
Calling TECkit from VB and VBA
Version 0.4 June 2002

Created by Bob Hallissy,
SIL Non-Roman Script Initiative (NRSI)
Copyright © 2002, SIL International

When using SIL International’s TECkit converter on the Microsoft Windows platform, both the
engine and the compiler, which are implemented as Windows DLLs, can be called from Visual
Basic or Visual Basic for Applications. This makes it possible, for example, to write macros for
Microsoft Office applications (e.g., Word, Excel) that can do data conversions “on the fly” inside
documents. This document template contains documentation and examples on how to call the
TECkit engine from VB or VBA. (I have not included any information about calling the
compiler, however, so this code assumes you have compiled modules available.)

Please note that this is not a “finished product”, but rather a proof of concept. Feel free to use the
included code to develop tools to meet your own requirements.

Finally, this document assumes familiarity with VB- or VBA-based software development.

Copyright information
This document template, and the code supplied in the included modules, is copyright © 2002 SIL
International. If you find bugs in the code, the author would appreciate hearing from you. You are
hereby permitted to use the code modules as a starting point for your own projects.

Installation
In order to execute the example Word macros, the TECkit engine DLL (TECkit_x86.dll)
must be available somewhere on your PATH.

Additionally, some of the sample code uses the SIL Greek converter (supplied with TECkit). The
macros need to know the location, on your file system, of the compiled converter. This is
hardcoded in the constant GREEK_MAPPING_FILE near the top of the module named
TKWRD_ConvertData – you will need to modify this constant to match your installation. (You
will also need to compile the Greek mapping description to create the mapping file.)

In order for the sample data (below) to display properly before conversion you will need the SIL
Galatia font installed (available here) and for proper display after conversion you will need the
Arial Unicode MS font (a component of Microsoft Office) installed.

Definitions
Within the context of this document, the following definitions apply:

Calling TECkit from VB and VBA Page 1 of 5

mailto:Bob_Hallissy@sil.org?subject=TECkit%20VBA%20examples
http://www.sil.org/computing/fonts/silgreek/SILGreekWinDownload.html
mailto:Bob_Hallissy@sil.org?subject=TECkit%20VBA%20examples

 Mapping Description – a file (usually .MAP extension) containing the source for a
TECkit mapping.

 Mapping File – a file (usually .TEC extension) containing a compiled version of a
Dapping Description.

 Mapping – an in-memory image of the contents of a Mapping File.

 Converter – an instance of a TECkit engine converter object, created from a Mapping
plus some auxiliary information specifying various options (e.g., conversion direction,
normalization)

 Legacy text – text that, although stored in Visual Basic strings or Word document objects
(which are stored as UTF-16), consists of data encoded in a non-Unicode, 8-bit “legacy
encoding”.

This last term is somewhat tricky to understand, so is probably worth a little extra explanation.

As an example, suppose you have a Word document that includes text formatted in an SIL
Encore-based font (i.e. one built by TypeCaster). You are probably used to thinking about that
font in terms of the 8-bit character numbers (32 – 255) that you see in a font chart or perhaps in
the Encore CST editor. The relationship between the numbers 32 – 255 and the characters that
you see when you use this font represent a custom or legacy encoding. It isn’t a Unicode
encoding because the characters don’t exactly match the Unicode charts.

Within VB or VBA, when you type in 8-bit data (or open up 8-bit text files), the application
automatically converts this to Unicode by mapping the data through a codepage, usually the
system codepage. For your legacy encoded data, this is not a correct Unicode representation (or
else you wouldn’t need TECkit!). So we call this a “hacked Unicode encoding” – it has the form
of Unicode (UTF-16) but it is really a legacy encoding. This is what the definition “legacy text”
refers to.

For the VB/VBA developer, then, note that:

 When converting between legacy encodings and Unicode, the TECkit engine requires the
legacy data to be in the form of a sequence of bytes – not the hacked UTF-16 form that is
native to VB/VBA.

 Once legacy text has been converted to correct Unicode (using TECkit), the font it was
originally formatted with is no longer suitable – that font was based on the legacy
encoding and not Unicode.

Both of these problems are addressed in the code contained in this template.

Template module overview
More information about each code module will be included later in this document, but as an
overview, this template contains two VBA modules:

TECkit_VBA

The TECkit_VBA module contains two types of code: declares for the functions and constants
that make up the TECkit engine interface and a group of utility routines that VB/VBA
programmers will find handy. Note: The TECkit_VBA module is written to be usable in any
Microsoft Office application or in Visual Basic 6. That is, there is nothing in the module that
refers to specific application objects or document object models.

Calling TECkit from VB and VBA Page 2 of 5

TKWRD_ConvertData

The TKWRD_ConvertData module is a Microsoft Word-specific module containing macros
that demonstrate how to use the TECkit_VBA module to either:

 Process an SFM-formatted file (e.g., a Shoebox database), invoking different TECkit
converters for data marked with different SFMs.

 Search the currently selected for runs of “legacy text” (so identified because they are
formatted in a given font), then use TECkit to convert each such run to Unicode and
place the modified text back into the document, changing the font in the process.

As mentioned previously, the TKWRD_ConvertData module uses the SIL Greek converter
“silgreek.tec” to demonstrate the conversion of Greek data into Unicode.

TECkit_VBA module details
After the opening comments, this module contains declares for the TECkit engine. These are
derived from the TECkit_engine.h header file.

After the TECkit engine declares there are several utility routines that make using the engine
from VB a little easier. These are:

 TKVBA_GetMappingFromFile - read a mapping file into memory (into a resizable
Byte array)

 TKVBA_CreateConverterToUnicode - create a converter for converting legacy
text to Unicode

 TKVBA_ConvertStringToUnicode - convert legacy text to Unicode via a TECkit
converter.

 TKVBA_GetMappingName - returns a name string from a mapping

 TKVBA_GetConverterName - returns a name string from a converter

 TKVBA_GetStatusDescription - return a string description of a
TECkit_Status_enum value

The TKVBA_CreateConverterToUnicode and TKVBA_ConvertStringToUnicode
are the work-horse routines. The first accepts a mapping and creates a convert instance for the
purposes of converting legacy data into Unicode. A parameter determines whether you want the
Unicode result to be normalized, and if so, whether in Normal Form Composed (NFC) or Normal
Form Decomposed (NFD). (See here for more information on normalization.) Using the
converter thus created, the second function accepts a VB/VBA string (assumed to be legacy text),
converts the string back to a string of bytes for the TECkit engine, pumps the string through the
TECkit converter, and converts the result back to a proper (now Unicode) VB/VBA string.

The TKVBA_GetMappingName and TKVBA_GetConverterName are wrappers around the
similarly named TECkit APIs which take care of converting the UTF-8 result from TECkit into
proper VB/VBA strings.

All of the TECkit engine functions return a small integer that identifies the success or failure of
the function. The possible values are identified in the TECkit_Status_enum constants. The

Calling TECkit from VB and VBA Page 3 of 5

http://www.unicode.org/unicode/reports/tr15

TKVBA_GetStatusDescription function simply returns an English-language string
describing the various values.

TKWRD_ConvertData module details
The TKWRD_ConvertData module shows how you might use the routines from
TECkit_VBA module to do useful work from within a Word document. Remember, this code is
intended as an example and not a finished product. The following functions are implemented:

 TKWRD_ConvertRangeToUnicode – A utility function that searches a range of text
for a runs of legacy text (identified by being formatted in a given font), pumping each
such run through a converter and then reformatting the result with a different font.

 TKWRD_ConvertGalatiaToNFC – an example using TKWRD_ConvertRange.

 TKWRD_ConvertSFMParagraphs – demonstrates how one might process a Shoebox
SFM file to convert records to Unicode based on their SFM marker.

The first routine, TKWRD_ConvertRangeToUnicode, is a general purpose one and the most
directly reusable. You supply parameters for the document range to search, the target font name
to search for, the converter to use on the data that is found, and the font name with which to
reformat the now-Unicode data.

The TKWRD_ConvertGalatiaToNFC demonstrates how to use the first routine for a specific
job – converting text formatted in SIL Galatia to Unicode. To see it work, select some of the
Free-form sample text from below, press Alt-F8, select TKWRD_ConvertGalatiaToNFC,
and click “Run”.

Finally, TKWRD_ConvertSFMParagraphs demonstrates how one might process a Shoebox
SFM file. It loops through the entire document to locate paragraphs that start with an SFM code.
Inside the loop it has a place to customize what happens based on the SFM marker. An example
is shown of using the SILGreek converter to convert all the text after a “\gr” marker to Unicode
and then reformat it with Arial Unicode MS. To see it in operation, press Alt-F8, select
TKWRD_ConvertSFMParagraphs, and click Run. Note the changes to the SFM Data sample
below.

Sample data
Here is some sample data that you can use to test the functionality:

Free-form data:

SFM Data:

\eng This is English

\gr

Calling TECkit from VB and VBA Page 4 of 5

\gr

\gr

\eng And this is the end

Known Issues
When replacing legacy text with Unicode text in a Word document, it may also be necessary to
set the other font names (e.g., the Bidi Font) as well as the language of the replacement text in
order to obtain the correct rendering. This example code does not address these issues.

Revision History
Version 0.4, 2002-06-18

 First public release

Calling TECkit from VB and VBA Page 5 of 5

