbd backend is used please check for errors in the startup scripts.

If you compile Netatalk 2.0 yourself and invoke configure –help, you’ll notice that there are in fact more CNID
backends to chose from. Don’t use any of them. They are either broken or incomplete. Some of them might turn
into something useful in the future.

4.3.1 How to upgrade if no persistent CNID storage was used

That is easy. Just pick a CNID backend from above, configure it properly in afpd.conf and the AppleVolumes file
and start up the necessary Netatalk processes. The databases will be automatically created in a subdirectory .
AppleDB of the volume in question.

29 Chapter 4. Upgrading from a previous version of Netatalk

4.3.2 How to upgrade if a persistent CNID storage scheme was used

In that case the CNID databases need to be upgraded. A script called cnid2_create that comes with Netatalk 2.0
does most of the work. The steps you have to take depend on what version of Berkeley DB is installed on your
system. If you already use one of the supported versions of Berkeley DB (4.1.25 or 4.2.52) for your old Netatalk
installation and plan to use it for Netatalk 2.0 as well just use the db_dump and db_load utilities that came with
it as indicated below. Otherwise it is probably best to have the old and the new (to be used with Netatalk 2.0)
version of Berkeley DB installed side by side until you have finished the upgrade. The reason for this is that we
will dump out the old databases with the currently installed version of Berkeley DB in ASCII format and reload
them with the new version. This avoids any incompatibility problems between Berkeley DB releases with respect
to the on-disk format.

For each volume to be upgraded, follow these steps

• Stop all afpd daemons accessing the volume.

• Change to the database directory for that volume, most likely the .AppleDB subdirectory of the volume
toplevel directory in question.

• Dump the contents of cnid.db and didname.db using the old (installed) version of Berkeley DB like this:

db_dump -f cnid.dump cnid.db
db_dump -f didname.dump didname.db

Make sure the db_dump utility you are using is the correct (currently used) one. Use the full path to the
db_dump executable if in doubt. So if this database was created with Berkeley DB 3.xx installed in /usr/
local/db3 use /usr/local/db3/bin/db_dump instead. This will create two files, cnid.dump and didname.
dump in the current directory.

• Run the cnid2_create script:

/path/to/netatalk/bin/cnid2_create

The script assumes that .AppleDB is a subdirectory of the volume directory to be upgraded. If that is not
the case give the full path name of the volume as the first argument to cnid2_create. The script will create
a file cnid2.dump in ASCII format.

• Remove the old Berkeley DB environment and logfiles (if present):

rm __db.* log.*

• Load cnid2.dump into the new database. You should use the db_load utility of Berkeley DB that will be
used with version 2.0 of Netatalk. So if Berkeley DB 4.xx lives in /usr/local/db4 use

/usr/local/db4/bin/db_load -f cnid2.dump cnid2.db

This will create the new database file, cnid2.db. Remove the old database files cnid.db, didname.db and
devino.db. The intermediate files cnid.dump, didname.dump and cnid2.dump can be removed now or at
some later time.

If you do not want to have two versions of Berkeley DB installed side by side during the upgrade, you should
first dump out the old databases as indicated above for all volumes, upgrade Berkeley DB and then load them
with db_load. The cnid2_create script can be run before or after the upgrade. Berkeley DB environment and
logfiles should still be removed before running db_load.

4.4. Setting up a test server on the same machine 30

4.3.3 How to upgrade if a persistent CNID storage scheme was used, the brute force ap-
proach

If you are absolutely sure what you are doing, you can also just clear out all database files from the .AppleDB
directories. They will be recreated, but will not contain the same CNIDs as before!! That might lead to all sorts
of problems, like aliases not working any more on clients. As I said, make sure you know the consequences and
don’t mind them.

4.4 Setting up a test server on the same machine

Providing a test environment in parallel with the existing production installation is not difficult and, if done
properly, it should not in any way disrupt the normal operation. However, as always, it is recommended to make
a backup of the existing installation before proceeding. When compiling a newer netatalk version you should
also take care that you do not overwrite the binaries of an older version (make use of the -prefix= configure
option).

There could be more than two afpd servers running on one UNIX box. You just have to be careful to keep them
from running into each other:

• the shares/volumes (AppleVolumes.default)

• the PID file (afpd -P command line option)

• the port number (-port option in afpd.conf)

• no use of AppleTalk (-noddp option in afpd.conf)

You should test the new Netatalk version with both a freshly created new share and another one that has been
duplicated/converted from an already existing volume. This helps finding mistakes you probably made in the
upgrade process when the first share behaves well and the latter not.

4.4.1 Setting up an empty test share

First, you have to provide some space for the test share. Just create a directory on one of your data filesystems.
However, this directory must not be accessible from the production afpd server. Don’t forget to set appropriate
permissions for the share. For example:

mkdir /macdata/testshare
chown root.macusers /macdata/testshare
chmod g+wrx,g+s /macdata/testshare

4.4.2 Duplicating an already existing share

Ensure that users cannot access the share in question and copy the whole contents (including all the metadata
directories like .AppleDB) to another location.

cp -pr /production/testshare /macdata/

Then do the somewhat extensive upgrade of CNID databases and filename encodings outlined earlier in this
chapter.

31 Chapter 4. Upgrading from a previous version of Netatalk

4.4.3 Configuring and running the test afpd

Normally the test afpd cannot listen on the standard afpovertcp port, because that one is already bound by the
production afpd. So the afpd.conf should look like

- -noddp -nouservol -port 5480 -loginmsg "WARNING: test server"

You also have to present the share to the Mac users by editing the AppleVolumes.default file. Remove the line
containing a single "~" at the end of the file and append something like:

/macdata/testshare "Test Volume (not production)"

That should be the only uncommented line in the file. Do not forget to adjust encoding and AppleDouble setting
when you’re not using the recommended defaults UTF8 and ADv2.

In case you have many users and want to restrict access to the test server, there is a provision for that in the
AppleVolumes.default file. First, create a group named, say, afpdtest, and put in it all users you would want to
enable access to the test volumes. Then, instead of the line above, append a line like this one:

/macdata/testshare "Test Volume (not production)" allow:@afpdtest

The test afpd server can be started now:

$TESTDIR/sbin/afpd -P /var/run/afpd-test.pid

You can also put this line in the production netatalk start script, in the "start" case. In the "stop" case, you should
insert

[-f /var/run/afpd-test.pid] && kill ‘cat /var/run/afpd-test.pid‘

The production server has to know about the test server. Otherwise the Mac users would not be able to see the
test server in their choosers. Append the following line to the production afpd.conf (usually in /etc/netatalk/
afpd.conf):

"Test server (not production)" -proxy -uamlist "" -port 5480

and restart the production netatalk. Note that the port directive here should match the one which appears above
in the test afpd.conf.

IMPORTANT

Note that there is a limit of 31 characters for the server’s name. Should the name be longer, then
afpd will just refuse to register the server.

The test server should appear in the chooser on Macs. You can also test that from the UNIX command line:

nbplkup =:AFPServer

or

4.4. Setting up a test server on the same machine 32

netstat -an | grep 5480

If everything went fine spread the word about the test server among your more experienced Mac users and see
whether things work as expected.

Chapter 5

Manual Pages

This is a collection of the man pages delivered with Netatalk.

5.1 achfile

Name

achfile — change type and/or creator of Apple Macintosh files (netatalk format)

Synopsis

achfile [-t type] [-c creator] file ...

DESCRIPTION

achfile changes the Macintosh type and/or creator of the file arguments which have a corresponding .AppleDou-
ble file.

OPTIONS

-t type change the type.

-c creator change the creator.

DIAGNOSTICS

returns exit status 0 if all files changed successfully

33

5.2. acleandir 34

SEE ALSO

afile(1), afpd(8)

5.2 acleandir

Name

acleandir — clean up a directory containing netatalk Apple Macintosh files

Synopsis

acleandir [-rnvi] dirname

DESCRIPTION

acleandir cleans up the directory dirname. By default it simply removes "orphan" AppleDouble files, i.e. those
which do not have a corresponding data file.

OPTIONS

-d Also remove the .AppleDouble directory if it contains no AppleDouble files after "orphan" removal. This will
result in the finder location of dirname within its parent being lost.

-r , -R Recursive. Clean up directories recursively.

-n Display the filenames of "orphans" but don’t remove any. Display size if "orphan" appears to contain a
resource fork.

-i Interactive. Prompt for confirmation before a removal. A y in answer confirms that the removal should
proceed.

-v Verbose. Display the names of all "orphans" and .AppleDouble directories removed. Reports the size if the
"orphan" appears to contain a resource fork.

-a Aggressive. Remove all AppleDouble files, not just "orphans". Also remove the .AppleDesktop directory if
present. Impies -d option. Use with caution as the Macintosh type/creator and finder location of all files
will be lost and the content of some documents, such as Symantec Projects, will be destroyed.

DIAGNOSTICS

returns exit status 0 unless bad options are provided or a directory is not given on the command line.

35 Chapter 5. Manual Pages

SEE ALSO

afile(1), afpd(8)

5.3 aecho

Name

aecho — send AppleTalk Echo Protocol packets to network hosts

Synopsis

aecho [-ccount] (address | nbpname)

DESCRIPTION

aecho repeatedly sends an Apple Echo Protocol (AEP) packet to the host specified by the given AppleTalk address
or nbpname and reports whether a reply was received. Requests are sent at the rate of one per second.

address is parsed by atalk_aton(3). nbpname is parsed by nbp_name(3). The nbp type defaults to ‘Workstation’.

When aecho is terminated, it reports the number of packets sent, the number of responses received, and the
percentage of packets lost. If any responses were received, the minimum, average, and maximum round trip
times are reported.

EXAMPLE

Check to see if a particular host is up and responding to AEP packets:

example% aecho bloodsport
11 bytes from 8195.13: aep_seq=0. time=10. ms
11 bytes from 8195.13: aep_seq=1. time=10. ms
11 bytes from 8195.13: aep_seq=2. time=10. ms
11 bytes from 8195.13: aep_seq=3. time=10. ms
11 bytes from 8195.13: aep_seq=4. time=10. ms
11 bytes from 8195.13: aep_seq=5. time=9. ms
^C
----8195.13 AEP Statistics----
6 packets sent, 6 packets received, 0% packet loss
round-trip (ms) min/avg/max = 9/9/10

OPTIONS

-c count Stop after count packets.

5.4. afile 36

SEE ALSO

ping(1), atalk_aton(3), nbp_name(3), aep(4), atalkd(8).

5.4 afile

Name

afile — display type and creator of Apple Macintosh files (netatalk format)

Synopsis

afile [-a] file ...

DESCRIPTION

afile displays the name and Macintosh type and creator of the file arguments. Tests whether the file is an Apple-
Double header, in which case it checks the corresponding data fork exists, or assumes it is a data fork in which
case it looks for the corresponding AppleDouble to find the type/creator information.

afile does not look at any of the extension mapping files such as AppleVolumes.system.

OPTIONS

-a Include directories and data files of unknown type (i.e. without corresponding AppleDouble) in output.

DIAGNOSTICS

returns exit status 0 if all files have a corresponding valid .AppleDouble header or data fork, or 99 for bad com-
mand line options. Otherwise it returns the following error code relating to the last invalid file.

1 file doesn’t exist

2 file is unreadable

3 file is directory

4 file is AppleDouble without data fork

5 file is AppleDouble with unreadable data fork

6 file is data fork without AppleDouble

7 file is data fork with unreadable AppleDouble

8 file is data fork with short AppleDouble

9 bad magic in AppleDouble

37 Chapter 5. Manual Pages

SEE ALSO

achfile(1), afpd(8)

5.5 afpd

Name

afpd — AppleTalk Filing Protocol daemon

Synopsis

afpd [-duptDTvI] [-f defaultvolumes] [-s systemvolumes] [-n nbpname] [-c maxconnections]
[-g guest] [-P pidfile] [-S port] [-L message] [-F config] [-U uamsv] [-m umask]

Description

afpd provides an AppleTalk Filing Protocol (AFP) interface to the Unix file system. It is normally started at boot
time from /etc/rc.

The list of volumes offered to the user is generated from /etc/netatalk/AppleVolumes.system and one of /
etc/netatalk/AppleVolumes.default, ~/AppleVolumes, or ~/.AppleVolumes. The AppleVolumes files is used to
specify volumes to mount and file name extension mappings. It is formatted as follows, one specification per
line: pathname [volumename] .extension [type [creator]] If volumename is unspecified, the last component
of pathname is used. No two volumes may have the same name. If type is unspecified ’????’ is used. If creator is
unspecified ’UNIX’ is used. The extension ’.’ sets the default creator and type for otherwise untyped Unix files.
Blank lines and lines beginning with ‘#’ are ignored.

Options

-d Specifies that the daemon should not fork. If netatalk has been configured with –enable-debug1, a trace of all
AFP commands will be written to stdout.

-p Prevents clients from saving their passwords. (Equivalent to -nosavepasswd in afpd.conf.)

-t Allows clients to change their passwords. (Equivalent to -setpasswd in afpd.conf.)

-D Use DDP (AppleTalk) as transport protocol. (Equivalent to -ddp in afpd.cond.)

-T Use TCP/IP as transport protocol. (Equivalent to -tcp in afpd.conf.)

-v Print version information and exit.

5.5. afpd 38

-I Use a platform specific icon. (Equivalent to -icon in afpd.conf.)

-f defaultvolumes Specifies that defaultvolumes should be read for a list of default volumes to offer, in-
stead of /etc/netatalk/AppleVolumes.default.

-s systemvolumes Specifies that systemvolumes should be read for a list of volume that all users will be
offered, instead of /etc/netatalk/AppleVolumes.system.

-u Read the user’s AppleVolumes file first. This option causes volume names in the user’s AppleVolumes file to
override volume names in the system’s AppleVolumes file. The default is to read the system AppleVolumes
file first. Note that this option doesn’t effect the precendence of filename extension mappings: the user’s
AppleVolumes file always has precedence.

-n nbpname Specifies that nbpname should be used for NBP registration, instead of the first component of the
hostname in the local zone.

-c maxconnections Specifies the maximum number of connections to allow for this afpd. The default is 20.

-g guest Specifies the name of the guest account. The default is ’nobody’.

-P pidfile Specifies the file in which afpd stores its process id.

-S port Specifies the port to register with when doing AFPoverTCP. Defaults to 548. (Equivalent to -portin
afpd.conf.)

-L message Specifies the login message that will be sent to clients. (Equivalent to -loginmsg in afpd.conf.)

-F configfile Specifies the configuration file to use. (Defaults to /etc/netatalk/netatalk/afpd.conf.)

-U uams Comma-separated list of UAMs to use for the authentication process. (Equivalent to -uamlist in afpd.
conf.)

-m umask Use this umask for the creation of folders in Netatalk.

SIGNALS

Signals that are sent to the main afpd process are propagated to the children, so all will be affected.

SIGHUP Sending a SIGHUP to afpd will cause it to reload its configuration files.

SIGUSR1 The afpd process will send the message "The server is going down for maintenance." to the client and
shut itself down in 5 minutes. New connections are not allowed. If this is sent to a child afpd, the other
children are not affected. However, the main process will still exit, disabling all new connections.

39 Chapter 5. Manual Pages

SIGUSR2 The afpd process will look in the message directory configured at build time for a file named mes-
sage.pid. For each one found, a the contents will be sent as a message to the associated AFP client. The
file is removed after the message is sent. This should only be sent to a child afpd. Warning: If the –with-
message-dir option was not used, this will kill the afpd process

To shut down a user’s afpd process it is recommended that SIGKILL (-9) NOT be used, except as a last
resort, as this may leave the CNID database in an inconsistent state. The safe way to terminate an afpd is
to send it a SIGTERM (-15) signal and wait for it to die on its own.

FILES

/etc/netatalk/AppleVolumes.default list of default volumes to mount

/etc/netatalk/AppleVolumes.system list of volumes to offer all users

~/AppleVolumes user’s list of volumes to mount

/etc/netatalk/netatalk/msg/message.pid contains messages to be sent to users.

BUGS

SEE ALSO

hosts_access(5), afpd.conf(5), AppleVolumes.default(5), AppleVolumes.system(5).

5.6 afpd.conf

Name

afpd.conf — Configuration file used by afpd(8) to determine the setup of its file sharing services

Description

/etc/netatalk/afpd.conf is the configuration file used by afpd to determine the behavior and configuration of
the different virtual file servers that it provides.

Any line not prefixed with # is interpreted. The configuration lines are composed like: server name [options] If
a - is used instead of a server name, the default server is specified. Server names must be quoted if they contain
spaces. They must not contain ":" or "@". The path name must be a fully qualified path name, or a path name
using either the ~ shell shorthand or any of the substitution variables, which are listed below.

5.6. afpd.conf 40

NOTE

Each server has to be configured on a single line.

The possible options and their meanings are:

AppleVolumes Files

-defaultvol [path] Specifies path to AppleVolumes.default file (default is /etc/netatalk/AppleVolumes.default).

-systemvol [path] Specifies path to AppleVolumes.system file (default is /etc/netatalk/AppleVolumes.system).

-[no]uservol Enables or disables reading of the users’ individual volumes file entirely.

-[no]uservolfirst Enables or disables reading of the users’ individual volumes file before processing the global
AppleVolumes.default file.

Authentication Methods

-uamlist [uams list] Comma separated list of UAMs. (The default is uams_clrtxt.so,uams_dhx.so).

The most commonly used UAMs are:

uams_guest.so allows guest logins

uams_clrtxt.so (uams_pam.so or uams_passwd.so) Allow logins with passwords transmitted in the clear.

uams_randum.so allows Random Number and Two-Way Random Number Exchange for authentication
(requires a separate file containing the passwords, either /etc/netatalk/afppasswd file or the one spec-
ified via -passwdfile. See afppasswd(1) for details

uams_dhx.so (uams_dhx_pam.so or uams_dhx_passwd.so) Allow Diffie-Hellman eXchange (DHX) for au-
thentication.

uam_gss.so Allow Kerberos V for authentication (optional)

-uampath [path] Sets the default path for UAMs for this server (default is /etc/netatalk/uams).

-k5keytab [path] , -k5service [service] , -k5realm [realm] These are required if the server supports the
Kerberos 5 authentication UAM.

41 Chapter 5. Manual Pages

Codepage Options

With OS X Apple introduced the AFP3 protocol. One of the big changes was, that AFP3 uses Unicode names
encoded as UTF-8 decomposed. Previous AFP/OS versions used codepages like MacRoman, MacCentralEurope,
etc.

To be able to serve AFP3 and older clients at the same time, afpd needs to be able to convert between UTF-8 and
Mac codepages. Even OS X clients partly still rely on codepages. As there’s no way, afpd can detect the codepage
a pre AFP3 client uses, you have to specify it using the -maccodepage option. The default is MacRoman, which
should be fine for most western users.

As afpd needs to interact with unix operating system as well, it need’s to be able to convert from UTF-8/MacCodepage
to the unix codepage. By default afpd uses the systems LOCALE, or ASCII if your system doesn’t support lo-
cales. You can set the unix codepage using the -unixcodepage option. If you’re using extended characters in the
configuration files for afpd, make sure your terminal matches the -unixcodepage.

-unixcodepage [CODEPAGE] Specifies the servers unix codepage, e.g. "ISO-8859-15" or "UTF8". This is used to
convert strings to/from the systems locale, e.g. for authenthication, server messages and volume names.
Defaults to LOCALE if your system supports it, otherwise ASCII will be used.

-maccodepage [CODEPAGE] Specifies the mac clients codepage, e.g. "MAC_ROMAN". This is used to convert
strings and filenames to the clients codepage for OS9 and Classic, i.e. for authentication and AFP messages
(SIGUSR2 messaging). This will also be the default for the volumes maccharset. Defaults to MAC_ROMAN.

Password Options

-loginmaxfail [number] Sets the maximum number of failed logins, if supported by the UAM (currently none)

-passwdfile [path] Sets the path to the Randnum UAM passwd file for this server (default is /etc/netatalk/afppasswd).

-passwdminlen [number] Sets the minimum password length, if supported by the UAM

-[no]savepassword Enables or disables the ability of clients to save passwords locally

-[no]setpassword Enables or disables the ability of clients to change their passwords via chooser or the "connect
to server" dialog

Transport Protocols

-[no]ddp Enables or disables AFP-over-Appletalk. If -proxy is specified, you must instead use -uamlist "" to
prevent DDP connections from working.

-[no]tcp Enables or disables AFP-over-TCP

-transall Make both available (default)

5.6. afpd.conf 42

Transport Options

-advertise_ssh Allows Mac OS X clients (10.3.3 or above) to automagically establish a tunneled AFP connection
through SSH. If this option is set, the server’s answers to client’s FPGetSrvrInfo requests contain an ad-
ditional entry. It depends on both client’s settings and a correctly configured and running sshd(8) on the
server to let things work.

NOTE

Setting this option is not recommended since globally encrypting AFP connections via SSH
will increase the server’s load significantly. On the other hand, Apple’s client side implemen-
tation of this feature in MacOS X versions prior to 10.3.4 contained a security flaw.

-ddpaddr [ddp address] Specifies the DDP address of the server. The default is to auto-assign an address
(0.0). This is only useful if you are running AppleTalk on more than one interface.

-fqdn [name:port] Specifies a fully-qualified domain name, with an optional port. This is discarded if the
server cannot resolve it. This option is not honored by AppleShare clients <= 3.8.3. This option is disabled
by default. Use with caution as this will involve a second name resolution step on the client side. Also note
that afpd will advertise this name:port combination but not automatically listen to it.

-ipaddr [ip address] Specifies the IP address that the server should advertise and listens to (the default is
the first IP address of the system). This option also allows to use one machine to advertise the AFP-over-
TCP/IP settings of another machine via NBP when used together with the -proxy option.

-port [port number] Allows a different TCP port to be used for AFP-over-TCP. The default is 548.

-proxy Runs an AppleTalk proxy server for the specified AFP-over-TCP server. If the address and port aren’t
given, then the first IP address of the system and port 548 will be used. If you don’t want the proxy server
to act as a DDP server as well, set -uamlist "".

-server_quantum [number] This specifies the DSI server quantum. The minimum value is 303840 (0x4A2E0).
The maximum value is 0xFFFFFFFFF. If you specify a value that is out of range, the default value will be
set (which is the minimum). Do not change this value unless you’re absolutely sure, what you’re doing

-noslp Do not register this server using the Service Location Protocol (if SLP support was compiled in). This
is useful if you are running multiple servers and want one to be hidden, perhaps because it is advertised
elsewhere, ie. by a SLP Directory Agent.

Miscellaneous Options

43 Chapter 5. Manual Pages

-admingroup [group] Allows users of a certain group to be seen as the superuser when they log in. This option
is disabled by default.

-authprintdir [path] Specifies the path to be used (per server) to store the files required to do CAP-style print
authentication which papd will examine to determine if a print job should be allowed. These files are
created at login and if they are to be properly removed, this directory probably needs to be umode 1777.

NOTE

-authprintdir will only work for clients connecting via DDP. Almost all modern Clients will
use TCP.

-client_polling With this switch enabled, afpd won’t advertise that it is capable of server notifications, so that
connected clients poll the server every 10 seconds to detect changes in opened server windows. Note:
Depending on the number of simultaneously connected clients and the network’s speed, this can lead to a
significant higher load on your network!

NOTE

Do not use this option any longer as Netatalk 2.0 correctly supports server notifications, al-
lowing connected clients to update folder listings in case another client changed the contents.

-cnidserver [ipaddress:port] Specifies the IP address and port of a cnid_metad server, required for CNID
dbd backend. Defaults to localhost:4700.

-guestname [name] Specifies the user that guests should use (default is "nobody"). The name should be quoted.

-icon Use the platform-specific icon

-loginmesg [message] Sets a message to be displayed when clients logon to the server. The message should be
in unixcodepage and should be quoted. Extended characters are allowed.

-nodebug Disables debugging.

-sleep [number] AFP 3.x waits number hours before disconnecting clients in sleep mode. Default is 10 hours.

-signature { user:<text> | host } Specify a server signature. This option is useful while running multiple inde-
pendent instances of afpd on one machine (eg. in clustered environments, to provide fault isolation etc.).

5.6. afpd.conf 44

"host" signature type allows afpd generating signature automatically (based on machine primary IP ad-
dress). "user" signature type allows administrator to set up a signature string manually. The maximum
length is 16 characters

Example 5.6.1: Three server definitions using 2 different server signatures

first -signature user:USERS
second -signature user:USERS
third -signature user:ADMINS

First two servers will appear as one logical AFP service to the clients - if user logs in to first one and then
connects to second one, session will be automatically redirected to the first one. But if client connects to
first and then to third, will be asked for password twice and will see resources of both servers. Traditional
method of signature generation causes two independent afpd instances to have the same signature and
thus cause clients to be redirected automatically to server (s)he logged in first.

Logging Options

NOTE

Extended logging capabilities are only available if Netatalk was built using –with-logfile . As of
Netatalk 2.0, the default is –without-logfile since the logger code is partially broken and needs a
complete rewrite (the -setuplog option might not work as expected). If Netatalk was built without
logger support then the daemons log to syslog.

-[un]setuplog "<logtype> <loglevel> [<filename>] " Specify that the given loglevel should be applied
to log messages of the given logtype and that these messages should be logged to the given file. If the
filename is ommited the loglevel applies to messages passed to syslog. Each logtype may have a loglevel
applied to syslog and a loglevel applied to a single file. Latter -setuplog settings will override earlier ones
of the same logtype (file or syslog).

logtypes: Default, Core, Logger, CNID, AFP

Daemon loglevels: LOG_SEVERE, LOG_ERROR, LOG_WARN, LOG_NOTE, LOG_INFO, LOG_DEBUG,
LOG_DEBUG6, LOG_DEBUG7, LOG_DEBUG8, LOG_DEBUG9, LOG_MAXDEBUG

Example 5.6.2: Some ways to change afpd’s logging behaviour via -[un]setuplog

Example:
-setuplog "logger log_maxdebug /var/log/netatalk-logger.log"
-setuplog "afpdaemon log_maxdebug /var/log/netatalk-afp.log"
-unsetuplog "default level file"
-setuplog "default log_maxdebug"

45 Chapter 5. Manual Pages

Debug Options

These options are useful for debugging only.

-tickleval [number] Sets the tickle timeout interval (in seconds). Defaults to 30.

-timeout [number] Specify the number of tickles to send before timing out a connection. The default is 4,
therefore a connection will timeout after 2 minutes.

Examples

Example 5.6.3: afpd.conf default configuration

- -transall -uamlist uams_clrtxt.so,uams_dhx.so

Example 5.6.4: afpd.conf MacCyrillic setup / UTF8 unix locale

- -transall -maccodepage mac_cyrillic -unixcodepage utf8

Example 5.6.5: afpd.conf setup for Kerberos V auth

- -transall -uamlist uams_clrtxt.so,uams_dhx.so,uams_guest.so,uams_gss.so \
-k5service afpserver -k5keytab /path/to/afpserver.keytab \
-k5realm YOUR.REALM -fqdn your.fqdn.namel:548

Example 5.6.6: afpd.conf letting afpd appear as three servers on the net

"Guest Server" -uamlist uams_guest.so -loginmesg "Welcome guest!"
"User Server" -uamlist uams_dhx.so -port 12000
"special" -notcp -defaultvol <path> -systemvol <path>

See also

afpd(8), afppasswd(1), AppleVolumes.default(5)

5.7. afppasswd 46

5.7 afppasswd

Name

afppasswd — netatalk password maintenance utility

Synopsis

afppasswd [-acfn] [-p passwd file] [-u minimum uid]

DESCRIPTION

afppasswd allows the maintenance of afppasswd files created by netatalk for use by the uams_randnum.so UAM
(providing the "Randnum exchange" and "2-Way Randnum exchange" User Authentication Modules).

afppasswd can either be called by root with parameters, or can be called by local system users with no parameters
to change their AFP passwords.

NOTE

With this utility you can only change the passwords used by two specific UAMs. As they provide only
weak password encryption, the use of the "Randnum exchange" and "2-Way Randnum exchange"
UAMs is deprecated unless one has to support very old AFP clients, that can not deal with the
more secure "DHCAST128" UAM instead. Please compare with the Authentication chapter inside
Netatalk’s documentation.

EXAMPLE

Local user changing their own password:

example% afppasswd
Enter NEW AFP password: (hidden)
Enter NEW AFP password again: (hidden)
afppasswd: updated password.

OPTIONS

-a Add a new user to the afppasswd file.

-c Create and/or initialize afppasswd file or specific user.

47 Chapter 5. Manual Pages

-f Force the current action.

-p path Path to afppasswd file.

-n If cracklib support is built into netatalk this option will cause cracklib checking to be disabled, if the superuser
does not want to have the password run against the cracklib dictionary.

-u minimum uid This is the minimum user id (uid) that afppasswd will use when creating users.

SEE ALSO

afpd(8), atalkd(8).

5.8 AppleVolumes.default

Name

AppleVolumes.default — Configuration file used by afpd(8) to determine the shares made available through
Appletalk

Description

/etc/netatalk/AppleVolumes.default is the configuration file used by afpd to determine what portions of the
file system will be shared via Apple Filing Protocol, as well as their behaviour. Any line not prefixed with # is
interpreted. The configuration lines are composed like:

path [volume name] [options]

The path name must be a fully qualified path name, or a path name using either the ~ shell shorthand or any of
the substitution variables, which are listed below.

The volume name is the name that appears in the Chooser ot the "connect to server" dialog on Macintoshes to
represent the appropriate share. If there are spaces in the name, it should be in quotes (i.e. "File Share"). The
volume name may not exceed 27 characters in length, and cannot contain the ’:’ character.

NOTE

Each volume has to be configured on a single line.

The possible options and their meanings are:

5.8. AppleVolumes.default 48

adouble:[v1 |v2 |osx] specify the format of the metadata files, which are used for saving Mac resource fork as
well. Earlier versions used AppleDouble V1, the new default format is V2. Starting with Netatalk 2.0, the
scheme MacOS X uses currently (10.3.x), is also supported

NOTE

Using adouble:osx is not recommended for production use. Its only aim is to temporarely
share eg. FAT32 formatted FireWire harddrives written on a Macintosh with afpd. Apple’s
metadata scheme lacks several essential features, so using it on the server’s side will break
both CNIDs and MacOS 9 compatibility

allow:[users/groups] The allow option allows the users and groups that access a share to be specified.
Users and groups are specified, delimited by commas. Groups are designated by a @ prefix. Example:
allow:user1,user2,@group

deny:[users/groups] The deny option specifies users and groups who are not allowed access to the share. It
follows the same format as the allow option.

cnidscheme:[backend] set the CNID backend to be used for the volume, default is [cdb] available schemes:
[cdb,dbd,last]

dbpath:[path] Sets the database information to be stored in path. You have to specifiy a writable location, even
if the volume is read only.

maccharset:[charset] specifies the mac client codepage for this Volume, e.g. "MAC_ROMAN", "MAC_CYRILLIC".
If not specified the setting from afpd.conf is inherited. This setting is only required if you need volumes,
where the mac codepage differs from the one globally set in afpd.conf.

options:[option] This allows multiple options to be specified in a comma delimited format. The available
options are:

limitsize Limit disk size reporting to 2GB. This can be used for older Macintoshes using newer Appleshare
clients.

ro Specifies the share as being read only for all users. The .AppleDB directory has to be writeable, you can
use the -dbpath option to relocate it.

usedots Don’t do :hex translation for dot files. note: when this option gets set, certain file names become
illegal. These are .Parent and anything that starts with .Apple. Also, dot files created on the unix side
are marked invisible.

49 Chapter 5. Manual Pages

root_preexec_close a non-zero return code from root_preexec closes the volume immediately, preventing
clients to mount/see the volume in question.

preexec_close a non-zero return code from preexec close the volume being immediately, preventing clients
to mount/see the volume in question.

password:[password] This option allows you to set a volume password, which can be a maximum of 8 char-
acters long (using ASCII strongly recommended at the time of this writing).

preexec:[command] command to be run when the volume is mounted, ignored for user defined volumes

postexec:[command] command to be run when the volume is closed, ignored for user defined volumes

root_preexec:[command] command to be run as root when the volume is mounted, ignored for user defined
volumes

root_postexec:[command] command to be run as root when the volume is closed, ignored for user defined
volumes

rolist:[users/groups] Allows certain users and groups to have read-only access to a share. This follows the
allow option format.

rwlist:[users/groups] Allows certain users and groups to have read/write access to a share. This follows the
allow option format.

veto:[vetoed name] hide files and directories,where the path matches one of the ’/’ delimited vetoed names.
Matches are partial, e.g. path is /abc/def/file and veto:/abc/ will hide the file.

volcharset:[charset] specifies the volume codepage, e.g. "UTF8", "UTF8-MAC", "ISO-8859-15". Defaults to
"UTF8".

Variable substitutions

You can use variables in both volume path and volume name.

1. if you specify an unknown variable, it will not get converted.

2. if you specify a known variable, but that variable doesn’t have a value, it will get ignored.

The variables which can be used for substitutions are:

$b basename

$c client’s ip or appletalk address

$d volume pathname on server

5.8. AppleVolumes.default 50

$f full name (contents of the gecos field in the passwd file)

$g group name

$h hostname

$i client’s ip, without port

$s server name (this can be the hostname)

$u user name (if guest, it is the user that guest is running as)

$v volume name (either ADEID_NAME or basename of path)

$z appletalk zone (may not exist)

$$ prints dollar sign ($)

When using variable substitution in the volume name, always keep in mind, not to exceed the 27 characters limit

Example 5.8.1: Using variable substitution when defining volumes

/home/groups/$g "Groupdir for $g"
~ "$f is the best one"

We define "groupdirs" for each primary group and use a personalized server name for homedir shares.

CNID backends

The AFP protocol mostly refers to files and directories by ID and not by name. Netatalk needs a way to store
these ID’s in a persistent way, to achieve this several different CNID backends are available. The CNID Databases
are by default located in the .AppleDB folder in the volume root.

cdb "Concurrent database", backend is based on Sleepycat’s Berkely DB. With this backend several afpd dea-
mons access the CNID database directly. Berkeley DB locking is used to synchronize access, if more than
one afpd process is active for a volume. The drawback is, that the crash of a single afpd process might
corrupt the database.

dbd Access to the CNID database is restricted to the cnid_metad daemon process. afpd processes communicate
with the daemon for database reads and updates. If built with Berkeley DB transactions the probability for
database corruption is practically zero, but performance can be slower than with cdb

51 Chapter 5. Manual Pages

last This backend is an exception, in terms of ID persistency. ID’s are only valid for the current session. This is
basically what afpd did in the 1.5 (and 1.6) versions. This backend is still available, as it is useful for e.g.
sharing cdroms.

Warning: It is NOT recommended to use this backend for volumes anymore, as afpd now relies heavily on
a persistent ID database. Aliases will likely not work and filename mangling is not supported.

Even though ./configure –help might show that there are other CNID backends available, be warned those are
likely broken or mainly used for testing. Don’t use them unless you know what you’re doing, they may be
removed without further notice from future versions.

Charset options

With OS X Apple introduced the AFP3 protocol. One of the most important changes was that AFP3 uses unicode
names encoded as UTF-8 decomposed. Previous AFP/OS versions used codepages, like MacRoman, MacCen-
tralEurope, etc.

afpd needs a way to preserve extended macintosh characters, or characters illegal in unix filenames, when saving
files on a unix filesystem. Earlier versions used the the so called CAP encoding. An extended character (>0x7F)
would be converted to a :xx sequence, e.g. the Apple Logo (MacRoman: 0XF0) was saved as :f0. Some special
characters will be converted as to :xx notation as well. ’/’ will be encoded to :2f, if -usedots is not specified, a
leading dot ’.’ will be encoded as :2e.

This version now uses UTF-8 as the default encoding for names. Special characters, like ’/’ and a leading ’.’ will
still be CAP style encoded .

The -volcharset option will allow you to select another volume encoding. E.g. for western users another useful
setting could be -volcharset ISO-8859-15. apfd will accept any iconv(1) provided charset. If a character cannot be
converted from the mac codepage to the selected volcharset, afpd will save it as a CAP encoded character. For
AFP3 clients, afpd will convert the UTF-8 character to -maccharset first. If this conversion fails, you’ll receive a
-50 error on the mac.

Note: Whenever you can, please stick with the default UTF-8 volume format.

Compatibility with earlier versions

To use a volume created with an earlier afpd version, you’ll have to specify the following options:

Example 5.8.2: use a 1.x style volume

/path/to/volume "Volname" adouble:v1 volcharset:ASCIIASCIIafpd’s volcharset setting

In case you used an NLS you could try using a compatible iconv charset for -volcharset.

Example 5.8.3: use a 1.x style volume, created with maccode.iso8859-1

/path/to/volume "Volname" adouble:v1 volcharset:ISO-8859-1

You should consider converting old style volumes to the new UTF-8/AD2 format. The safest way to do this, is to
create a new volume with the default options and copy the files between this volumes with a mac.

5.8. AppleVolumes.default 52

Note: Using above example options will allow you to downgrade to 1.x netatalk again.

Note: Some 1.x NLS files used non standard mappings, e.g. maccode.iso8859-1.adapted. This is not supported
anymore. You’ll have to copy the contents of those volumes files to a Mac and then back to the netatalk server,
preferably to an UTF-8 volume.

Advanced Options

The following options should only be used after serious consideration. Be sure you fully understood the, some-
times complex, consequences, before using them.

casefold:[option] The casefold option handles, if the case of filenames should be changed. The available
options are:

tolower - Lowercases names in both directions.

toupper - Uppercases names in both directions.

xlatelower - Client sees lowercase, server sees uppercase.

xlateupper - Client sees uppercase, server sees lowercase.

options:[option] This allows multiple options to be specified in a comma delimited format. The available
options are:

cachecnid If set afpd uses the ID information stored in AppleDouble V2 header files to reduce database
load. Don’t set this option if the volume is modified by non AFP clients (NFS/SMB/local). Defaults to
off.

crlf Enables crlf translation for TEXT files, automatically converting macintosh line breaks into Unix ones.
Use of this option might be dangerous since some older programs store binary data files as type "TEXT"
when saving and switch the filetype in a second step. Afpd will potentially destroy such files when
"erroneously" changing bytes in order to do line break translation.

dropbox Allows a volume to be declared as being a "dropbox." Note that netatalk must be compiled with
dropkludge support for this to function. Warning: This option is deprecated and might not work as
expected.

mswindows Forces filename restrictions imposed by MS WinXX. Warning: This is NOT recommened for
volumes mainly used by Macs. Please make sure you fully understand this option before using it.

WARNING

This option breaks direct saving to netatalk volumes from some applications, i.e. Of-
ficeX.

53 Chapter 5. Manual Pages

noadouble Forces afpd to not create .AppleDouble directories unless macintosh metadata needs to be writ-
ten. This option is only useful if you want to share files mostly used NOT by macs, causing afpd to
not automatically create .AppleDouble subdirs containing AD header files in every directory it enters
(which will it do by default).

In case, you save or change files from mac clients, AD metadata files have to be written even in case
you set this option. So you can’t avoid the creation of .AppleDouble directories and its contents when
you give macs write access to a share and they make use of it.

Try to avoid noadouble whenever possible.

nodev always use 0 for device number, helps when the device number is not constant across a reboot,
cluster, ...

nofileid don’t advertise createfileid, resolveid, deleteid calls.

nohex Disables :hex translations for anything except dot files. This option makes the ’/’ character illegal.

prodos Provides compatibility with Apple II clients.

nostat don’t stat volume path when enumerating volumes list, useful for automounting or volumes created
by a preexec script.

upriv use AFP3 unix privileges. Become familiar with the new "unix privileges" AFP permissions concepts
in MacOS X before using this option.

See Also

afpd.conf(5), afpd(8)

5.9 apple_cp

Name

apple_cp — Do an apple copy, copying file metadata and the resource fork as well

Synopsis

/usr/bin/apple_cp SOURCE DEST /usr/bin/apple_cp SOURCE... DIRECTORY

5.10. apple_mv 54

DESCRIPTION

apple_cp is a perl script to copy SOURCE to DEST or multiple SOURCE(s) to DIRECTORY. It also copies the
file specific metadata (including resource forks) to the .AppleDouble directory for DEST or DIRECTORY. If the
.AppleDouble directory doesn’t exist for DEST or DIRECTORY it will create it.

EXAMPLES

/usr/bin/apple_cp test.text /target/directory/

/usr/bin/apple_cp test.text /target/directory/test2.text

/usr/bin/apple_cp test.text testing.text /target/directory/

REPORTING BUGS

Report bugs to the Netatalk-devel list <netatalk-devel@lists.sourceforge.net>.

SEE ALSO

apple_mv(1), apple_rm(1).

5.10 apple_mv

Name

apple_mv — Do an apple move, moving metadata and the resource fork as well

Synopsis

/usr/bin/apple_mv SOURCE DEST /usr/bin/apple_mv SOURCE... DIRECTORY

DESCRIPTION

apple_mv is a perl script to move SOURCE to DEST or multiple SOURCE(s) to DIRECTORY. It also moves the
file specific metadata (including resource forks) to the .AppleDouble directory for DEST or DIRECTORY. If the
.AppleDouble directory doesn’t exist for DEST or DIRECTORY it will create it.

EXAMPLES

/usr/bin/apple_mv test.text /target/directory/

/usr/bin/apple_mv test.text /target/directory/test2.text

/usr/bin/apple_mv test.text testing.text /target/directory/

55 Chapter 5. Manual Pages

REPORTING BUGS

Report bugs to the Netatalk-devel list <netatalk-devel@lists.sourceforge.net>.

SEE ALSO

apple_cp(1), apple_rm(1).

5.11 apple_rm

Name

apple_rm — Do an apple remove, remove metadata and resource fork as well

Synopsis

/usr/bin/apple_rm FILE...

DESCRIPTION

apple_rm is a perl script that removes FILE(s) as well as the .AppleDouble metadata file(s) that corresponds to
FILE(s). These AppleDouble header files eventually also contain the resource fork if the files had one. apple_rm
does not delete directories.

EXAMPLES

/usr/bin/apple_rm test.text

/usr/bin/apple_rm test.text testing.text

REPORTING BUGS

Report bugs to the Netatalk-devel list <netatalk-devel@lists.sourceforge.net>.

SEE ALSO

apple_cp(1), apple_mv(1).

5.12. asip-status.pl 56

5.12 asip-status.pl

Name

asip-status.pl — Queries AFP servers for their capabilities

Synopsis

/usr/bin/asip-status.pl ADDRESS:PORT...

DESCRIPTION

asip-status.pl is a perl script that sends a FPGetSrvrInfo request to an AFP server at ADDRESS:PORT and displays
the results, namely "Machine type", the server’s name, supported AFP versions, UAMs and AFP flags, the "server
signature" and the network addresses, the server provides AFP services on.

When you don’t supply :PORT, then the default AFP port, 548, will be used.

EXAMPLES

/usr/bin/asip-status.pl 192.168.21.2
AFP reply from 192.168.21.2:548
Flags: 1 Cmd: 3 ID: 57005
Reply: DSIGetStatus
Request ID: 57005
Machine type: Macintosh
AFP versions: AFPVersion 1.1,AFPVersion 2.0,AFPVersion 2.1,AFP2.2
UAMs: Cleartxt passwrd,Randnum exchange,2-Way Randnum exchange
Flags: SupportsCopyFile,SupportsChgPwd,SupportsServerMessages,
SupportsServerSignature,SupportsTCP/IP,SupportsSuperClient
Server name: PowerMac 9600/200
Signature:
04 c1 6e 59 04 c1 6e 59 04 c1 6e 59 04 c1 6e 59 ..nY..nY..nY..nY

Network address: 192.168.21.2:548 (tcp/ip address and port)
Network address: 10.20 (ddp address)

/usr/bin/asip-status.pl 192.168.21.1:10548
AFP reply from 192.168.21.1:10548
Flags: 1 Cmd: 3 ID: 57005
Reply: DSIGetStatus
Request ID: 57005
Machine type: Netatalk
AFP versions: AFPVersion 1.1,AFPVersion 2.0,AFPVersion 2.1,AFP2.2,AFPX03,
AFP3.1
UAMs: Cleartxt passwrd,Randnum exchange,2-Way Randnum exchange,DHCAST128
Flags: SupportsCopyFile,SupportsServerMessages,SupportsServerSignature,

57 Chapter 5. Manual Pages

SupportsTCP/IP,SupportsSrvrNotifications,SupportsOpenDirectory,
SupportsUTF8Servername,SupportsSuperClient
Server name: Fire V480
Signature:
83 29 cc 60 83 29 cc 60 83 29 cc 60 83 29 cc 60 .).‘.).‘.).‘.).‘

Network address: 192.168.21.1:10548 (TCP/IP address and port)
Network address: 65282.142 (ddp address)
UTF8 Servername: Fire V480

REPORTING BUGS

Report bugs to the Netatalk-devel list <netatalk-devel@lists.sourceforge.net>.

5.13 atalk

Name

atalk — AppleTalk protocol family

Synopsis

#include <sys/types.h>
#include <netatalk/at.h>

DESCRIPTION

The AppleTalk protocol family is a collection of protocols layered above the Datagram Delivery Protocol (DDP),
and using AppleTalk address format. The AppleTalk family may provide SOCK_STREAM (ADSP), SOCK_DGRAM
(DDP), SOCK_RDM (ATP), and SOCK_SEQPACKET (ASP). Currently, only DDP is implemented in the kernel;
ATP and ASP are implemented in user level libraries; and ADSP is planned.

ADDRESSING

AppleTalk addresses are three byte quantities, stored in network byte order. The include file <netatalk/at.h>
defines the AppleTalk address format.

Sockets in the AppleTalk protocol family use the following address structure:

struct sockaddr_at {
short sat_family;
u_char sat_port;
struct at_addr sat_addr;
char sat_zero[8];

5.14. atalkd 58

};

The port of a socket may be set with bind(2). The node for bind must always be ATADDR_ANYNODE: “this
node.” The net may be ATADDR_ANYNET or ATADDR_LATENET. ATADDR_ANYNET coresponds to the ma-
chine’s “primary” address (the first configured). ATADDR_LATENET causes the address in outgoing packets to
be determined when a packet is sent, i.e. determined late. ATADDR_LATENET is equivalent to opening one
socket for each network interface. The port of a socket and either the primary address or ATADDR_LATENET are
returned with getsockname(2).

SEE ALSO

bind(2), getsockname(2), atalkd(8).

5.14 atalkd

Name

atalkd — AppleTalk RTMP, NBP, ZIP, and AEP manager

Synopsis

atalkd [-f configfile] [-1] [-2]

Description

atalkd is responsible for all user level AppleTalk network management. This includes routing, name registration
and lookup, zone lookup, and the AppleTalk Echo Protocol (similar to ping(8)). atalkd is typically started at
boot time, out of /etc/rc. It first reads from its configuration file, /etc/netatalk/atalkd.conf. If there is no
configuration file, atalkd will attempt to configure all available interfaces and will create a configuration file. The
file consists of a series of interfaces, one per line. Lines with ‘#’ in the first column are ignored, as are blank lines.
The syntax is

interface [-seed] [-phase number] [-net net-range] [-addr address] [-zone zonename] ...

Note that all fields except the interface are optional. The loopback interface is configured automatically. If -seed
is specified, all other fields must be present. Also, atalkd will exit during bootstrapping, if a router disagrees with
its seed information. If -seed is not given, all other information may be overriden during auto-configuration. If
no -phase option is given, the default phase as given on the command line is used (the default is 2). If -addr is
given and -net is not, a net-range of one is assumed.

The first -zone directive for each interface is the “default” zone. Under Phase 1, there is only one zone. Under
Phase 2, all routers on the network are configured with the default zone and must agree. atalkd maps “*” to the
default zone of the first interface. Note: The default zone for a machine is determined by the configuration of the
local routers; to appear in a non-default zone, each service, e.g. afpd, must individually specify the desired zone.
See also nbp_name(3).

59 Chapter 5. Manual Pages

Routing

If you are connecting a netatalk router to an existing AppleTalk internet, you should first contact your local
network administrators to obtain appropriate network addresses.

atalkd can provide routing between interfaces by configuring multiple interfaces. Each interface must be as-
signed a unique net-range between 1 and 65279 (0 and 65535 are illegal, and addresses between 65280 and 65534
are reserved for startup). It is best to choose the smallest useful net-range, i.e. if you have three machines on
an Ethernet, don’t chose a net-range of 1000-2000. Each net-range may have an arbitrary list of zones associated
with it.

Examples

Below is an example configuration file for a sun4/40. The machine has two interfaces, “le0” and “le1”. The “le0”
interface is configured automatically from other routers on the network. The machine is the only router for the
“le1” interface.

le0
le1 -seed -net 9461-9471 -zone netatalk -zone Argus

atalkd automatically acts as a router if there is more than one interface.

Files

/etc/netatalk/atalkd.conf configuration file

Bugs

On some systems, atalkd can not be restarted.

SEE ALSO

atalkd.conf(5)

5.15 atalkd.conf

Name

atalkd.conf — Configuration file used by atalkd(8) to determine the interfaces used by the master Netatalk dae-
mon

5.16. atalk_aton 60

DESCRIPTION

/etc/netatalk/atalkd.conf is the configuration file used by atalkd to configure the Appletalk interfaces and their
behavior

Any line not prefixed with # is interpreted. The configuration lines are composed like:

Interface [options]

The simplest case is to have either no atalkd.conf, or to have one that has no active lines. In this case, atalkd
should auto-discover the local interfaces on the machine. Please note that you cannot split lines.

The interface is the network interface that this to work over, such as eth0 for Linux, or le0 for Sun.

The possible options and their meanings are:

-addr net.node Allows specification of the net and node numbers for this interface, specified in Appletalk
numbering format (example: -addr 66.6).

-dontroute Disables Appletalk routing. It is the opposite of -router.

-net first[-last] Allows the available net to be set, optionally as a range.

-noallmulti (linux only) On linux the interfaces, atalkd uses, are set to ALLMULTI by default caused by
countless NICs having problems without being forced into this mode (some even don’t work with allmulti
set). In case, you’ve a NIC known to support multicasts properly, you might want to set this option causing
less packets to be processed

-phase (1 | 2) Specifies the Appletalk phase that this interface is to use (either Phase 1 or Phase 2).

-router Like -seed, but allows single interface routing. It is the opposite of -dontroute.

-seed The seed option only works if you have multiple interfaces. It also causes all missing arguments to be
automagically configured from the network.

-zone zonename Specifies a specific zone that this interface should appear on (example: -zone "Parking
Lot"). Please note that zones with spaces and other special characters should be enclosed in parentheses.

SEE ALSO

atalkd(8)

5.16 atalk_aton

Name

atalk_aton — AppleTalk address parsing

61 Chapter 5. Manual Pages

Synopsis

#include <sys/types.h>
#include <netatalk/at.h>

atalk_aton (cp , ata);
char * cp ;
struct at_addr * ata ;

DESCRIPTION

The atalk_aton() routine converts an ASCII representation of an AppleTalk address to a format appropriate for
system calls. Acceptable ASCII representations include both hex and base 10, in triples or doubles. For instance,
the address ‘0x1f6b.77’ has a network part of ‘8043’ and a node part of ‘119’. This same address could be written
‘8043.119’, ‘31.107.119’, or ‘0x1f.6b.77’. If the address is in hex and the first digit is one of ‘A-F’, a leading ‘0x’ is
redundant.

SEE ALSO

atalk(4).

5.17 cnid_dbd

Name

cnid_dbd — implement access to CNID databases through a dedicated daemon process

Synopsis

cnid_dbd dbdir ctrlfd clntfd

DESCRIPTION

cnid_dbd provides an interface for storage and retrieval of catalog node IDs (CNIDs) and related information to
the afpd daemon. CNIDs are a component of Macintosh based file systems with semantics that map not easily
onto Unix file systems. This makes separate storage in a database necessary. cnid_dbd is part of the CNID backend
framework of afpd and implements the dbd backend.

cnid_dbd is never started via the command line or system startup scripts but only by the cnid_metad daemon.
There is at most one instance of cnid_dbd per netatalk volume.

cnid_dbd uses the Berkleley DB database library and optionally supports transactionally protected updates if
the netatalk package is compiled with the appropriate options. Using the dbd backend without transactions
will protect the CNID database against unexpected crashes of the afpd daemon. Using the dbd backend with
transactions will avoid corruption of the CNID database even if the system crashes unexpectedly.

5.17. cnid_dbd 62

cnid_dbd uses the same on-disk database format as the cdb backend. It is therefore possible to switch between
the two backends as necessary.

cnid_dbd inherits the effective userid and groupid from cnid_metad on startup, which is normally caused by
afpd serving a netatalk volume to a client. It changes to the Berkleley DB database home directory dbdir that is
associated with the volume. If the userid inherited from cnid_metad is 0 (root), cnid_dbd will change userid and
groupid to the owner and group of the database home directory. Otherwise, it will continue to use the inherited
values. cnid_dbd will then attempt to open the database and start serving requests using filedescriptor clntfd.
Subsequent instances of afpd that want to access the same volume are redirected to the running cnid_dbd process
by cnid_metad via the filedescriptor ctrlfd.

cnid_dbd can be configured to run forever or to exit after a period of inactivity. If cnid_dbd receives a TERM or
an INT signal it will exit cleanly after flushing dirty database buffers to disk and closing Berkleley DB database
environments. It is safe to terminate cnid_dbd this way, it will be restarted when necessary. Other signals are
not handled and will cause an immediate exit, possibly leaving the CNID database in an inconsistent state (no
transactions) or losing recent updates during recovery (transactions).

If transactions are used the Berkleley DB database subsystem will create files named log.xxxxxxxxxx in the database
home directory dbdir, where xxxxxxxxxx is a monotonically increasing integer. These files contain information
to replay database changes and are not automatically removed, unless the logfile_autoremove option is specified
in the db_param configuration file (see below). Please see the sections Database and log file archival, Log file removal
and the documentation of the db_archive command line utility in the Berkeley DB Tutorial and Reference for
information when and how it is safe to remove these files manually.

Do not use cnid_dbd for databases on NFS mounted file systems. It makes the whole point of securing database
changes properly moot. Use the dbdir: Option in the appropriate AppleVolumes configuration file to put the
database onto a local disk.

CONFIGURATION

cnid_dbd reads configuration information from the file db_param in the database directory dbdir on startup. If the
file does not exist or a parameter is not listed, suitable default values are used. The format for a single parameter
is the parameter name, followed by one or more spaces, followed by the parameter value, followed by a newline.
The following parameters are currently recognized:

logfile_autoremove This flag is ignored unless transactional support is enabled. If set to 1, unused Berkeley DB
transactional logfiles (log.xxxxxxxxxx in the database home directory) are removed on startup of cnid_dbd.
This is usually safe if the content of the database directory is backed up on a regular basis. Default: 0.

cachesize Determines the size of the Berkeley DB cache in kilobytes. Default: 1024. Each cnid_dbd process grabs
that much memory on top of its normal memory footprint. It can be used to tune database performance.
The db_stat utility with the -m option that comes with Berkely DB can help you determine wether you need
to change this value. The default is pretty conservative so that a large percentage of requests should be
satisfied from the cache directly. If memory is not a bottleneck on your system you might want to leave it
at that value. The Berkeley DB Tutorial and Reference Guide has a section Selecting a cache size that gives more
detailed information.

nosync This flag is ignored unless transactional support is enabled. If it is set to 1, transactional changes to
the database are not synchronously written to disk when the transaction completes. This will increase
performance considerably at the risk of recent changes getting lost in case of a crash. The database will still
be consistent, though. See Transaction Throughput in the Berkeley DB Tutorial for more information. Default:
0.

63 Chapter 5. Manual Pages

flush_frequency, flush_interval flush_frequency (Default: 100) and flush_interval (Default: 30) control how often
changes to the database are written to the underlying database files if no transactions are used or how
often the transaction system is checkpointed for transactions. Both of these operations are performed if
either i) more than flush_frequency requests have been received or ii) more than flush_interval seconds have
elapsed since the last save/checkpoint. If you use transactions with nosync set to zero these parameters only
influence how long recovery takes after a crash, there should never be any lost data. If nosync is 1, changes
might be lost, but only since the last checkpoint. Be careful to check your harddisk configuration for on
disk cache settings. Many IDE disks just cache writes as the default behaviour, so even flushing database
files to disk will not have the desired effect.

fd_table_size is the maximum number of connections (filedescriptors) that can be open for afpd client processes
in cnid_dbd. Default: 16. If this number is exceeded, one of the existing connections is closed and reused.
The affected afpd process will transparently reconnect later, which causes slight overhead. On the other
hand, setting this parameter too high could affect performance in cnid_dbd since all descriptors have to be
checked in a select() system call, or worse, you might exceed the per process limit of open file descriptors
on your system. It is safe to set the value to 1 on volumes where only one afpd client process is expected to
run, e.g. home directories.

idle_timeout is the number of seconds of inactivity before an idle cnid_dbd exits. Default: 600. Set this to 0 to
disable the timeout.

check is a flag value. If set cnid_dbd will automatically check the database indexes. Default: 0. Set this to 1 to
enable checking.

SEE ALSO

cnid_metad(8), afpd(8)

5.18 cnid_index

Name

cnid_index — check and repair Netatalk CNID database indexes

Synopsis

cnid_index dbdir

DESCRIPTION

cnid_index is a utility to check CNID databases for consistency. If needed, the indexes are repaired. It works for
databases created by the cdb and dbd backends.

5.19. cnid_metad 64

Volumes usind the dbd CNID scheme can also be checked automatically, for further information please see the
cnid_dbd(8) man page.

WARNING

When using cnid_index on cdb handled databases, cnid_index cannot check if another process
(afpd) accesses the CNID databases. In this case, you have to manually ensure no other process
accesses the database when running cnid_index .

SEE ALSO

cnid_dbd(8), afpd(8)

5.19 cnid_metad

Name

cnid_metad — start cnid_dbd daemons on request

Synopsis

cnid_metad [-d] [-h hostname] [-p port] [-u user] [-g group] [-s cnid_dbdpathname
]

DESCRIPTION

cnid_metad waits for requests from afpd to start up instances of the cnid_dbd daemon. It keeps track of the status
of a cnid_dbd instance once started and will restart it if necessary. cnid_metad is normally started at boot time
from /etc/rc or equivalent and runs until shutdown. afpd needs to be configured with the -cnidserver option
in afpd.conf in order to access cnid_metad. It is possible to run more than one instance of cnid_metad on the same
machine if different values for the interface and/or port are specified with the -h and -p options.

OPTIONS

-d cnid_metad will remain in the foreground and will also leave the standard input, standard output and standard
error file descriptors open. Useful for debugging.

-h hostname Use hostname as the network interface for requests as opposed to the default localhost.

-p port Use port as the port number for reqests. Default is 4700.

65 Chapter 5. Manual Pages

-u user Switch to the userid of user before serving requests. This userid will be inherited by all cnid_dbd daemon
processes started.

-u group Switch to the groupid of group before serving requests. This groupid will be inherited by all cnid_dbd
daemon processes started. Both user and group must be specified as strings.

-s cnid_dbd pathname Use cnid_dbd pathname as the pathname of the executeable of the cnid_dbd daemon.
The default is /usr/sbin/cnid_dbd.

CAVEATS

The number of cnid_dbd subprocecesses is currently limited to 128. This restriction will be lifted in the future.

cnid_metad does not block or catch any signals apart from SIGPIPE. It will therefore exit on most signals received.
This will also cause all instances of cnid_dbd’s started by that cnid_metad to exit gracefully. Since state about and
IPC access to the subprocesses is only maintained in memory by cnid_metad this is desired behaviour. As soon
as cnid_metad is restarted afpd processes will transparently reconnect.

SEE ALSO

cnid_dbd(8), afpd(8)

5.20 getzones

Name

getzones — list AppleTalk zone names

Synopsis

getzones [-m | -l] [address]

DESCRIPTION

Getzones is used to obtain a list of AppleTalk zone names using the Zone Information Protocol (ZIP). It sends a
GetZoneList request to an AppleTalk router. By default, it sends the request to the locally running atalkd(8).

OPTIONS

-m List the name of the local zone only; this is accomplished by sending a ZIP GetMyZone request.

5.21. megatron 66

-l List the local zones; this is accomplished by sending a GetLocalZones request.

address Contact the AppleTalk router at address. address is parsed by atalk_aton(3).

SEE ALSO

atalk_aton(3), atalkd(8).

5.21 megatron

Name

megatron, unhex, unbin, unsingle, hqx2bin, single2bin, macbinary — Macintosh file format transformer

Synopsis

megatron [sourcefile ...] unbin [sourcefile ...] unhex [sourcefile ...] unsingle
[sourcefile ...] hqx2bin [sourcefile ...] single2bin [sourcefile ...] macbinary
[sourcefile ...]

DESCRIPTION

megatron is used to transform files from BinHex, MacBinary, AppleSingle, or netatalk style AppleDouble formats
into MacBinary or netatalk style AppleDouble formats. The netatalk style AppleDouble format is the file format
used by afpd, the netatalk Apple Filing Protocol (AppleShare) server. BinHex, MacBinary, and AppleSingle are
commonly used formats for transferring Macintosh files between machines via email or file transfer protocols.
megatron uses its name to determine what type of tranformation is being asked of it.

If megatron is called as unhex , unbin or unsingle, it tries to convert file(s) from BinHex, MacBinary, or Ap-
pleSingle into AppleDouble format. BinHex is the format most often used to send Macintosh files by e-mail.
Usually these files have an extension of ".hqx". MacBinary is the format most often used by terminal emulators
"on the fly" when transferring Macintosh files in binary mode. MacBinary files often have an extension of ".bin".
Some Macintosh LAN-based email packages use uuencoded AppleSingle format to "attach" or "enclose" files in
email. AppleSingle files don’t have a standard filename extension.

If megatron is called as hqx2bin, single2bin, or macbinary, it will try to convert the file(s) from BinHex, Ap-
pleSingle, or AppleDouble into MacBinary. This last translation may be useful in moving Macintosh files from
your afpd server to some other machine when you can’t copy them from the server using a Macintosh for some
reason.

If megatron is called with any other name, it uses the default translation, namely unhex.

If no source file is given, or if sourcefile is ‘-’, and if the conversion is from a BinHex or MacBinary file, megatron
will read from standard input.

The filename used to store any output file is the filename that is encoded in the source file. MacBinary files are
created with a ".bin" extension. In the case of conflicts, the old file is overwritten!

67 Chapter 5. Manual Pages

SEE ALSO

afpd(8)

5.22 nbp

Name

nbplkup, nbprgstr, nbpunrgstr — access NBP database

Synopsis

nbplkup [-r maxresponses] [-A address] [-m maccodepage] nbpname

nbprgstr [-A address] [-p port] [-m maccodepage] nbpname

nbpunrgstr [-A address] [-m maccodepage] nbpname

Description

nbprgstr registers nbpname with atalkd(8), at the given port . nbpunrgstr informs atalkd that nbpname is no
longer to be advertised.

nbplkup displays up to maxresponses (default 1000) entities registered on the AppleTalk internet. nbpname is
parsed by nbp_name(3). An ‘=’ for the object or type matches anything, and an ‘*’ for zone means the local zone.
The default values are taken from the NBPLKUP environment variable, parsed as an nbpname.

Environment Variables

NBPLKUP default nbpname for nbplkup

ATALK_MAC_CHARSET the codepage used by the clients on the Appletalk network

ATALK_UNIX_CHARSET the codepage used to display extended characters on this shell.

Example

Find all devices of type LaserWriter in the local zone.

example% nbplkup :LaserWriter
Petoskey:LaserWriter 7942.129:218

Gloucester:LaserWriter 8200.188:186
Rahway:LaserWriter 7942.2:138

517 Center:LaserWriter 7942.2:132
ionia:LaserWriter 7942.2:136

5.23. nbp_name 68

Evil DEC from Hell:LaserWriter 7942.2:130
Hamtramck:LaserWriter 7942.2:134

Iron Mountain :LaserWriter 7942.128:250
example%

See also

nbp_name(3), atalkd(8).

5.23 nbp_name

Name

nbp_name — NBP name parsing

Synopsis

int nbp_name (name, obj , type , zone);
char *name;
char **obj ;
char **type ;
char **zone ;

DESCRIPTION

nbp_name() parses user supplied names into their component object, type, and zone. obj, type, and zone should
be passed by reference, and should point to the caller’s default values. nbp_name() will change the pointers to
the parsed-out values. name is of the form object:type@zone, where each of object, :type, and @zone replace obj, type,
and zone, respectively. type must be proceeded by ‘:’, and zone must be preceded by ‘@’.

EXAMPLE

The argument of afpd(8)’s -n option is parsed with nbp_name(). The default value of obj is the first component
of the machine’s hostname (as returned by gethostbyname(3)). The default value of type is “AFPServer”, and of
zone is “*”, the default zone. To cause afpd to register itself in some zone other than the default, one would invoke
it as

afpd -n @some-other-zone

obj and type would retain their default values.

69 Chapter 5. Manual Pages

BUGS

obj, type, and zone return pointers into static area which may be over-written on each call.

5.24 netatalk.conf

Name

netatalk.conf — Configuration file used by netatalk(8) to determine its general configuration

DESCRIPTION

/etc/netatalk/netatalk.conf is the configuration file used by afpd to determine what portions of the file system will
be shared via Appletalk, as well as their behaviors.

Any line not prefixed with # is interpreted. The configuration lines are composed like:

option = value

The possible options and their meanings are:

AFPD_GUEST Sets the id of the guest user to a local user on the system.

AFPD_MAX_CLIENTS Sets the maximum number of clients that can simultaneously connect to the server.

AFPD_RUN Enables the afpd daemon if set to "yes". This should be enabled if you are planning on using netatalk
as a file server.

AFPD_UAM_LIST Sets the default UAMs for afpd (and papd, if printer authentication is compiled in) to use.

Example: AFPD_UAMLIST="-U uams_guest.so,uams_randnum.so"

CNID_METAD_RUN Enables the cnid_metad daemon if set to "yes". This should be enabled if you are going to
use the dbd CNID backend.

ATALK_BGROUND "yes" will set netatalk to initialize in the background, and "no" will cause normal initializa-
tion.

ATALK_NAME Sets the machines’ Appletalk name.

ATALK_ZONE Sets the machines’ Appletalk zone.

ATALKD_RUN Enables the atalkd daemon if set to "yes". This should be enabled if you are planning on provid-
ing Appletalk services.

5.25. netatalk-config 70

PAPD_RUN Enables the papd daemon if set to "yes". This should be enabled if you are planning on using
netatalk as a print server.

ATALK_MAC_CHARSET Set the Mac client codepage, used by atalkd and papd to convert extended characters
from the Unix to the Mac codepage.

ATALK_UNIX_CHARSET Set the Unix codepage, used by atalkd and papd to convert extended characters from
the Unix to the Mac codepage. Has to match the codepage of the configuration files.

SEE ALSO

atalkd(8), atalkd.conf(5)

5.25 netatalk-config

Name

netatalk-config — script to get information about the installed version of netatalk

Synopsis

netatalk-config [-prefix [=DIR]] [-exec_prefix [=DIR]] [-help] [-version] [-libs]
[-libs-dirs] [-libs-names] [-cflags] [-macros]

DESCRIPTION

netatalk-config is a tool that is used to determine the compiler and linker flags that should be used to compile
and link programs that use the netatalk run-time libraries.

OPTIONS

netatalk-config accepts the following options:

-help Print a short help for this command and exit.

-version Print the currently installed version of netatalk on the standard output.

-libs Print the linker flags that are necessary to link against the netatalk run-time libraries.

-libs-dirs Print only the -l/-R part of –libs.

71 Chapter 5. Manual Pages

-libs-names Print only the -l part of –libs.

-cflags Print the compiler flags that are necessary to compile a program linked against the netatalk run-time
libraries.

-macros Print the netatalk m4 directory.

-prefix=PREFIX If specified, use PREFIX instead of the installation prefix that netatalk was built with when
computing the output for the –cflags and –libs options. This option is also used for the exec prefix if –exec-
prefix was not specified. This option must be specified before any –libs or –cflags options.

-exec_prefix=PREFIX If specified, use PREFIX instead of the installation exec prefix that netatalk was built
with when computing the output for the –cflags and –libs options. This option must be specified before any
–libs or –cflags options.

COPYRIGHT

Copyright c© 1998 Owen Taylor

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation.

Man page adapted for netatalk-config by Sebastian Rittau in 2001.

5.26 pap

Name

pap — client interface to remote printers using Printer Access Protocol

Synopsis

pap [-A address] [-c] [-d] [-e] [-E] [-p nbpname] [-s statusfile] [-w] [-W] [FILES]

DESCRIPTION

pap is used to connect and send files to an AppleTalk connected printer using the Apple Printer Access Protocol
(PAP). When pap starts execution, it tries to open a session with the printer using PAP, and then downloads the
files to the printer.

If no files are given on the command line, pap begins reading from standard input.

5.26. pap 72

If no printer is specified on the command line, pap looks for a file called .paprc in the current working directory
and reads it to obtain the nbpname of a printer. Blank lines and lines that begin with a ‘#’ are ignored. type and
zone default to LaserWriter and the zone of the local host, respectively.

Note that pap is designed to be useful as a communication filter for sending lpd(8) spooled print jobs to AppleTalk
connected printers. See psf(8) for hints on how to use it this way.

OPTIONS

-A address Connect to the printer with Appletalk address address and do not consult the .paprc file to find a
printer name. See atalk_aton(3) for the syntax of address.

-c Take cuts. The PAP protocol specified a simple queuing procedure, such that the clients tell the printer how
long they have been waiting to print. This option causes pap to lie about how long it has been waiting.

-d Enable debug output.

-e Send any message from the printer to stderr instead of stdout. psf(8) invokes pap with this option.

-E Don’t wait for EOF from the printer. This option is useful for printers which don’t implement PAP correctly.
In a correct implementation, the client side should wait for the printer to return EOF before closing the
connection. Some clients don’t wait, and hence some printers have related bugs in their implementation.

-p nbpname Connect to the printer named nbpname and do not consult the .paprc file to find a printer name. See
nbp_name(3) for the syntax of nbpname.

-s statusfile Update the file called statusfile to contain the most recent status message from the printer. pap
gets the status from the printer when it is waiting for the printer to process input. The statusfile will contain
a single line terminated with a newline. This is useful when pap is invoked by psf(8) within lpd’s spool
directory.

-w Wait for the printer status to contain the word "waiting" before sending the job. This is to defeat printer-side
spool available on HP IV and V printers.

-W Wait for the printer status to contain the word "idle" before sending the job. This is to defeat printer-side
spool available on HP IV and V printers.

FILES

.paprc file read to obtain printer name if not specified on command line

SEE ALSO

nbp_name(3), atalk_aton(3), lpd(8), psf(8).

73 Chapter 5. Manual Pages

5.27 papd

Name

papd — AppleTalk print server daemon

Synopsis

papd [-d] [-f configfile] [-p printcap]

Description

papd is the AppleTalk printer daemon. This daemon accepts print jobs from AppleTalk clients (typically Mac-
intosh computers) using the Printer Access Protocol (PAP). When used with System V printing systems, papd
spools jobs directly into an lpd(8) spool directory and wakes up lpd after accepting a job from the network to
have it re-examine the appropriate spool directory. The actual printing and spooling is handled entirely by lpd.

papd can also pipe the print job to an external program for processing, and this is the preferred method on
systems not using CUPS to avoid compatibility problems with all the flavours of lpd in use.

As of version 2.0, CUPS is also supported. Simply using cupsautoadd as first papd.conf entry will share all CUPS
printers automagically using the PPD files configured in CUPS. It ist still possible to overwrite these defaults by
individually define printer shares. See papd.conf(5) for details.

papd is typically started at boot time, out of system init scripts. It first reads from its configuration file, /etc/
netatalk/papd.conf. The file is in the same format as /etc/printcap. See printcap(5) for details. The name of
the entry is registered with NBP.

The following options are supported:

Name Type Default Description
pd str ’.ppd’ Pathname to PPD file
pr str ’lp’ LPD or CUPS printer name (or pipe to a print command)
op str ’operator’ Operator name for LPD spooling
au bool false Whether to do authenticated printing or not
ca str NULL Pathname used for CAP-style authentification
sp bool false PSSP-style authetication
am str NULL UAMS to use for authentication
pa str NULL Printer’s AppleTalk address
co str NULL CUPS options as supplied to the lp(1) command with "-o"
fo bool false adjust lineending for foomatic-rip

If no configuration file is given, the hostname of the machine is used as the NBP name and all options take their
default value.

Options

-d Do not fork or disassociate from the terminal. Write some debugging information to stderr.

5.27. papd 74

-f configfile Consult configfile instead of /etc/netatalk/papd.conf for the configuration information.

-p printcap Consult printcap instead of /etc/printcap for LPD configuration information.

Notes

PSSP (Print Server Security Protocol) is an authentication protocol carried out through postscript printer queries
to the print server. Using PSSP requires LaserWriter 8.6.1 or greater on the client mac. The user will be prompted
to enter their username and password before they print. It may be necessary to re-setup the printer on each client
the first time PSSP is enabled, so that the client can figure out that authentication is required to print. You can
enable PSSP on a per-printer basis. PSSP is the recommended method of authenticating printers as it is more
robust than CAP-style authentication, described below.

CAP-style authentication gets its name from the method the CAP (Columbia APpletalk) package used to au-
thenticate its mac clients’ printing. This method requires that a user login to a file share before they print. afpd
records the username in a temporary file named after the client’s Appletalk address, and it deletes the temporary
file when the user disconnects. Therefore CAP style authentification will not work for clients connected to afpd
via TCP/IP. papd gets the username from the file with the same Appletalk address as the machine connecting to
it. CAP-style authentication will work with any mac client. If both CAP and PSSP are enabled for a particular
printer, CAP will be tried first, then papd will fall back to PSSP.

The list of UAMs to use for authentication (specified with the ’am’ option) applies to all printers. It is not possible
to define different authentication methods on each printer. You can specify the list of UAMS multiple times, but
only the last setting will be used. Currently only uams_guest.so and uams_clrtxt.so are supported as printer
authentication methods. The guest method requires a valid username, but not a password. The Cleartext UAM
requires both a valid username and the correct password.

NOTE

As of this writing, Mac OS X makes no use of PSSP authentication any longer. CAP-style authenti-
cation normally won’t be an option, too caused by the use of AFP over TCP these days.

Files

/etc/netatalk/papd.conf Default configuration file.

/etc/printcap Printer capabilities database.

.ppd PostScript Printer Description file. papd answers configuration and font queries from printing clients by
consulting the configured PPD file. Such files are available for download from Adobe, Inc. (http://www.adobe.com/support/downloads/main.htm
<http://www.adobe.com/support/downloads/main.html#Printer>), or from the printer’s manufacturer.
If no PPD file is configured, papd will return the default answer, possibly causing the client to send exces-
sively large jobs.

http://www.adobe.com/support/downloads/main.html#Printer

75 Chapter 5. Manual Pages

Caveats

papd accepts characters with the high bit set (a full 8-bits) from the clients, but some PostScript printers (including
Apple Computer’s LaserWriter family) only accept 7-bit characters on their serial interface by default. The same
applies for some printers when they’re accessed via TCP/IP methods (remote LPR or socket). You will need to
configure your printer to accept a full 8 bits or take special precautions and convert the printjob’s encoding (eg.
by using co="protocol=BCP" when using CUPS 1.1.19 or above).

When printing clients run MacOS 10.2 or above, take care that PPDs do not make use of *cupsFilter: com-
ments unless the appropriate filters are installed at the client’s side, too (remember: Starting with 10.2 Apple
chose to integrate CUPS into MacOS X). For in-depth information on how CUPS uses PPDs see chapter 3.4 in
http://tinyurl.com/zbxn <http://tinyurl.com/zbxn>).

See also

lpr(1),lprm(1),printcap(5),lpc(8),lpd(8), lp(1).

5.28 papd.conf

Name

papd.conf — Configuration file used by papd(8) to determine the configuration of printers used by the Netatalk
printing daemon

DESCRIPTION

/etc/netatalk/papd.conf is the configuration file used by papd to configure the printing services offered by netatalk.
Please note that papd must be enabled in /etc/netatalk/netatalk.conf for this to take any effect. papd shares the same
defaults as lpd on many systems, but not Solaris.

Any line not prefixed with # is interpreted. The configuration lines are composed like:

printername:[options]

On systems running a System V printing system the simplest case is to have either no papd.conf, or to have one
that has no active lines. In this case, atalkd should auto-discover the local printers on the machine. Please note
that you can split lines by using \\fR.

printername may be just a name (Printer 1), or it may be a full name in nbp_name format (Printer 1:Laser-
Writer@My Zone).

Systems using a BSD printing system should make use of a pipe to the printing command in question within the
pr option (eg. pr=|/usr/bin/lpr -J%J -u%U). Note: When printing using a pipe, papd recognizes several wildcards:
%F will be replaced by the name present in the "%%For:" comment in the PostScript stream, same with %J for
the "%%Title:" comment. %U will be substituted with the login name (the latter applies only when authenticated
printing is in effect).

When CUPS support is compiled in, then cupsautoadd as the first entry in papd.conf will automagically share all
CUPS printers by papd utilizing the PPDs assigned in CUPS (customizable – see below). This can be overwritten
for individal printers by subsequently adding individual entries using the CUPS queue name as pr entry. Note:
CUPS support is mutually exclusive with System V support described above.

http://tinyurl.com/zbxn

5.28. papd.conf 76

The possible options are colon delimited (:), and lines must be terminated with colons. The possible options and
flags are:

am=(uams list) The am option allows specific UAMs to be specified for a particular printer. It has no effect if
the au flag is not present or if papd authentication was not built into netatalk. Note: possible values are
uams_guest.so and uams_clrtxt.so only. The first method requires a valid username, but no password. The
second requires both a valid username and the correct password.

au If present, this flag enables authentication for the printer. Please note that papd authentication must be built
into netatalk for this to take effect.

co=(CUPS options) The co option allows options to be passed through to CUPS (eg. co="protocol=TBCP" or
co="raw").

cupsautoadd[:type][@zone] If used as the first entry in papd.conf this will share all CUPS printers via papd.
type/zone settings as well as other parameters assigned to this special printer share will apply to all CUPS
printers. Unless the pd option is set, the CUPS PPDs will be used. To overwrite these global settings for
individual printers simply add them subsequently to papd.conf and assign different settings.

fo If present, this flag enables a hack to translate line endings originating from pre Mac OS X LaserWriter drivers
to let foomatic-rip recognize foomatic PPD options set in the printer dialog. Attention: Use with caution
since this might corrupt binary print jobs!

op=(operator) This specifies the operator name, for lpd spooling.

pa=(appletalk address) Allows specification of Appletalk addresses. Usually not needed.

pd=(path to ppd file) Specifies a particular PPD (printer description file) to associate with the selected printer.

pr=(lpd/CUPS printer name or pipe command) Sets the lpd or CUPS printer that this is spooled to.

Examples

Unless CUPS support has been compiled in (which is default from Netatalk 2.0 on) one simply defines the lpd
queue in question by setting the pr parameter to the queue name, in the following example "ps". If no pr param-
eter is set, the default printer will be used.

77 Chapter 5. Manual Pages

Example 5.28.1: papd.conf System V printing system examples

The first spooler is known by the AppleTalk name Mac Printer Spooler, and uses a PPD file located in /usr/
share/lib/ppd. In addition, the user mcs will be the owner of all jobs that are spooled. The second spooler is
known as HP Printer and all options are the default.
Mac Printer Spooler:\

:pr=ps:\
:pd=/usr/share/lib/ppd/HPLJ_4M.PPD:\
:op=mcs:

HP Printer:\
:

An alternative to the technique outlined above is to direct papd’s output via a pipe into another program. Using
this mechanism almost all printing systems can be driven. Netatalk supplies three "wildcards" that get substi-
tuted with values of the already printed job: %F, %U and %J. Using these wildcards, one can pass those parameters
directly to programs or implement small wrapper scripts to call the printing system in question.

Example 5.28.2: papd.conf examples using pipes

The first spooler is known as HP 8100. It pipes the print job to /usr/bin/lpr for printing using the value of the
%%Title: comment as job name. PSSP authenticated printing is enabled, as is CAP-style authenticated printing.
Both methods support guest and cleartext authentication as specified by the ’am’ option. The PPD used is /etc/
atalk/ppds/hp8100.ppd. The second spooler is called "Dump PostScript" and uses a pipe to cat to send the raw
PostScript code into the user’s home directory into a file called like the printjob.
HP 8100:\

:pr=|/usr/bin/lpr -Plp -J"%J":\
:sp:\
:ca=/tmp/print:\
:am=uams_guest.so,uams_pam.so:\
:pd=/etc/atalk/ppds/hp8100.ppd:

Dump PostScript:LaserWriter@Server:\
:pr=|cat >/home/%U/%J-prn.out:\
:pd=/usr/share/lib/ppd/mooralana.ppd:\
:sp:au:op=lp:\
:am=uams_clrtxt.so:

Starting with Netatalk 2.0 direct CUPS integration is available. In this case, defining only a queue name as pr
parameter won’t invoke the SysV lpd daemon but uses CUPS instead. Unless a specific PPD has been assigned
using the pd switch, the PPD configured in CUPS will be used by papd, too.

There exists one special share named "cupsautoadd". If this is present as the first entry then all available CUPS
queues will be served automagically using the parameters assigned to this global share. But subsequent printer
definitions can be used to override these global settings for individual spoolers.

5.29. papstatus 78

Example 5.28.3: papd.conf CUPS examples

The first entry sets up automatic sharing of all CUPS printers. All those shares appear in the zone "1st floor" and
since no additional settings have been made, they use the CUPS printer name as NBP name and use the PPD
configured in CUPS. The second entry defines different settings for one single CUPS printer. It’s NBP name is
differing from the printer’s name and the registration happens in another zone.
cupsautoadd@1st floor:op=root:

Boss’ LaserWriter@2nd floor:\
:pr=laserwriter-chief:

SEE ALSO

papd(8), atalkd.conf(5), lpd(8), lpoptions(8)

5.29 papstatus

Name

papstatus — get the status of an AppleTalk-connected printer

Synopsis

/usr/sbin/papstatus [-d] [-p printer] [retrytime]

DESCRIPTION

papstatus is used to obtain the current status message from an AppleTalk connected printer. It uses the Printer
Access Protocol (PAP) to obtain the status information.

If no printer is specified on the command line, papstatus looks for a file called .paprc in the current directory and
reads it to obtain the name of a printer. The .paprc file should contain a single line of the form object:type@zone
where each of object, :type, and @zone are optional. type and zone must be proceeded by ‘:’ and ‘@’ respectively.
Blank lines and lines the begin with a ‘#’ are ignored. type and zone default to LaserWriter and the zone of the local
host, respectively.

OPTIONS

-d Turns on a debugging mode that prints some extra information to standard error.

-p printer Get status from printer (do not consult any .paprc files to find a printer name). The syntax for printer
is the same as discussed above for the .paprc file.

79 Chapter 5. Manual Pages

retrytime Normally, papstatus only gets the status from the printer once. If retrytime is specified, the status is
obtained repeatedly, with a sleep of retrytime seconds between inquiring the printer.

FILES

.paprc file that contains printer name

SEE ALSO

nbp(1), pap(1)

5.30 psf

Name

psf — PostScript filter

Synopsis

psf [-n name] [-h host] [-w width] [-l length] [-i indent] [-c]

DESCRIPTION

psf is an lpd filter for PostScript printing. psf interprets the name it was called with to determine what filters to
invoke. First, if the string “pap” appears anywhere in the name, psf invokes pap to talk to a printer via AppleTalk.
Next, if the string “rev” appears, psf invokes psorder to reverse the pages of the job. Finally, if psf was called with
a filter’s name as the leading string, it invokes that filter. If there is no filter to run, psf examines the magic
number of the input, and if the input is not PostScript, converts it to PostScript.

KLUDGE

In the default configuration, psf supports two kludges. The first causes psf to check its name for the letter ‘m’.
If this letter is found and accounting is turned on, psf calls pap twice, once to get an initial page count and to
print the job, and another time to get a final page count. This is a work-around for bugs in a variety of PAP
implementions that cause printers to never properly close the PAP output file. A notable example is any printer
by Hewlett-Packard.

The second kludge causes psf to examine its name for the letter ‘w’. If this letter is found and accounting is
turned on, psf calls pap with the -w flag. This flag causes pap to wait until the printer’s status contains the string
‘idle’. Once this string is found, the job is printed as normal. This kludge is a work-around for printers, notably
Hewlett-Packard’s LaserJet IV, which will report a page count while a previous jobs is still printing.

5.31. psorder 80

EXAMPLE

The sample printcap entry below invokes psf to print text files, PostScript files, troff’s C/A/T output, and TeX’s
DVI output, to an AppleTalk connected LaserWriter Plus. Since the LaserWriter Plus stacks pages in descending
order, we reverse the pages and print the burst page last.

laser|lp|LaserWriter Plus on AppleTalk:\
:sd=/usr/spool/lpd/laser:\
:lp=/usr/spool/lpd/laser/null:\
:lf=/var/adm/lpd-errs:pw#80:hl:\
:of=/usr/libexec/ofpap:\
:if=/usr/libexec/ifpaprev:\
:tf=/usr/libexec/tfpaprev:\
:df=/usr/libexec/dfpaprev:

Note that if the host in question spools to more than one AppleTalk printer, /dev/null should not be used for the
lp capability. Instead, a null device should be created with mknod for each printer, as has been done above.

Finally, there is a file in the spool directory, /var/spool/lpd/laser, called .paprc, which pap reads for the Ap-
pleTalk name of the printer.

SEE ALSO

psorder(1), printcap(5), lpd(1), mknod(1), pap(1).

5.31 psorder

Name

psorder — PostScript pageorder filter

Synopsis

psorder [-duf] sourcefile

DESCRIPTION

psorder is a filter that re-orders the pages of a PostScript document. The result is written to the standard output.
By default, documents are processed into ascending order (the lowest numbered page is printed first). Some
PostScript documents specify that the order of their pages should never be changed; the default action of psorder
is to follow this specification.

If no source file is given, or if sourcefile is ‘-’, psorder reads from the standard input file.

81 Chapter 5. Manual Pages

OPTIONS

-d Re-order the pages of the document in downward or descending order. This is typically used to change the
order of a document to be printed by a printer that stacks pages face-up, such as an Apple LaserWriter or
LaserWriter Plus.

-u Specifies forward order, and is the default. It is used to try and ensure the correct ordering when a document
will be printed by a printer that stacks the pages face-down.

-f Force psorder to re-order the pages, even if the document claims that its page order is not to be trifled with.
This option should only be used experimentally, as it may cause documents to print incorrectly.

SEE ALSO

psf(8), lpr(1).

5.32 timelord

Name

timelord — Macintosh time server daemon

Synopsis

SYNTAX

timelord [-d] [-n filename]

DESCRIPTION

timelord is a simple time server for Macintosh computers that use the tardis client.

OPTIONS

-d Debug mode, i.e. don’t disassociate from controlling TTY.

-n nbpname Register this server as nbpname. This defaults to the hostname.

5.33. timeout 82

5.33 timeout

Name

timeout — Send a signal to a program after a certain time

SYNTAX

timeout [-s signal] seconds program [args]

DESCRIPTION

timeout executes a program (with arguments args) and sends a signal to it after a certain amount of seconds.

OPTIONS

-s signal Signal to send to the spawned process. This can be a numerical or symbolic ID. This defaults to TERM.

EXAMPLES

timeout 10 pap foo.ps Execute "pap foo.ps" and send a SIGTERM if pap doesn’t return after 10 seconds.

timeout -s HUP 60 sh Spawn a shell and send a hangup signal after one minute.

timeout -s 9 10 evilprog Execute a program and KILL it if it doesn’t quit after 10 seconds.

5.34 uniconv

Name

uniconv — convert Netatalk volume encoding

Synopsis

uniconv [-ndv] -c cnidbackend -f fromcode -t tocode [-m maccode] volumepath

Description

uniconv converts the volume encoding of volumepath from the fromcode to the tocode encoding.

83 Chapter 5. Manual Pages

Options

-c CNID backend used on this volume, usually cdb or dbd. Should match the backend selected with afpd for
this volume. If not specified, the default CNID backend ‘cdb’ is used

-d don’t CAP encode leading dots (:2e), equivalent to usedots in AppleVolumes.default(5)

-f encoding to convert from, use ASCII for CAP encoded volumes

-h display help

-m Macintosh client codepage, required for CAP encoded volumes. Defaults to ‘MAC_ROMAN’

-n ‘dry run’, don’t do any real changes

-t volume encoding to convert to, e.g. UTF8

-v verbose output, use twice for maximum logging.

-V print version and exit

WARNING

Setting the wrong options might render your data unusable!!! Make sure you know what you are doing. Always
backup your data first.

It is *strongly* recommended to do a ‘dry run’ first and to check the output for conversion errors.

afpd(8) should not be running while you change the volume encoding. Remember to change volcodepage in
AppleVolumes.default(5) to the new codepage, before restarting afpd.

USE AT YOUR OWN RISK!!!

Selectable charsets

Netatalk provides internal support for UTF-8 (pre- and decomposed) and CAP. If you want to use other charsets,
they must be provided by iconv(1)

uniconv also knows iso-8859.adapted, an old style 1.x NLS widely used. This is only intended for upgrading old
volumes, afpd(8) cannot handle iso-8859.adapted anymore.

CNID background

The CNID backends maintains name to ID mappings. If you change a filename outside afpd(8) (shell, samba),
the CNID db, i.e. the DIDNAME index, gets inconsistent. Netatalk tries to recover from such inconsistencies as
gracefully as possible. The mechanisms to resolve such inconsistencies may fail sometimes, though, as this is not

5.34. uniconv 84

an easy task to accomplish. I.e. if several names in the path to the file or directory have changed, things may go
wrong.

If you change a lot of filenames at once, chances are higher that the afpds fallback mechanisms fail, i.e. files
will be assigned new IDs, even though the file hasn’t changed. uniconv therefore updates the CNID entry for
each file/directory directly after it changes the name to avoid inconsistencies. The two supported backends for
volumes, dbd and cdb, use the same CNID db format. Therefore, you could use uniconv with cdb and afpd with
dbd later.

Warning: There must not be two processes opening the CNID database using different backends at once! If a
volume is still opened with dbd (cnid_metad/cnid_dbd) and you start uniconv with cdb, the result will be a
corrupted CNID database, as the two backends use different locking schemes. You might run into additional
problems, e.g. if dbd is compiled with transactions, cdb will not update the transaction logs.

In general, it is recommended to use the same backend for uniconv you are using with afpd(8).

Examples

convert 1.x CAP encoded volume to UTF-8, clients used MacRoman codepage, cnidscheme is dbd:

example% uniconv -c dbd -f ASCII -t UTF8 -m MAC_ROMAN /path/to/share

convert iso8859-1 volume to UTF-8, cnidscheme is cdb:

example% uniconv -c cdb -f ISO-8859-1 -t UTF8 -m MAC_ROMAN /path/to/share

convert 1.x volume using iso8859-1 adapted NLS to CAP encoding:

example% uniconv -f ISO-8859-ADAPTED -t ASCII -m MAC_ROMAN/path/to/share

convert UTF-8 volume to CAP, for MacCyrillic clients:

example% uniconv -f UTF8 -t ASCII -m MAC_CYRILLIC /path/to/share

See also

AppleVolumes.default(5),afpd(8),iconv(1),cnid_metad(8),cnid_dbd(8)

Chapter 6

The GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of
it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you
legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.

85

86

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redis-
tributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To
prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not de-
rived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based
on the Program.

87 Chapter 6. The GNU General Public License

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or exe-
cutable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the ex-
ecutable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

88

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and “any later version”, you have the option of following the terms and con-
ditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM,
TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

89 Chapter 6. The GNU General Public License

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands show w and show c should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than show w and show c; they could even be
mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

Index

2-Way Randnum exchange
"2-Way Randnum exchange" UAM, 18

achfile, 33
acleandir, 34
ADv1

AppleDouble v1, 25
ADv2

AppleDouble v2, 14, 25
aecho, 35
AEP

Apple Echo Protocol, 35, 58
afile, 36
AFP

Apple Filing Protocol, 13
afpd, 24, 37
afpd.conf, 39
AFPD_GUEST, 69
AFPD_MAX_CLIENTS, 69
AFPD_RUN, 69
AFPD_UAM_LIST, 69
afppasswd, 46
AFS Kerberos

"AFS Kerberos" UAM (Kerberos IV), 18
ALLMULTI

NIC multicast settings, 59
apple_cp, 53
apple_mv, 54
apple_rm, 55
AppleDB

.AppleDB CNID database store, 28
CNID database folder, 14

AppleShare
Synonym for an AFP server, 14

Appletalk
The AppleTalk protocol suite, 9

AppleVolumes.default, 47
ASCII

afpd’s unixcodepage setting, 17
American Standard Code for Information Inter-

change, 16
asip-status.pl, 56
atalk, 57
atalk_aton, 60
ATALK_BGROUND, 69
ATALK_MAC_CHARSET, 69
ATALK_NAME, 69
ATALK_UNIX_CHARSET, 69
ATALK_ZONE, 69
atalkd, 24, 58

atalkd.conf, 59
ATALKD_RUN, 69
authenticated printing, 23, 74
Authentication

between AFP client and server, 18

Backend
CNID backend, 14
CUPS backend, 23

BDB
Berkeley DB, 5

CAP
Columbia AppleTalk Package, 25

CAP encoding
CAP style character encoding, 18

CAP-style authentication
old-style printing authentication, 74

CDB
"cdb" CNID backend, 15, 28

Charset
character set, 16

Cleartxt Passwrd
"Cleartxt Passwrd" UAM, 18

Client Krb v2
"Client Krb v2" UAM (Kerberos V), 18

CNID
Catalog Node ID, 14, 27

CNID backend, 14, 61, 63
cnid_dbd, 61
cnid_index, 63
cnid_metad, 24, 64

dbd CNID database daemon, 28
CNID_METAD_RUN, 69
cnidscheme

specifying a CNID backend, 14, 28, 47
Codepage, 16
Compile

Compiling Netatalk from Source, 6
CUPS

Common Unix Printing System, 22
CVS

Concurrent Versioning System, 3

DBD
"dbd" CNID backend, 15, 28

DDP
Datagram Delivery Protocol, 42

Deb
Debian package, 3

Decomposed

91

INDEX 92

Decomposed Unicode normalization, 17
DHCAST128

"DHCAST128" UAM, 18
DID

Directory ID, 14

FID
File ID, 14

File Services
Netatalk’s File Services, 13

getzones, 65

hqx2bin, 66

Iconv
iconv encoding conversion engine, 18

IETF
Internet Engineering Task Force, 5

ISO-8859-1
afpd’s volcharset setting, 51

ISO-8859-15
afpd’s volcharset setting, 51

Kerberos IV
"Kerberos IV" UAM, 18

Kerberos V
"Client Krb v2" UAM, 19

Last
"last" CNID backend, 15, 28

lpd
System V line printer daemon, 22

LPR
Remote Line Printer Protocol, 22

lpr
BSD lpd/lpr daemon, 22

LPRng
LPR Next Generation, 22

macbinary, 66
maccodepage

afpd’s maccodepage setting, 17
MacRoman

MacRoman charset, 16
megatron, 66

NBP
Name Binding Protocol, 42, 58

nbp, 67
nbp_name, 68
nbplkup, 67
nbprgstr, 67
nbpunrgstr, 67

Nested volumes, 15
net-range

AppleTalk net-range, 59
netatalk-config, 70
netatalk.conf, 24, 69
NFS

Network File System, 15, 61
NLS

Native Language Support, 25
No User Authent

"No User Authent" UAM (guest access), 18
NTP

Network Time Protocol, 24

page accounting, 23
PAM

Pluggable Authentication Modules, 5
Panther

Mac OS X 10.3, 13
PAP

Printer Access Protocol, 22
pap, 71
papd, 24, 73
papd.conf, 75
PAPD_RUN, 24, 69
papstatus, 78
PGPuam 1.0

"PGPuam 1.0" UAM, 18
Phase

AppleTalk phase 1 or 2, 58, 59
Ports

FreeBSD port, 3
PPD

PostScript Printer Description file, 22
Precomposed

Precomposed Unicode normalization, 17
Printing, 22
psf, 79
psorder, 80
PSSP

Print Server Security Protocol, 74

Quotas
Disk usage quotas, 15

Randnum exchange
"Randnum exchange" UAM, 18

Router
AppleTalk router, 11

RPM
Red Hat Package Manager package, 3

RTMP
Routing Table Maintainance Protocol, 58

93 INDEX

Samba, 17
single2bin, 66
SLP

Service Location Protocol, 5, 42
Startscript

startup script, 24, 69
SUN

Sun Microsystems, 5
Symlink

Unix softlink, 15

Time Services, 24
Timelord

AppleTalk time server, 24
timelord, 24, 81
timeout, 82

UAM
User Authentication Module, 18, 46, 73

uams_cleartxt.so
"Cleartxt Passwrd" UAM, 20

uams_dhx.so
"DHCAST128" UAM, 20

uams_gss.so
"Client Krb v2" UAM (Kerberos V), 20

uams_guest.so
"No User Authent" UAM (guest access), 20

uams_krb4.so
"Kerberos IV" UAM, 18

uams_pgp.so
"PGPuam 1.0" UAM, 18

uams_randnum.so
"(2-Way) Randnum exchange" UAM, 20

unbin, 66
unhex, 66
Unicode, 16
uniconv, 82
unixcodepage

afpd’s unixcodepage setting, 17
unsingle, 66
UTF8

afpd’s volcharset setting, 51
Netatalk’s precomposed UTF-8 encoding, 17

UTF8-MAC
afpd’s volcharset setting, 51
Netatalk’s decomposed UTF-8 encoding, 17

volcharset
afpd’s volcharset setting, 18

ZIP
Zone Information Protocol, 58

	Contents
	1 Introduction to Netatalk
	2 Installation
	2.1 How to obtain Netatalk
	2.1.1 Binary packages
	2.1.2 Source packages
	2.1.2.1 Tarballs
	2.1.2.2 Anonymous CVS

	2.2 Compiling Netatalk
	2.2.1 Prerequisites
	2.2.1.1 System requirements
	2.2.1.2 Required third party software
	2.2.1.3 Optional third party software

	2.2.2 Compiling Netatalk
	2.2.2.1 Configuring the build

	2.2.3 Compiling a new Berkeley DB for Netatalk
	2.2.3.1 Using a statically linked Berkeley DB
	2.2.3.2 Using a dynamically linked Berkeley DB

	3 Setting up Netatalk
	3.1 Appletalk
	3.1.1 To use AppleTalk or not
	3.1.2 No AppleTalk routing
	3.1.3 atalkd acting as an AppleTalk router

	3.2 File Services
	3.2.1 Setting up the AFP file server
	3.2.1.1 afpd.conf
	3.2.1.2 AppleVolumes.default

	3.2.2 CNID backends
	3.2.2.1 cdb
	3.2.2.2 dbd
	3.2.2.3 last

	3.2.3 Charsets/Unicode
	3.2.3.1 Why Unicode?
	3.2.3.2 character sets used by Apple
	3.2.3.3 afpd and character sets

	3.2.4 Authentication
	3.2.4.1 AFP authentication basics
	3.2.4.2 UAMs supported by Netatalk
	3.2.4.3 Which UAMs to activate?
	3.2.4.4 Using different authentication sources with specific UAMs
	3.2.4.5 Netatalk UAM overview table
	3.2.4.6 SSH tunneling

	3.3 Printing
	3.3.1 Setting up the PAP print server
	3.3.1.1 Integrating papd with SysV lpd
	3.3.1.2 Using pipes with papd
	3.3.1.3 Using direct CUPS support

	3.3.2 Using AppleTalk printers

	3.4 Time Services
	3.4.1 Using Netatalk as a time server for Macintoshes

	3.5 Starting and stopping Netatalk

	4 Upgrading from a previous version of Netatalk
	4.1 Overview
	4.2 Volumes and filenames
	4.2.1 How to upgrade a volume to 2.0
	4.2.2 How to use a 1.x CAP encoded volume with 2.0
	4.2.3 How to use a 1.x NLS volume with 2.0

	4.3 Choosing a CNID storage scheme
	4.3.1 How to upgrade if no persistent CNID storage was used
	4.3.2 How to upgrade if a persistent CNID storage scheme was used
	4.3.3 How to upgrade if a persistent CNID storage scheme was used, the brute force approach

	4.4 Setting up a test server on the same machine
	4.4.1 Setting up an empty test share
	4.4.2 Duplicating an already existing share
	4.4.3 Configuring and running the test afpd

	5 Manual Pages
	5.1 achfile
	5.2 acleandir
	5.3 aecho
	5.4 afile
	5.5 afpd
	5.6 afpd.conf
	5.7 afppasswd
	5.8 AppleVolumes.default
	5.9 apple_cp
	5.10 apple_mv
	5.11 apple_rm
	5.12 asip-status.pl
	5.13 atalk
	5.14 atalkd
	5.15 atalkd.conf
	5.16 atalk_aton
	5.17 cnid_dbd
	5.18 cnid_index
	5.19 cnid_metad
	5.20 getzones
	5.21 megatron
	5.22 nbp
	5.23 nbp_name
	5.24 netatalk.conf
	5.25 netatalk-config
	5.26 pap
	5.27 papd
	5.28 papd.conf
	5.29 papstatus
	5.30 psf
	5.31 psorder
	5.32 timelord
	5.33 timeout
	5.34 uniconv

	6 The GNU General Public License
	Index

