<?xml version="1.0"encoding="UTF-8"?> <?xml-stylesheet type="text/xsl" href="rfc2629.xslt"?> <?rfc toc="yes"?> <?rfc compact="no"?> <?rfc subcompact="no"?> <?rfc symrefs="yes" ?> <?rfc sortrefs="yes"?> <?rfc iprnotified="no"?> <?rfc strict="yes"?>encoding="utf-8"?> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="pre5378Trust200902" category="std" docName="draft-ietf-netmod-rfc6991-bis-18" number="9911" updates="" obsoletes="6991" submissionType="IETF" sortRefs="false" symRefs="true" consensus="true" tocInclude="true" xml:lang="en" version="3"> <front> <title abbrev="Common YANG Data Types">Common YANG Data Types</title> <seriesInfo name="RFC" value="9911"/> <author role="editor"initials='J.' surname='Schönwälder' fullname='Jürgen Schönwälder'><organization>Constructor University</organization><address><email>jschoenwaelder@constructor.university</email></address></author> <date/><abstract><t>Thisinitials="J." surname="Schönwälder" fullname="Jürgen Schönwälder"> <organization>Constructor University</organization> <address> <email>jschoenwaelder@constructor.university</email> </address> </author> <date month="December" year="2025"/> <area>OPS</area> <workgroup>netmod</workgroup> <abstract> <t>This document defines a collection of common data types to be used with the YANG data modeling language. This versionof the document addsincludes several new type definitions and obsoletes RFC6991.</t></abstract>6991.</t> </abstract> </front> <middle><section title="Introduction"><section> <name>Introduction</name> <t>YANG <xref target="RFC7950"/> is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF) <xref target="RFC6241"/>. The YANG language supports a small set of built-in data types and provides mechanisms to derive other types from the built-in types.</t> <t>This document defines a collection of common data types. The definitions are organized into two YANG modules:</t> <ul> <li><t>The "ietf-yang-types" module defines generally useful data types such as types forcounters,counters and gauges, types related to date andtime related types, ortime, and types for common string valuessuch as uuids, dotted-quads, or(e.g., UUIDs, dotted-quad notation, and languagetags.</t></li>tags).</t></li> <li><t>The "ietf-inet-types" module defines data types relevant for the InternetprotocolProtocol suite such asIP addresstypes relatedtypes, domain-nameto IP address, types for domain name, host name, URI, andhost-name types, uriemail, andemail types, as well astypes for values in common protocol fieldssuch as(e.g., portnumbers.</t></li>numbers).</t></li> </ul> <t>The initial version of these YANG moduleswerewas published as <xref target="RFC6021"/>. The first revision of <xref target="RFC6021"/>, published as <xref target="RFC6991"/>, added severalnewtype definitions to the YANG modules. This second revision adds further new type definitions and addresseserrata 4076Erratum IDs 4076 <xreftarget="ERR4076"/>target="Err4076"/> and 5105 <xreftarget="ERR5105"/> of <xref target="RFC6991"/>.target="Err5105"/>. Furthermore, the yang-identifier definition has been aligned with YANG 1.1 <xreftarget="RFC7950"/>target="RFC7950"/>, and some pattern statements have been improved. For further details, see the revision statements of the YANG modules in Sections <xreftarget="sec-core-yang-types"></xref>target="sec-core-yang-types" format="counter"/> and <xreftarget="sec-internet-protocol-suite-types"></xref>.target="sec-internet-protocol-suite-types" format="counter"/>. A brief overview of all types and when they were introduced can be found in <xreftarget="sec-overview"></xref>.target="sec-overview"/>. Additional type definitions may be added in the future by submitting proposals to the NETMODworking group.</t>Working Group.</t> <t>This document uses the YANG terminology defined inSection 3 of<xreftarget="RFC7950"/>.</t> <t>Thetarget="RFC7950" section="3"/>.</t> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shownhere.</t>here. </t> </section> <sectiontitle="Overview"anchor="sec-overview"><t>Table 1<name>Overview</name> <t>Tables <xref target="T1" format="counter"/> andTable 2<xref target="T2" format="counter"/> list the types defined in the YANG modules "ietf-yang-types" and "ietf-inet-types". For each type, the name of the type, the base type it was derived from, and the RFC introducing the type is listed.</t><table><table anchor="T1"> <name>TypesdefinedDefined inietf-yang-types</name>the "ietf-yang-types" Module</name> <thead><tr><th>Type</th><th>BaseType</th><th>Introduced</th></tr>Type</th><th>Introduced in</th></tr> </thead> <tbody><tr><td>counter32</td><td>uint32</td><td>RFC 6021</td></tr> <tr><td>zero-based-counter32</td><td>uint32</td><td>RFC 6021</td></tr> <tr><td>counter64</td><td>uint64</td><td>RFC 6021</td></tr> <tr><td>zero-based-counter64</td><td>uint64</td><td>RFC 6021</td></tr> <tr><td>gauge32</td><td>uint32</td><td>RFC 6021</td></tr> <tr><td>gauge64</td><td>uint64</td><td>RFC 6021</td></tr> </tbody> <tbody><tr><td>object-identifier</td><td>string</td><td>RFC 6021</td></tr> <tr><td>object-identifier-128</td><td>object-identifier</td><td>RFC 6021</td></tr> </tbody> <tbody><tr><td>date-and-time</td><td>string</td><td>RFC 6021</td></tr> <tr><td>date</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>date-no-zone</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>time</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>time-no-zone</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> </tbody> <tbody><tr><td>hours32</td><td>int32</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>minutes32</td><td>int32</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>seconds32</td><td>int32</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>centiseconds32</td><td>int32</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>milliseconds32</td><td>int32</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>microseconds32</td><td>int32</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>microseconds64</td><td>int64</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>nanoseconds32</td><td>int32</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>nanoseconds64</td><td>int64</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>timeticks</td><td>int32</td><td>RFC 6021</td></tr> <tr><td>timestamp</td><td>timeticks</td><td>RFC 6021</td></tr> </tbody> <tbody><tr><td>phys-address</td><td>string</td><td>RFC 6021</td></tr> <tr><td>mac-address</td><td>string</td><td>RFC 6021</td></tr> </tbody> <tbody><tr><td>xpath1.0</td><td>string</td><td>RFC 6021</td></tr> <tr><td>hex-string</td><td>string</td><td>RFC 6991</td></tr> <tr><td>uuid</td><td>string</td><td>RFC 6991</td></tr> <tr><td>dotted-quad</td><td>string</td><td>RFC 6991</td></tr> <tr><td>language-tag</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>yang-identifier</td><td>string</td><td>RFC 6991</td></tr> </tbody> </table><table><table anchor="T2"> <name>TypesdefinedDefined inietf-inet-types</name>the "ietf-inet-types" Module</name> <thead><tr><th>Type</th><th>BaseType</th><th>Introduced</th></tr>Type</th><th>Introduced in</th></tr> </thead> <tbody><tr><td>ip-version</td><td>enum</td><td>RFC 6021</td></tr> <tr><td>dscp</td><td>uint8</td><td>RFC 6021</td></tr> <tr><td>ipv6-flow-label</td><td>uint32</td><td>RFC 6021</td></tr> <tr><td>port-number</td><td>uint16</td><td>RFC 6021</td></tr> <tr><td>protocol-number</td><td>uint8</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>upper-layer-protocol-number</td><td>protocol-number</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>as-number</td><td>uint32</td><td>RFC 6021</td></tr> </tbody> <tbody><tr><td>ip-address</td><td>union</td><td>RFC 6021</td></tr> <tr><td>ipv4-address</td><td>string</td><td>RFC 6021</td></tr> <tr><td>ipv6-address</td><td>string</td><td>RFC 6021</td></tr> <tr><td>ip-address-no-zone</td><td>union</td><td>RFC 6991</td></tr> <tr><td>ipv4-address-no-zone</td><td>ipv4-address</td><td>RFC 6991</td></tr> <tr><td>ipv6-address-no-zone</td><td>ipv6-address</td><td>RFC 6991</td></tr> <tr><td>ip-address-link-local</td><td>union</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>ipv4-address-link-local</td><td>ipv4-address</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>ipv6-address-link-local</td><td>ipv6-address</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>ip-prefix</td><td>union</td><td>RFC 6021</td></tr> <tr><td>ipv4-prefix</td><td>string</td><td>RFC 6021</td></tr> <tr><td>ipv6-prefix</td><td>string</td><td>RFC 6021</td></tr> <tr><td>ip-address-and-prefix</td><td>union</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>ipv4-address-and-prefix</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>ipv6-address-and-prefix</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> </tbody> <tbody><tr><td>domain-name</td><td>string</td><td>RFC 6021</td></tr> <tr><td>host-name</td><td>domain-name</td><td>RFCXXXX</td></tr>9911</td></tr> <tr><td>host</td><td>union</td><td>RFC 6021</td></tr> </tbody> <tbody><tr><td>uri</td><td>string</td><td>RFC 6021</td></tr> <tr><td>email-address</td><td>string</td><td>RFCXXXX</td></tr>9911</td></tr> </tbody> </table> <t>Some types have an equivalent Structure of Management Information Version 2 (SMIv2) <xref target="RFC2578"/> <xref target="RFC2579"/> data type. A YANG data type is equivalent to an SMIv2 data type if the data types have the same set of values and the semantics of the values are equivalent.</t><t>Table 3<t><xref target="T3"/> lists the types defined in the "ietf-yang-types" YANG module with their corresponding SMIv2typestypes, andTable 4<xref target="T4"/> lists the types defined in the "ietf-inet-types" module with their corresponding SMIv2 types.</t><table><table anchor="T3"> <name>Equivalent SMIv2typesTypes forietf-yang-types</name>the "ietf-yang-types" Module</name> <thead><tr><th>YANG type</th><th>Equivalent SMIv2 type (module)</th></tr> </thead> <tbody><tr><td>counter32</td><td>Counter32 (SNMPv2-SMI)</td></tr> <tr><td>zero-based-counter32</td><td>ZeroBasedCounter32 (RMON2-MIB)</td></tr> <tr><td>counter64</td><td>Counter64 (SNMPv2-SMI)</td></tr> <tr><td>zero-based-counter64</td><td>ZeroBasedCounter64 (HCNUM-TC)</td></tr> <tr><td>gauge32</td><td>Gauge32 (SNMPv2-SMI)</td></tr> <tr><td>gauge64</td><td>CounterBasedGauge64 (HCNUM-TC)</td></tr> <tr><td>object-identifier-128</td><td>OBJECT IDENTIFIER</td></tr> <tr><td>centiseconds32</td><td>TimeInterval (SNMPv2-TC)</td></tr> <tr><td>timeticks</td><td>TimeTicks (SNMPv2-SMI)</td></tr> <tr><td>timestamp</td><td>TimeStamp (SNMPv2-TC)</td></tr> <tr><td>phys-address</td><td>PhysAddress (SNMPv2-TC)</td></tr> <tr><td>mac-address</td><td>MacAddress (SNMPv2-TC)</td></tr> <tr><td>language-tag</td><td>LangTag (LANGTAG-TC-MIB)</td></tr> </tbody> </table><table><table anchor="T4"> <name>Equivalent SMIv2typesTypes forietf-inet-types</name>the "ietf-inet-types" Module</name> <thead><tr><th>YANG type</th><th>Equivalent SMIv2 type (module)</th></tr> </thead> <tbody><tr><td>ip-version</td><td>InetVersion (INET-ADDRESS-MIB)</td></tr> <tr><td>dscp</td><td>Dscp (DIFFSERV-DSCP-TC)</td></tr> <tr><td>ipv6-flow-label</td><td>IPv6FlowLabel (IPV6-FLOW-LABEL-MIB)</td></tr> <tr><td>port-number</td><td>InetPortNumber (INET-ADDRESS-MIB)</td></tr> <tr><td>as-number</td><td>InetAutonomousSystemNumber (INET-ADDRESS-MIB)</td></tr> <tr><td>uri</td><td>Uri (URI-TC-MIB)</td></tr> </tbody> </table> </section> <sectiontitle="Core YANG Types"anchor="sec-core-yang-types"> <name>Core YANG Types</name> <t>Theietf-yang-types"ietf-yang-types" YANG module references <xreftarget="IEEE-802-2001"/>,target="IEEE-802-2024"/>, <xref target="ISO-8601"/>, <xref target="ISO-9834-1"/>, <xref target="RFC2578"/>, <xref target="RFC2579"/>, <xref target="RFC2856"/>, <xref target="RFC3339"/>, <xreftarget="RFC4122"/>, <xreftarget="RFC4502"/>, <xref target="RFC5131"/>, <xref target="RFC5646"/>, <xref target="RFC7950"/>, <xreftarget="RFC8294"/>, <xreftarget="RFC9557"/>, <xreftarget="W3C.xpath"/>,target="RFC9562"/>, <xref target="XPATH"/>, and <xreftarget="W3C.xmlschema11-2"/>.</t> <sourcecode><)|(2\.(0|([1-9][0-9]*))))' + '(\.(0|([1-9][0-9]*)))*'; } description "The object-identifier type represents administratively assigned names in a registration-hierarchical-name tree. Values of this type are denoted as a sequence of numerical non-negative sub-identifier values. Each sub-identifier value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers are separated by single dots and without any intermediate whitespace. The ASN.1 standard restricts the value space of the first sub-identifier to 0, 1, or 2. Furthermore, the value space of the second sub-identifier is restricted to the range 0 to 39 if the first sub-identifier is 0 or 1. Finally, the ASN.1 standard requires that an object identifier has always at least two sub-identifiers. The pattern captures these restrictions. Although the number of sub-identifiers is not limited, module designers should realize that there may be implementations that stick with the SMIv2 limit of 128 sub-identifiers. This type is a superset of the SMIv2 OBJECT IDENTIFIER type since it is not restricted to 128 sub-identifiers. Hence, this type SHOULD NOT be used to represent the SMIv2 OBJECT IDENTIFIER type; the object-identifier-128 type SHOULD be used instead."; reference"ISO9834-1:"ISO 9834-1: Information technology --Open Systems Interconnection --Procedures for the operation ofOSI Registration Authorities:object identifier registration authorities - Part 1: General procedures and top arcs of theASN.1 Object Identifierinternational object identifier tree"; } typedef object-identifier-128 { type object-identifier { pattern '[0-9]*(\.[0-9]*){1,127}'; } description "This type represents object-identifiers restricted to 128 sub-identifiers. In the value set and its semantics, this type is equivalent to the OBJECT IDENTIFIER type of the SMIv2."; reference "RFC 2578: Structure of Management Information Version 2 (SMIv2)"; } /*** collection of types related to date and time ***/ typedef date-and-time { type string { pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])' +'T(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?''T(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)' + '(\.[0-9]+)?' + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?'; } description "The date-and-time type is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar. The profile is defined by the date-time production in Section 5.6 of RFC 3339 and the update defined in Section 2 of RFC9557 .9557. The value of 60 for seconds is allowed only in the case of leap seconds. The date-and-time type is compatible with the dateTime XML schema dateTime type with the following notable exceptions: (a) The date-and-time type does not allow negative years. (b) The time-offset Z indicates that the date-and-time value is reported in UTC and that the local time zone reference point is unknown. Thetime-offsetstime-offset +00:00 indicates that the date-and-time value is reported in UTC and that the local time zone reference point is UTC (see Section 2 of RFC9557 section 2).9557). This type is not equivalent to the DateAndTime textual convention of the SMIv2 since RFC 3339 uses a different separator between full-date and full-time and provides higher resolution of time-secfrac. The canonical format for date-and-time values with a known time zone uses a numeric time zone offset that is calculated using the device's configured known offset to UTC time. A change of the device's offset to UTC time will cause date-and-time values to change accordingly. Such changes might happen periodicallyin caseif a serverfollowsautomatically follows daylight saving time (DST) time zone offset changes. The canonical format for date-and-time values reported in UTC with an unknown local time zone offset SHOULD use the time-offset Z and MAY use -00:00 for backwards compatibility."; reference"RFC"ISO 8601: Data elements and interchange formats -- Information interchange -- Representation of dates and times RFC 3339: Date and Time on the Internet: Timestamps RFC 9557: Date and Time on the Internet: Timestamps with Additional Information RFC 2579: Textual Conventions for SMIv2 XSD-TYPES: XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes"; } typedef date { type string { pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])' + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?'; } description "The date type represents a time-interval of the length of a day, i.e., 24 hours. It includes an optional time zone offset. The date type is compatible with the XML schema date type with the following notable exceptions: (a) The date type does not allow negative years. (b) The time-offset Z indicates that the date value is reported in UTC and that the local time zone reference point is unknown. The time-offset +00:00 indicates that the date value is reported in UTC and that the local time zone reference point is UTC (see Section 2 of RFC9557 section 2).9557). The canonical format for date values with a known time zone uses a numeric time zone offset that is calculated using the device's configured known offset to UTC time. A change of the device's offset to UTC time will cause date values to change accordingly. Such changes might happen periodicallyin caseif a serverfollowsautomatically follows daylight saving time (DST) time zone offset changes. The canonical format for date values reported in UTC with an unknown local time zone offset uses the time-offset Z."; reference "RFC 3339: Date and Time on the Internet: Timestamps RFC 9557: Date and Time on the Internet: Timestamps with Additional Information XSD-TYPES: XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes"; } typedef date-no-zone { type date { pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])'; } description "The date-no-zone type represents a date without the optional time zone offset information."; } typedef time { type string { pattern'(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?''(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)' + '(\.[0-9]+)?' + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?'; } description "The time type represents an instance of time ofzero-durationzero duration that recurs every day. It includes an optional time zone offset. The value of 60 for seconds is allowed only in the case of leap seconds. The time type is compatible with the XML schema time type with the following notable exception: (a) The time-offset Z indicates that the time value is reported in UTC and that the local time zone reference point is unknown. The time-offset +00:00 indicates that the time value is reported in UTC and that the local time zone reference point is UTC (see Section 2 of RFC9557 section 2).9557). The canonical format for time values with a known time zone uses a numeric time zone offset that is calculated using the device's configured known offset to UTC time. A change of the device's offset to UTC time will cause time values to change accordingly. Such changes might happen periodicallyin caseif a serverfollowsautomatically follows daylight saving time (DST) time zone offset changes. The canonical format for time values reported in UTC with an unknown local time zone offset uses the time-offset Z."; reference "RFC 3339: Date and Time on the Internet: Timestamps RFC 9557: Date and Time on the Internet: Timestamps with Additional Information XSD-TYPES: XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes"; } typedef time-no-zone { type time { pattern'(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?';'(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)' + '(\.[0-9]+)?'; } description "The time-no-zone type represents a time without the optional time zone offset information."; } typedef hours32 { type int32; units "hours"; description "A period oftime,time measured in units of hours. The maximum time period that can be expressed is in the range [-89478485 days 08:00:00 to 89478485 days 07:00:00]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef minutes32 { type int32; units "minutes"; description "A period oftime,time measured in units of minutes. The maximum time period that can be expressed is in the range [-1491308 days 2:08:00 to 1491308 days 2:07:00]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef seconds32 { type int32; units "seconds"; description "A period oftime,time measured in units of seconds. The maximum time period that can be expressed is in the range [-24855 days 03:14:08 to 24855 days 03:14:07]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef centiseconds32 { type int32; units "centiseconds"; description "A period oftime,time measured in units of 10^-2 seconds. The maximum time period that can be expressed is in the range [-248 days 13:13:56 to 248 days 13:13:56]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef milliseconds32 { type int32; units "milliseconds"; description "A period oftime,time measured in units of 10^-3 seconds. The maximum time period that can be expressed is in the range [-24 days 20:31:23 to 24 days 20:31:23]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef microseconds32 { type int32; units "microseconds"; description "A period oftime,time measured in units of 10^-6 seconds. The maximum time period that can be expressed is in the range [-00:35:47 to 00:35:47]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef microseconds64 { type int64; units "microseconds"; description "A period oftime,time measured in units of 10^-6 seconds. The maximum time period that can be expressed is in the range [-106751991 days 04:00:54 to 106751991 days 04:00:54]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef nanoseconds32 { type int32; units "nanoseconds"; description "A period oftime,time measured in units of 10^-9 seconds. The maximum time period that can be expressed is in the range [-00:00:02 to 00:00:02]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef nanoseconds64 { type int64; units "nanoseconds"; description "A period oftime,time measured in units of 10^-9 seconds. The maximum time period that can be expressed is in the range [-106753 days 23:12:44 to 106752 days 0:47:16]. This type should berange restrictedrange-restricted in situations where only non-negative time periods aredesirable,desirable (i.e., range '0..max')."; } typedef timeticks { type uint32; description "The timeticks type represents a non-negative integer that represents the time, modulo 2^32 (4294967296 decimal), in hundredths of a second between two epochs. When a schema node is defined that uses this type, the description of the schema node identifies both of the reference epochs. In the value set and its semantics, this type is equivalent to the TimeTicks type of the SMIv2."; reference "RFC 2578: Structure of Management Information Version 2 (SMIv2)"; } typedef timestamp { type timeticks; description "The timestamp type represents the value of an associated timeticks schema node instance at which a specific occurrence happened. The specific occurrence must be defined in the description of any schema node defined using this type. When the specific occurrence occurred prior to the last time the associated timeticks schema node instance was zero, then the timestamp value is zero. Note that this requires all timestamp values to be reset to zero when the value of the associated timeticks schema node instance reaches 497+ days and wraps around to zero. The associated timeticks schema node must be specified in the description of any schema node using this type. In the value set and its semantics, this type is equivalent to the TimeStamp textual convention of the SMIv2."; reference "RFC 2579: Textual Conventions for SMIv2"; } /*** collection of generic address types ***/ typedef phys-address { type string { pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?'; } description "Represents media- or physical-level addresses represented as a sequence of octets, each octet represented by two hexadecimal numbers. Octets are separated by colons. The canonical representation uses lowercase characters. In the value set and its semantics, this type is equivalent to the PhysAddress textual convention of the SMIv2."; reference "RFC 2579: Textual Conventions for SMIv2"; } typedef mac-address { type string { pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'; } description "The mac-address type represents a 48-bit IEEE 802MACMedia Access Control (MAC) address. The canonical representation uses lowercase characters. Note that there are IEEE 802 MAC addresses with a different length that this type cannot represent. The phys-address type may be used to represent physical addresses of varying length. In the value set and its semantics, this type is equivalent to the MacAddress textual convention of the SMIv2."; reference "IEEE 802: IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture RFC 2579: Textual Conventions for SMIv2"; } /*** collection of XML-specific types ***/ typedef xpath1.0 { type string; description "This type represents an XPATH 1.0 expression. When a schema node is defined that uses this type, the description of the schema node MUST specify the XPath context in which the XPath expression is evaluated."; reference "XPATH: XML Path Language (XPath) Version 1.0"; } /*** collection of string types ***/ typedef hex-string { type string { pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?'; } description "A hexadecimal string with octets represented as hex digits separated by colons. The canonical representation uses lowercase characters."; } typedef uuid { type string { pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-' + '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}'; } description "A Universally Unique IDentifier in the string representation defined in RFC4122.9562. The canonical representation uses lowercase characters. The following is an example of a UUID in string representation:f81d4fae-7dec-11d0-a765-00a0c91e6bf6f81d4fae-7dec-11d0-a765-00a0c91e6bf6. "; reference "RFC4122: A9562: Universally UniqueIDentifier (UUID) URN Namespace";IDentifiers (UUIDs)"; } typedef dotted-quad { type string { pattern '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}' + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'; } description "An unsigned 32-bit number expressed in the dotted-quad notation, i.e., four octets written as decimal numbers and separated with the '.' (full stop) character."; } typedef language-tag { type string; description "A language tag according to RFC 5646 (BCP 47). The canonical representation uses lowercase characters. Values of this type must be well-formed language tags, in conformance with the definition of well-formed tags in BCP 47. Implementations MAY further limit the values they accept to those permitted by a 'validating' processor, as defined in BCP 47. The canonical representation of values of this type is aligned with the SMIv2 LangTag textual convention for language tags fitting the length constraints imposed by the LangTag textual convention."; reference "RFC 5646: Tags for Identifying Languages RFC 5131: A MIB Textual Convention for Language Tags"; } /*** collection ofYANG specificYANG-specific types ***/ typedef yang-identifier { type string { length "1..max"; pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*'; } description "A YANG identifier string as defined by the 'identifier' rule in Section 14 of RFC 7950. An identifier must start with an alphabetic character or an underscore followed by an arbitrary sequence of alphabetic or numeric characters, underscores, hyphens, or dots. This definition conforms to YANG 1.1 defined in RFC 7950.An earlier version ofIn RFC 6991, this definition excluded all identifiers starting with any possible combination of the lowercase or uppercase character sequence 'xml', as required by YANG 1 defined in RFC 6020. If this type is used in a YANG 1 context, then this restriction still applies."; reference "RFC 7950: The YANG 1.1 Data Modeling Language RFC 6020: YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)"; } }<CODE ENDS>]]></sourcecode> </section> <sectiontitle="Internetanchor="sec-internet-protocol-suite-types"> <name>Internet Protocol SuiteTypes" anchor="sec-internet-protocol-suite-types">Types</name> <t>Theietf-inet-types"ietf-inet-types" YANG module references <xref target="RFC0768"/>, <xref target="RFC0791"/>, <xref target="RFC0952"/>, <xref target="RFC1034"/>, <xref target="RFC1123"/>, <xref target="RFC1930"/>, <xref target="RFC2317"/>, <xref target="RFC2474"/>, <xref target="RFC2780"/>, <xref target="RFC2782"/>, <xref target="RFC3289"/>, <xref target="RFC3305"/>, <xref target="RFC3595"/>, <xref target="RFC3927"/>, <xref target="RFC3986"/>, <xref target="RFC4001"/>, <xref target="RFC4007"/>, <xref target="RFC4271"/>, <xref target="RFC4291"/>, <xref target="RFC4340"/>, <xref target="RFC4592"/>, <xref target="RFC5017"/>, <xref target="RFC5322"/>, <xref target="RFC5890"/>, <xref target="RFC5952"/>, <xref target="RFC6532"/>, <xref target="RFC6793"/>, <xref target="RFC8200"/>, <xref target="RFC9260"/>, <xref target="RFC9293"/>, and <xref target="RFC9499"/>.</t><sourcecode><![CDATA[ <CODE BEGINS> file "ietf-inet-types@2025-06-23.yang"<sourcecode name="ietf-inet-types@2025-12-01.yang" type="yang" markers="true"><![CDATA[ module ietf-inet-types { namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types"; prefix"inet";inet; organization "IETF Network Modeling (NETMOD) Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/netmod/> WG List: <mailto:netmod@ietf.org> Editor:Juergen SchoenwaelderJürgen Schönwälder <mailto:jschoenwaelder@constructor.university>"; description "This module contains a collection of generally useful derived YANG data types for Internet addresses and related things. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here. Copyright (c) 2025 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFCXXXX;9911; see the RFC itself for full legal notices."; revision2025-06-232025-12-01 { description "This revision adds the following new data types: - inet:ip-address-and-prefix - inet:ipv4-address-and-prefix - inet:ipv6-address-and-prefix - inet:protocol-number - inet:upper-layer-protocol-number - inet:host-name - inet:email-address - inet:ip-address-link-local - inet:ipv4-address-link-local - inet:ipv6-address-link-local The inet:host union was changed to use inet:host-name instead of inet:domain-name. Several pattern statements have been improved."; reference "RFCXXXX:9911: Common YANG Data Types"; } revision 2013-07-15 { description "This revision adds the following new data types: - inet:ip-address-no-zone - inet:ipv4-address-no-zone - inet:ipv6-address-no-zone"; reference "RFC 6991: Common YANG Data Types"; } revision 2010-09-24 { description "Initial revision."; reference "RFC 6021: Common YANG Data Types"; } /*** collection of types related to protocol fields ***/ typedef ip-version { type enumeration { enum unknown { value"0";0; description "An unknown or unspecified version of the Internetprotocol.";Protocol."; } enum ipv4 { value"1";1; description "The IPv4 protocol as defined in RFC 791."; } enum ipv6 { value"2";2; description "The IPv6 protocol as defined in RFC 8200."; } } description "This value represents the version of theIP protocol.Internet Protocol. In the value set and its semantics, this type is equivalent to the InetVersion textual convention of the SMIv2."; reference "RFC 791: Internet Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification RFC 4001: Textual Conventions for Internet Network Addresses"; } typedef dscp { type uint8 { range "0..63"; } description "The dscp type represents a Differentiated Services Code Point that may be used for marking packets in a traffic stream. In the value set and its semantics, this type is equivalent to the Dscp textual convention of the SMIv2."; reference "RFC 3289: Management Information Base for the Differentiated Services Architecture RFC 2474: Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers RFC 2780: IANA Allocation Guidelines For Values In the Internet Protocol and Related Headers"; } typedef ipv6-flow-label { type uint32 { range "0..1048575"; } description "The ipv6-flow-label type represents the flow identifier or Flow Label in an IPv6 packet header that may be used to discriminate traffic flows. In the value set and its semantics, this type is equivalent to the IPv6FlowLabel textual convention of the SMIv2."; reference "RFC 3595: Textual Conventions for IPv6 Flow Label RFC 8200: Internet Protocol, Version 6 (IPv6) Specification"; } typedef port-number { type uint16 { range "0..65535"; } description "The port-number type represents a 16-bit port number of an Internet transport-layer protocol such as UDP, TCP, DCCP, or SCTP. Port numbers are assigned by IANA. The current list of all assignments is available from <https://www.iana.org/>. Note that the port number value zero is reserved by IANA. In situations where the value zero does not make sense, it can be excluded by subtyping the port-number type. In the value set and its semantics, this type is equivalent to the InetPortNumber textual convention of the SMIv2."; reference "RFC 768: User Datagram Protocol RFC 9293: Transmission Control Protocol (TCP) RFC 9260: Stream Control Transmission Protocol RFC 4340: Datagram Congestion Control Protocol (DCCP) RFC 4001: Textual Conventions for Internet Network Addresses"; } typedef protocol-number { type uint8; description "The protocol-number type represents an 8-bit InternetprotocolProtocol number, carried in the 'protocol' field of the IPv4 header or in the 'next header' field of the IPv6 header. Protocol numbers are assigned by IANA. The current list of all assignments is available from <https://www.iana.org/>."; reference "RFC 791: Internet Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification"; } typedef upper-layer-protocol-number { type protocol-number; description "The upper-layer-protocol-number represents the upper-layer protocol number carried in an IP packet. For IPv6 packets with extension headers, this is the protocol number carried in the last 'next header' field of the chain of IPv6 extension headers."; reference "RFC 791: Internet Protocol RFC 8200: Internet Protocol, Version 6 (IPv6) Specification"; } /*** collection of types related to autonomous systems ***/ typedef as-number { type uint32; description "The as-number type represents autonomous system numberswhichthat identify an Autonomous System (AS). An AS is a set of routers under a single technical administration, using an interior gateway protocol and common metrics to route packets within the AS, and using an exterior gateway protocol to route packets to other ASes. IANA maintains theASautonomous system number space and has delegated large parts to the regional registries. Autonomous system numbers were originally limited to 16 bits. BGP extensions have enlarged the autonomous system number space to 32 bits. This type therefore uses an uint32 base type without a range restriction in order to support a larger autonomous system number space. In the value set and its semantics, this type is equivalent to the InetAutonomousSystemNumber textual convention of the SMIv2."; reference "RFC 1930: Guidelines for creation, selection, and registration of an Autonomous System (AS) RFC 4271: A Border Gateway Protocol 4 (BGP-4) RFC 4001: Textual Conventions for Internet Network Addresses RFC 6793: BGP Support for Four-Octet Autonomous System (AS) Number Space"; } /*** collection of types related to IP addresses and hostnames ***/ typedef ip-address { type union { type ipv4-address; type ipv6-address; } description "The ip-address type represents an IP address and is IP version neutral. The format of the textual representation implies the IP version. This type supports scoped addresses by allowing zone identifiers in the address format."; reference "RFC 4007: IPv6 Scoped Address Architecture"; } typedef ipv4-address { type string { pattern '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}' + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])' + '(%.+)?'; } description "The ipv4-address type represents an IPv4 address in dotted-quad notation. The IPv4 address may include a zone index, separated by a % sign. If a system uses zone names that are not represented in UTF-8, then an implementation needs to use some mechanism to transform the local name into UTF-8. The definition of such a mechanism is outside the scope of this document. The zone index is used to disambiguate identical address values. For link-local addresses, the zone index will typically be the interface index number or the name of an interface. If the zone index is not present, the default zone of the device will be used. The canonical format for the zone index is the numerical format"; } typedef ipv6-address { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))' + '(%[A-Za-z0-9][A-Za-z0-9\-\._~/]*)?'; pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)' + '(%.+)?'; } description "The ipv6-address type represents an IPv6 address in full, mixed, shortened, and shortened-mixed notation. The IPv6 address may include a zone index, separated by a % sign. If a system uses zone names that are not represented in UTF-8, then an implementation needs to use some mechanism to transform the local name into UTF-8. The definition of such a mechanism is outside the scope of this document. The zone index is used to disambiguate identical address values. For link-local addresses, the zone index will typically be the interface index number or the name of an interface. If the zone index is not present, the default zone of the device will be used. The canonical format of IPv6 addresses uses the textual representation defined in Section 4 of RFC 5952. The canonical format for the zone index is the numerical format as described in Section 11.2 of RFC 4007."; reference "RFC 4291: IP Version 6 Addressing Architecture RFC 4007: IPv6 Scoped Address Architecture RFC 5952: A Recommendation for IPv6 Address Text Representation"; } typedef ip-address-no-zone { type union { type ipv4-address-no-zone; type ipv6-address-no-zone; } description "The ip-address-no-zone type represents an IP address and is IP version neutral. The format of the textual representation implies the IP version. This type does not support scoped addresses since it does not allow zone identifiers in the address format."; reference "RFC 4007: IPv6 Scoped Address Architecture"; } typedef ipv4-address-no-zone { type ipv4-address { pattern '[0-9\.]*'; } description "An IPv4 address without a zone index. This type, derived from the type ipv4-address, may be used in situations where the zone is known from the context and no zone index is needed."; } typedef ipv6-address-no-zone { type ipv6-address { pattern '[0-9a-fA-F:\.]*'; } description "An IPv6 address without a zone index. This type, derived from the type ipv6-address, may be used in situations where the zone is known from the context and no zone index is needed."; reference "RFC 4291: IP Version 6 Addressing Architecture RFC 4007: IPv6 Scoped Address Architecture RFC 5952: A Recommendation for IPv6 Address Text Representation"; } typedef ip-address-link-local { type union { type ipv4-address-link-local; type ipv6-address-link-local; } description "The ip-address-link-local type represents a link-local IP address and is IP version neutral. The format of the textual representation implies the IP version."; } typedef ipv4-address-link-local { type ipv4-address { pattern '169\.254\..*'; } description"A"The ipv4-address-link-local type represents a link-local IPv4 address in the prefix 169.254.0.0/16 as defined insection 2.1.Section 2.1 of RFC 3927."; reference "RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses"; } typedef ipv6-address-link-local { type ipv6-address { pattern '[fF][eE]80:.*'; } description"A"The ipv6-address-link-local type represents a link-local IPv6 address in the prefix fe80::/10 as defined insection 2.5.6.Section 2.5.6 of RFC 4291."; reference "RFC 4291: IP Version 6 Addressing Architecture"; } typedef ip-prefix { type union { type ipv4-prefix; type ipv6-prefix; } description "The ip-prefix type represents an IP prefix and is IP version neutral. The format of the textual representations implies the IP version."; } typedef ipv4-prefix { type string { pattern '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}' + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])' + '/(([0-9])|([1-2][0-9])|(3[0-2]))'; } description "The ipv4-prefix type represents an IPv4 prefix. The prefix length is given by the number following the slash character and must be less than or equal to 32. A prefix length value of n corresponds to an IP address mask that has n contiguous 1-bits from the most significant bit (MSB) and all other bits set to 0. The canonical format of an IPv4 prefix has all bits of the IPv4 address set to zero that are not part of the IPv4 prefix. The definition of ipv4-prefix does not require thatbits, whichbits that are not part of theprefix, areprefix be set to zero. However, implementations have to return values in canonical format, which requires non-prefix bits to be set to zero. This means that 192.0.2.1/24 must be accepted as a validvaluevalue, but it will be converted into the canonical format 192.0.2.0/24."; } typedef ipv6-prefix { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))' + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'; pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)' + '(/.+)'; } description "The ipv6-prefix type represents an IPv6 prefix. The prefix length is given by the number following the slash character and must be less than or equal to 128. A prefix length value of n corresponds to an IP address mask that has n contiguous 1-bits from the most significant bit (MSB) and all other bits set to 0. The canonical format of an IPv6 prefix has all bits of the IPv6 address set to zero that are not part of the IPv6 prefix. Furthermore, the IPv6 address is represented as defined in Section 4 of RFC 5952. The definition of ipv6-prefix does not require thatbits, whichbits that are not part of theprefix, areprefix be set to zero. However, implementations have to return values in canonical format, which requires non-prefix bits to be set to zero. This means that 2001:db8::1/64 must be accepted as a validvaluevalue, but it will be converted into the canonical format 2001:db8::/64."; reference "RFC 5952: A Recommendation for IPv6 Address Text Representation"; } typedef ip-address-and-prefix { type union { type ipv4-address-and-prefix; type ipv6-address-and-prefix; } description "The ip-address-and-prefix type represents an IP address and prefix and is IP version neutral. The format of the textual representations implies the IP version."; } typedef ipv4-address-and-prefix { type string { pattern '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}' + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])' + '/(([0-9])|([1-2][0-9])|(3[0-2]))'; } description "The ipv4-address-and-prefix type represents an IPv4 address and an associated IPv4 prefix. The prefix length is given by the number following the slash character and must be less than or equal to 32. A prefix length value of n corresponds to an IP address mask that has n contiguous 1-bits from the most significant bit (MSB) and all other bits set to 0."; } typedef ipv6-address-and-prefix { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))' + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))'; pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)' + '(/.+)'; } description "The ipv6-address-and-prefix type represents an IPv6 address and an associated IPv6 prefix. The prefix length is given by the number following the slash character and must be less than or equal to 128. A prefix length value of n corresponds to an IP address mask that has n contiguous 1-bits from the most significant bit (MSB) and all other bits set to 0. The canonical format requires that the IPv6 address is represented as defined in Section 4 of RFC 5952."; reference "RFC 5952: A Recommendation for IPv6 Address Text Representation"; } /*** collection of domain name and URI types ***/ typedef domain-name { type string { length "1..253"; pattern '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*' + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)' + '|\.'; } description "The domain-name type represents a DNS domain name. The name SHOULD be fully qualified whenever possible. This type does not support wildcards (see RFC 4592) or classless in-addr.arpa delegations (see RFC 2317). Internet domain names are only loosely specified. Section 3.5 of RFC 1034 recommends a syntax (modified in Section 2.1 of RFC 1123). The pattern above is intended to allow for current practice in domain nameuse,use and some possible future expansion. Note that Internet host names have a stricter syntax (described in RFC 952) than the DNS recommendations in RFCs 1034 and 1123. Schema nodes representing host names should use the host-name type instead of the domain-type. The encoding of DNS names in the DNS protocol is limited to 255 characters. Since the encoding consists of labels prefixed by a lengthbytesbyte and there is a trailingNULLNUL byte, only 253 characters can appear in the textual dotted notation. The description clause of schema nodes using the domain-name type MUST describe when and how these names are resolved to IP addresses. Note that the resolution of a domain-name value may require to query multiple DNS records (e.g., A for IPv4 and AAAA for IPv6). The order of the resolution process and which DNS record takes precedence can either be defined explicitly ormaydepend on the configuration of the resolver. Domain-name values use theUS-ASCIIASCII encoding. Their canonical format uses lowercaseUS-ASCIIASCII characters. Internationalized domain names MUST be A-labels as per RFC 5890."; reference "RFC 952: DoD Internet Host Table Specification RFC 1034: Domain Names - Concepts and Facilities RFC 1123: Requirements for Internet Hosts -- Application and Support RFC 2317: Classless IN-ADDR.ARPA delegation RFC 2782: A DNS RR for specifying the location of services (DNS SRV) RFC 4592: The Role of Wildcards in the Domain Name System RFC 5890: Internationalized Domain Names in Applications (IDNA): Definitions and Document Framework RFC 9499: DNS Terminology"; } typedef host-name { type domain-name { length "2..max"; pattern '[a-zA-Z0-9\-\.]+'; } description "The host-name type represents(fully qualified)fully qualified host names. Host names must be at least two characters long (see RFC952)952), and they are restricted to labels consisting of letters,digitsdigits, and hyphens separated by dots (seeRFC1123RFCs 1123 andRFC952)."; reference "RFC 952: DoD Internet Host Table Specification RFC 1123: Requirements for Internet Hosts -- Application and Support"; } typedef host { type union { type ip-address; type host-name; } description "The host type represents either an IP address or a(fully qualified)fully qualified host name."; } typedef uri { type string { pattern '[a-z][a-z0-9+.-]*:.*'; } description "The uri type represents a Uniform Resource Identifier (URI) as defined by the rule 'URI' in RFC 3986. Objects using the uri type MUST be inUS-ASCII encoding,ASCII encoding and MUST be normalized as describedby RFC 3986in Sections 6.2.1, 6.2.2.1, and6.2.2.2.6.2.2.2 of RFC 3986. Characters that can be represented without using percent-encoding are represented as characters (without percent-encoding), and all case-insensitive characters are set to lowercase except for hexadecimal digits within a percent-encoded triplet, which are normalized to uppercase as described in Section 6.2.2.1 of RFC 3986. The purpose of this normalization is to help provide unique URIs. Note that this normalization is not sufficient to provide uniqueness. Two URIs that are textually distinct after this normalization may still be equivalent. Objects using the uri type may restrict the schemes that they permit. For example, 'data:' and 'urn:' schemes might not be appropriate. A zero-length URI is not a valid URI. This can be used to express 'URI absent' where required. In the value set and its semantics, this type is equivalent to the Uri SMIv2 textual convention defined in RFC 5017."; reference "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax RFC 3305: Report from the Joint W3C/IETF URI Planning Interest Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names (URNs): Clarifications and Recommendations RFC 5017: MIB Textual Conventions for Uniform Resource Identifiers (URIs)"; } typedef email-address { type string { pattern '.+@.+'; } description "The email-address type represents an internationalized email address. The email address format is defined by the addr-spec ABNF rule in Section 3.4.1 of RFC5322 section 3.4.1.5322. This format has been extended by RFC 6532 to support internationalized email addresses. Implementations MUST support the internationalization extensions of RFC 6532. Supportoffor the obsolete obs-local-part, obs-domain, and obs-qtextparts ofin RFC 5322 is not required. The domain part may use both A-labels and U-labels (see RFC 5890). The canonical format of the domain part uses lowercase characters and U-labels (RFC 5890) where applicable."; reference "RFC 5322: Internet Message Format RFC 5890: Internationalized Domain Names in Applications (IDNA): Definitions and Document Framework RFC6531: SMTP Extension for6532: InternationalizedEmail";Email Headers"; } }<CODE ENDS>]]></sourcecode> </section><section title="IANA Considerations"><section> <name>IANA Considerations</name> <t>This document reuses the URIs for "ietf-yang-types" and "ietf-inet-types" in the "IETF XML Registry" <xref target="RFC3688"/>.</t><t>This document updates the module registration in<t>Per this document, IANA has updated the "YANG Module Names" registry to reference this RFC instead of <xref target="RFC6991"/> for the "ietf-yang-types" and"ietf-inet-types"."ietf-inet-types" modules. Following the format in <xref target="RFC6020"/>,the following hasthese registrations have beenregistered.</t> <artwork><![CDATA[ name: ietf-yang-types namespace: urn:ietf:params:xml:ns:yang:ietf-yang-types prefix: yang reference: RFC XXXX ]]></artwork> <artwork><![CDATA[ name: ietf-inet-types namespace: urn:ietf:params:xml:ns:yang:ietf-inet-types prefix: inet reference: RFC XXXX ]]></artwork>made.</t> <dl spacing="compact" newline="false"> <dt>Name:</dt><dd>ietf-yang-types</dd> <dt>Namespace:</dt><dd>urn:ietf:params:xml:ns:yang:ietf-yang-types</dd> <dt>Prefix:</dt><dd>yang</dd> <dt>Reference:</dt><dd>RFC 9911</dd> </dl> <dl spacing="compact" newline="false"> <dt>Name:</dt><dd>ietf-inet-types</dd> <dt>Namespace:</dt><dd>urn:ietf:params:xml:ns:yang:ietf-inet-types</dd> <dt>Prefix:</dt><dd>inet</dd> <dt>Reference:</dt><dd>RFC 9911</dd> </dl> </section><section title="Security Considerations"><section> <name>Security Considerations</name> <t>This document defines common data types using the YANG data modeling language. The definitions themselves have no security impact on the Internet, but the usage of these definitions in concrete YANG modules might have. The security considerations spelled out in the YANG specification <xref target="RFC7950"/> apply for this document as well.</t> </section><section title="Acknowledgments"> <t>The following people contributed significantly to the original version of this document published as <xref target="RFC6020"/>: Andy Bierman, Martin Bjorklund, Balazs Lengyel, David Partain and Phil Shafer.</t> <t>Helpful comments on various versions of this document were provided by the following individuals: Andy Bierman, Martin Bjorklund, Benoit Claise, Joel M. Halpern, Ladislav Lhotka, Lars-Johan Liman, and Dan Romascanu.</t> </section></middle> <back><references title="Normative References"> <reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119"> <front> <title>Key words for use in RFCs to Indicate Requirement Levels</title> <author fullname="S. Bradner" initials="S." surname="Bradner"/> <date month="March" year="1997"/> <abstract> <t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC3339" target="https://www.rfc-editor.org/info/rfc3339"> <front> <title>Date and Time on the Internet: Timestamps</title> <author fullname="G. Klyne" initials="G." surname="Klyne"/> <author fullname="C. Newman" initials="C." surname="Newman"/> <date month="July" year="2002"/> <abstract> <t>This document defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar.</t> </abstract> </front> <seriesInfo name="RFC" value="3339"/> <seriesInfo name="DOI" value="10.17487/RFC3339"/> </reference> <reference anchor="RFC3688" target="https://www.rfc-editor.org/info/rfc3688"> <front> <title>The IETF XML Registry</title> <author fullname="M. Mealling" initials="M." surname="Mealling"/> <date month="January" year="2004"/> <abstract> <t>This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.</t> </abstract> </front> <seriesInfo name="BCP" value="81"/> <seriesInfo name="RFC" value="3688"/> <seriesInfo name="DOI" value="10.17487/RFC3688"/> </reference> <reference anchor="RFC3986" target="https://www.rfc-editor.org/info/rfc3986"> <front> <title>Uniform Resource Identifier (URI): Generic Syntax</title> <author fullname="T. Berners-Lee" initials="T." surname="Berners-Lee"/> <author fullname="R. Fielding" initials="R." surname="Fielding"/> <author fullname="L. Masinter" initials="L." surname="Masinter"/> <date month="January" year="2005"/> <abstract> <t>A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="STD" value="66"/> <seriesInfo name="RFC" value="3986"/> <seriesInfo name="DOI" value="10.17487/RFC3986"/> </reference><references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3339.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3688.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3986.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4007.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4291.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6020.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7950.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9499.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9557.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9562.xml"/> <referenceanchor="RFC4007" target="https://www.rfc-editor.org/info/rfc4007"> <front> <title>IPv6 Scoped Address Architecture</title> <author fullname="S. Deering" initials="S." surname="Deering"/> <author fullname="B. Haberman" initials="B." surname="Haberman"/> <author fullname="T. Jinmei" initials="T." surname="Jinmei"/> <author fullname="E. Nordmark" initials="E." surname="Nordmark"/> <author fullname="B. Zill" initials="B." surname="Zill"/> <date month="March" year="2005"/> <abstract> <t>This document specifies the architectural characteristics, expected behavior, textual representation, and usage of IPv6 addresses of different scopes. According to a decision in the IPv6 working group, this document intentionally avoids the syntax and usage of unicast site-local addresses. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4007"/> <seriesInfo name="DOI" value="10.17487/RFC4007"/> </reference> <reference anchor="RFC4122" target="https://www.rfc-editor.org/info/rfc4122"> <front> <title>A Universally Unique IDentifier (UUID) URN Namespace</title> <author fullname="P. Leach" initials="P." surname="Leach"/> <author fullname="M. Mealling" initials="M." surname="Mealling"/> <author fullname="R. Salz" initials="R." surname="Salz"/> <date month="July" year="2005"/> <abstract> <t>This specification defines a Uniform Resource Name namespace for UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier). A UUID is 128 bits long, and can guarantee uniqueness across space and time. UUIDs were originally used in the Apollo Network Computing System and later in the Open Software Foundation\'s (OSF) Distributed Computing Environment (DCE), and then in Microsoft Windows platforms.</t> <t>This specification is derived from the DCE specification with the kind permission of the OSF (now known as The Open Group). Information from earlier versions of the DCE specification have been incorporated into this document. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4122"/> <seriesInfo name="DOI" value="10.17487/RFC4122"/> </reference> <reference anchor="RFC4291" target="https://www.rfc-editor.org/info/rfc4291"> <front> <title>IP Version 6 Addressing Architecture</title> <author fullname="R. Hinden" initials="R." surname="Hinden"/> <author fullname="S. Deering" initials="S." surname="Deering"/> <date month="February" year="2006"/> <abstract> <t>This specification defines the addressing architecture of the IP Version 6 (IPv6) protocol. The document includes the IPv6 addressing model, text representations of IPv6 addresses, definition of IPv6 unicast addresses, anycast addresses, and multicast addresses, and an IPv6 node's required addresses.</t> <t>This document obsoletes RFC 3513, "IP Version 6 Addressing Architecture". [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4291"/> <seriesInfo name="DOI" value="10.17487/RFC4291"/> </reference> <reference anchor="RFC6020" target="https://www.rfc-editor.org/info/rfc6020"> <front> <title>YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)</title> <author fullname="M. Bjorklund" initials="M." role="editor" surname="Bjorklund"/> <date month="October" year="2010"/> <abstract> <t>YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="6020"/> <seriesInfo name="DOI" value="10.17487/RFC6020"/> </reference> <reference anchor="RFC7950" target="https://www.rfc-editor.org/info/rfc7950"> <front> <title>The YANG 1.1 Data Modeling Language</title> <author fullname="M. Bjorklund" initials="M." role="editor" surname="Bjorklund"/> <date month="August" year="2016"/> <abstract> <t>YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).</t> </abstract> </front> <seriesInfo name="RFC" value="7950"/> <seriesInfo name="DOI" value="10.17487/RFC7950"/> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174"> <front> <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title> <author fullname="B. Leiba" initials="B." surname="Leiba"/> <date month="May" year="2017"/> <abstract> <t>RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <reference anchor="RFC8294" target="https://www.rfc-editor.org/info/rfc8294"> <front> <title>Common YANG Data Types for the Routing Area</title> <author fullname="X. Liu" initials="X." surname="Liu"/> <author fullname="Y. Qu" initials="Y." surname="Qu"/> <author fullname="A. Lindem" initials="A." surname="Lindem"/> <author fullname="C. Hopps" initials="C." surname="Hopps"/> <author fullname="L. Berger" initials="L." surname="Berger"/> <date month="December" year="2017"/> <abstract> <t>This document defines a collection of common data types using the YANG data modeling language. These derived common types are designed to be imported by other modules defined in the routing area.</t> </abstract> </front> <seriesInfo name="RFC" value="8294"/> <seriesInfo name="DOI" value="10.17487/RFC8294"/> </reference> <reference anchor="RFC9499" target="https://www.rfc-editor.org/info/rfc9499"> <front> <title>DNS Terminology</title> <author fullname="P. Hoffman" initials="P." surname="Hoffman"/> <author fullname="K. Fujiwara" initials="K." surname="Fujiwara"/> <date month="March" year="2024"/> <abstract> <t>The Domain Name System (DNS) is defined in literally dozens of different RFCs. The terminology used by implementers and developers of DNS protocols, and by operators of DNS systems, has changed in the decades since the DNS was first defined. This document gives current definitions for many of the terms used in the DNS in a single document.</t> <t>This document updates RFC 2308 by clarifying the definitions of "forwarder" and "QNAME". It obsoletes RFC 8499 by adding multiple terms and clarifications. Comprehensive lists of changed and new definitions can be found in Appendices A and B.</t> </abstract> </front> <seriesInfo name="BCP" value="219"/> <seriesInfo name="RFC" value="9499"/> <seriesInfo name="DOI" value="10.17487/RFC9499"/> </reference> <reference anchor="RFC9557" target="https://www.rfc-editor.org/info/rfc9557"> <front> <title>Date and Time on the Internet: Timestamps with Additional Information</title> <author fullname="U. Sharma" initials="U." surname="Sharma"/> <author fullname="C. Bormann" initials="C." surname="Bormann"/> <date month="April" year="2024"/> <abstract> <t>This document defines an extension to the timestamp format defined in RFC 3339 for representing additional information, including a time zone.</t> <t>It updates RFC 3339 in the specific interpretation of the local offset Z, which is no longer understood to "imply that UTC is the preferred reference point for the specified time".</t> </abstract> </front> <seriesInfo name="RFC" value="9557"/> <seriesInfo name="DOI" value="10.17487/RFC9557"/> </reference> <reference anchor="W3C.xpath" target="http://www.w3.org/TR/xpath">anchor="XPATH" target="http://www.w3.org/TR/xpath-10"> <front> <title>XML Path Language (XPath) Version 1.0</title> <author fullname="James Clark" initials="J."surname="Clark">surname="Clark" role="editor"> <organization> </organization> </author> <author fullname="Steve DeRose" initials="S."surname="DeRose">surname="DeRose" role="editor"> <organization> </organization> </author> <date day="16" month="November" year="1999"/> </front><seriesInfo name="W3C REC" value="xpath"/> <seriesInfo name="W3C Recommendation" value="xpath"/> <seriesInfo name="W3C" value="xpath"/><refcontent>W3C Recommendation</refcontent> </reference> <referenceanchor="W3C.xmlschema11-2"anchor="XSD-TYPES" target="https://www.w3.org/TR/xmlschema11-2/"> <front> <title>W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes</title><author/> </front> <seriesInfo name="W3C REC" value="xmlschema11-2"/> <seriesInfo name="W3C" value="xmlschema11-2"/> </reference> </references> <references title="Informative References"> <reference anchor="RFC0768" target="https://www.rfc-editor.org/info/rfc768"> <front> <title>User Datagram Protocol</title> <author fullname="J. Postel" initials="J." surname="Postel"/> <date month="August" year="1980"/> </front> <seriesInfo name="STD" value="6"/> <seriesInfo name="RFC" value="768"/> <seriesInfo name="DOI" value="10.17487/RFC0768"/> </reference> <reference anchor="RFC0791" target="https://www.rfc-editor.org/info/rfc791"> <front> <title>Internet Protocol</title> <author fullname="J. Postel" initials="J." surname="Postel"/> <date month="September" year="1981"/> </front> <seriesInfo name="STD" value="5"/> <seriesInfo name="RFC" value="791"/> <seriesInfo name="DOI" value="10.17487/RFC0791"/> </reference> <reference anchor="RFC0952" target="https://www.rfc-editor.org/info/rfc952"> <front> <title>DoD Internet host table specification</title> <author fullname="K. Harrenstien" initials="K." surname="Harrenstien"/> <author fullname="M.K. Stahl" initials="M.K." surname="Stahl"/> <author fullname="E.J. Feinler" initials="E.J." surname="Feinler"/> <date month="October" year="1985"/> <abstract> <t>This RFC is the official specification of the format of the Internet Host Table. This edition of the specification includes minor revisions to RFC-810 which brings it up to date.</t> </abstract> </front> <seriesInfo name="RFC" value="952"/> <seriesInfo name="DOI" value="10.17487/RFC0952"/> </reference> <reference anchor="RFC1034" target="https://www.rfc-editor.org/info/rfc1034"> <front> <title>Domain names - concepts and facilities</title> <author fullname="P. Mockapetris" initials="P." surname="Mockapetris"/> <date month="November" year="1987"/> <abstract> <t>This RFC is the revised basic definition of The Domain Name System. It obsoletes RFC-882. This memo describes the domain style names and their used for host address look up and electronic mail forwarding. It discusses the clients and servers in the domain name system and the protocol used between them.</t> </abstract> </front> <seriesInfo name="STD" value="13"/> <seriesInfo name="RFC" value="1034"/> <seriesInfo name="DOI" value="10.17487/RFC1034"/> </reference> <reference anchor="RFC1123" target="https://www.rfc-editor.org/info/rfc1123"> <front> <title>Requirements for Internet Hosts - Application and Support</title> <author fullname="R. Braden" initials="R." role="editor" surname="Braden"/> <date month="October" year="1989"/> <abstract> <t>This RFC is an official specification for the Internet community. It incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="STD" value="3"/> <seriesInfo name="RFC" value="1123"/> <seriesInfo name="DOI" value="10.17487/RFC1123"/> </reference> <reference anchor="RFC1930" target="https://www.rfc-editor.org/info/rfc1930"> <front> <title>Guidelines for creation, selection, and registration of an Autonomous System (AS)</title> <author fullname="J. Hawkinson" initials="J." surname="Hawkinson"/> <author fullname="T. Bates" initials="T." surname="Bates"/> <date month="March" year="1996"/> <abstract> <t>This memo discusses when it is appropriate to register and utilize an Autonomous System (AS), and lists criteria for such. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="6"/> <seriesInfo name="RFC" value="1930"/> <seriesInfo name="DOI" value="10.17487/RFC1930"/> </reference> <reference anchor="RFC2317" target="https://www.rfc-editor.org/info/rfc2317"> <front> <title>Classless IN-ADDR.ARPA delegation</title> <author fullname="H. Eidnes" initials="H." surname="Eidnes"/> <author fullname="G. de Groot" initials="G." surname="de Groot"/> <author fullname="P. Vixie" initials="P." surname="Vixie"/> <date month="March" year="1998"/> <abstract> <t>This document describes a way to do IN-ADDR.ARPA delegation on non-octet boundaries for address spaces covering fewer than 256 addresses. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="20"/> <seriesInfo name="RFC" value="2317"/> <seriesInfo name="DOI" value="10.17487/RFC2317"/> </reference> <reference anchor="RFC2474" target="https://www.rfc-editor.org/info/rfc2474"> <front> <title>Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers</title> <author fullname="K. Nichols" initials="K." surname="Nichols"/><authorfullname="S. Blake" initials="S." surname="Blake"/> <author fullname="F. Baker" initials="F." surname="Baker"/> <author fullname="D. Black" initials="D." surname="Black"/> <date month="December" year="1998"/> <abstract> <t>This document defines the IP header field, called the DS (for differentiated services) field. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="2474"/> <seriesInfo name="DOI" value="10.17487/RFC2474"/> </reference> <reference anchor="RFC2578" target="https://www.rfc-editor.org/info/rfc2578"> <front> <title>Structure of Management Information Version 2 (SMIv2)</title> <author fullname="K. McCloghrie" initials="K." role="editor" surname="McCloghrie"/> <author fullname="D. Perkins" initials="D." role="editor" surname="Perkins"/> <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/>fullname="David Peterson" role="editor"/> <author fullname="Shudi Gao" role="editor"/> <author fullname="Ashok Malhotra" role="editor"/> <author fullname="C.M. Sperberg-McQueen" role="editor"/> <author fullname="Henry S. Thompson" role="editor"/> <date day="5" month="April"year="1999"/> <abstract> <t>It is the purpose of this document, the Structure of Management Information Version 2 (SMIv2), to define that adapted subset, and to assign a set of associated administrative values. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="STD" value="58"/> <seriesInfo name="RFC" value="2578"/> <seriesInfo name="DOI" value="10.17487/RFC2578"/> </reference> <reference anchor="RFC2579" target="https://www.rfc-editor.org/info/rfc2579"> <front> <title>Textual Conventions for SMIv2</title> <author fullname="K. McCloghrie" initials="K." role="editor" surname="McCloghrie"/> <author fullname="D. Perkins" initials="D." role="editor" surname="Perkins"/> <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/> <date month="April" year="1999"/> <abstract> <t>It is the purpose of this document to define the initial set of textual conventions available to all MIB modules. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="STD" value="58"/> <seriesInfo name="RFC" value="2579"/> <seriesInfo name="DOI" value="10.17487/RFC2579"/> </reference> <reference anchor="RFC2780" target="https://www.rfc-editor.org/info/rfc2780"> <front> <title>IANA Allocation Guidelines For Values In the Internet Protocol and Related Headers</title> <author fullname="S. Bradner" initials="S." surname="Bradner"/> <author fullname="V. Paxson" initials="V." surname="Paxson"/> <date month="March" year="2000"/> <abstract> <t>This memo provides guidance for the IANA to use in assigning parameters for fields in the IPv4, IPv6, ICMP, UDP and TCP protocol headers. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract>year="2012"/> </front><seriesInfo name="BCP" value="37"/> <seriesInfo name="RFC" value="2780"/> <seriesInfo name="DOI" value="10.17487/RFC2780"/><refcontent>W3C Recommendation</refcontent> </reference> </references> <references> <name>Informative References</name> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0768.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0791.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0952.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1034.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1123.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1930.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2317.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2474.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2578.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2579.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2780.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2782.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2856.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3289.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3305.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3595.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3927.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4001.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4271.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4340.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4502.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4592.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5017.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5131.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5322.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5646.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5890.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5952.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6021.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6241.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6532.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6793.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6991.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9260.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9293.xml"/> <referenceanchor="RFC2782" target="https://www.rfc-editor.org/info/rfc2782">anchor="ISO-8601" target="https://www.iso.org/standard/26780.html"> <front><title>A DNS RR for specifying the location of services (DNS SRV)</title> <author fullname="A. Gulbrandsen" initials="A." surname="Gulbrandsen"/> <author fullname="P. Vixie" initials="P." surname="Vixie"/> <author fullname="L. Esibov" initials="L." surname="Esibov"/> <date month="February" year="2000"/> <abstract> <t>This document describes a DNS RR which specifies the location of the server(s) for a specific protocol<title>Data elements anddomain. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="2782"/> <seriesInfo name="DOI" value="10.17487/RFC2782"/> </reference> <reference anchor="RFC2856" target="https://www.rfc-editor.org/info/rfc2856"> <front> <title>Textual Conventions for Additional High Capacity Data Types</title> <author fullname="A. Bierman" initials="A." surname="Bierman"/> <author fullname="K. McCloghrie" initials="K." surname="McCloghrie"/> <author fullname="R. Presuhn" initials="R." surname="Presuhn"/> <date month="June" year="2000"/> <abstract> <t>This memo specifies new textual conventions for additional high capacity data types, intended for SNMP implementations which already support the Counter64 data type. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="2856"/> <seriesInfo name="DOI" value="10.17487/RFC2856"/> </reference> <reference anchor="RFC3289" target="https://www.rfc-editor.org/info/rfc3289"> <front> <title>Management Information Base for the Differentiated Services Architecture</title> <author fullname="F. Baker" initials="F." surname="Baker"/> <author fullname="K. Chan" initials="K." surname="Chan"/> <author fullname="A. Smith" initials="A." surname="Smith"/> <date month="May" year="2002"/> <abstract> <t>This memo describes an SMIv2 (Structure of Managementinterchange formats -- Informationversion 2) MIB for a device implementing the Differentiated Services Architecture. It may be used both for monitoring and configuration of a router or switch capable of Differentiated Services functionality. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="3289"/> <seriesInfo name="DOI" value="10.17487/RFC3289"/> </reference> <reference anchor="RFC3305" target="https://www.rfc-editor.org/info/rfc3305"> <front> <title>Report from the Joint W3C/IETF URI Planning Interest Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names (URNs): Clarifications and Recommendations</title> <author fullname="M. Mealling" initials="M." role="editor" surname="Mealling"/> <author fullname="R. Denenberg" initials="R." role="editor" surname="Denenberg"/> <date month="August" year="2002"/> </front> <seriesInfo name="RFC" value="3305"/> <seriesInfo name="DOI" value="10.17487/RFC3305"/> </reference> <reference anchor="RFC3595" target="https://www.rfc-editor.org/info/rfc3595"> <front> <title>Textual Conventions for IPv6 Flow Label</title> <author fullname="B. Wijnen" initials="B." surname="Wijnen"/> <date month="September" year="2003"/> <abstract> <t>This MIB module defines textual conventions to represent the commonly used IPv6 Flow Label. The intent is that these textual conventions (TCs) will be imported and used in MIB modules that would otherwise define their own representations. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="3595"/> <seriesInfo name="DOI" value="10.17487/RFC3595"/> </reference> <reference anchor="RFC3927" target="https://www.rfc-editor.org/info/rfc3927"> <front> <title>Dynamic Configuration of IPv4 Link-Local Addresses</title> <author fullname="S. Cheshire" initials="S." surname="Cheshire"/> <author fullname="B. Aboba" initials="B." surname="Aboba"/> <author fullname="E. Guttman" initials="E." surname="Guttman"/> <date month="May" year="2005"/> <abstract> <t>To participate in wide-area IP networking, a host needs to be configured with IP addresses for its interfaces, either manually by the user or automatically from a source on the network such as a Dynamic Host Configuration Protocol (DHCP) server. Unfortunately, such address configuration information may not always be available. It is therefore beneficial for a host to be able to depend on a useful subset of IP networking functions even when no address configuration is available. This document describes how a host may automatically configure an interface with an IPv4 address within the 169.254/16 prefix that is valid for communication with other devices connected to the same physical (or logical) link.</t> <t>IPv4 Link-Local addresses are not suitable for communication with devices not directly connected to the same physical (or logical) link, and are only used where stable, routable addresses are not available (such as on ad hoc or isolated networks). This document does not recommend that IPv4 Link-Local addresses and routable addresses be configured simultaneously on the same interface. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="3927"/> <seriesInfo name="DOI" value="10.17487/RFC3927"/> </reference> <reference anchor="RFC4001" target="https://www.rfc-editor.org/info/rfc4001"> <front> <title>Textual Conventions for Internet Network Addresses</title> <author fullname="M. Daniele" initials="M." surname="Daniele"/> <author fullname="B. Haberman" initials="B." surname="Haberman"/> <author fullname="S. Routhier" initials="S." surname="Routhier"/> <author fullname="J. Schoenwaelder" initials="J." surname="Schoenwaelder"/> <date month="February" year="2005"/> <abstract> <t>This MIB module defines textual conventions to represent commonly used Internet network layer addressing information. The intent is that these textual conventions will be imported and used in MIB modules that would otherwise define their own representations. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4001"/> <seriesInfo name="DOI" value="10.17487/RFC4001"/> </reference> <reference anchor="RFC4271" target="https://www.rfc-editor.org/info/rfc4271"> <front> <title>A Border Gateway Protocol 4 (BGP-4)</title> <author fullname="Y. Rekhter" initials="Y." role="editor" surname="Rekhter"/> <author fullname="T. Li" initials="T." role="editor" surname="Li"/> <author fullname="S. Hares" initials="S." role="editor" surname="Hares"/> <date month="January" year="2006"/> <abstract> <t>This document discusses the Border Gateway Protocol (BGP), which is an inter-Autonomous System routing protocol.</t> <t>The primary function of a BGP speaking system is to exchange network reachability information with other BGP systems. This network reachability information includes information on the list of Autonomous Systems (ASes) that reachability information traverses. This information is sufficient for constructing a graph of AS connectivity for this reachability from which routing loops may be pruned, and, at the AS level, some policy decisions may be enforced.</t> <t>BGP-4 provides a set of mechanisms for supporting Classless Inter-Domain Routing (CIDR). These mechanisms include support for advertising a setinterchange -- Representation ofdestinations as an IP prefix,dates andeliminating the concept of network "class" within BGP. BGP-4 also introduces mechanisms that allow aggregation of routes, including aggregation of AS paths.</t> <t>This document obsoletes RFC 1771. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4271"/> <seriesInfo name="DOI" value="10.17487/RFC4271"/> </reference> <reference anchor="RFC4340" target="https://www.rfc-editor.org/info/rfc4340"> <front> <title>Datagram Congestion Control Protocol (DCCP)</title> <author fullname="E. Kohler" initials="E." surname="Kohler"/> <author fullname="M. Handley" initials="M." surname="Handley"/> <author fullname="S. Floyd" initials="S." surname="Floyd"/>times </title> <author><organization>ISO/IEC</organization></author> <datemonth="March" year="2006"/> <abstract> <t>The Datagram Congestion Control Protocol (DCCP) is a transport protocol that provides bidirectional unicast connections of congestion-controlled unreliable datagrams. DCCP is suitable for applications that transfer fairly large amounts of data and that can benefit from control over the tradeoff between timeliness and reliability. [STANDARDS-TRACK]</t> </abstract>year="2008" month="December"/> </front> <seriesInfoname="RFC" value="4340"/> <seriesInfo name="DOI" value="10.17487/RFC4340"/>name="ISO/IEC" value="8601:2000"/> </reference> <referenceanchor="RFC4502" target="https://www.rfc-editor.org/info/rfc4502">anchor="ISO-9834-1" target="https://www.iso.org/standard/58055.html"> <front><title>Remote Network Monitoring Management Information Base Version 2</title> <author fullname="S. Waldbusser" initials="S." surname="Waldbusser"/> <date month="May" year="2006"/> <abstract> <t>This document defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects<title>Information technology - Procedures formanaging remote network monitoring devices.</t> <t>This document obsoletes RFC 2021, updates RFC 3273, and contains a new version of the RMON2-MIB module. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4502"/> <seriesInfo name="DOI" value="10.17487/RFC4502"/> </reference> <reference anchor="RFC4592" target="https://www.rfc-editor.org/info/rfc4592"> <front> <title>The Role of Wildcards in the Domain Name System</title> <author fullname="E. Lewis" initials="E." surname="Lewis"/> <date month="July" year="2006"/> <abstract> <t>This is an update to the wildcard definition of RFC 1034. The interaction with wildcards and CNAME is changed, an error condition is removed, and the words defining some concepts central to wildcards are changed. The overall goal is not to change wildcards, but to refinethedefinitionoperation ofRFC 1034. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4592"/> <seriesInfo name="DOI" value="10.17487/RFC4592"/> </reference> <reference anchor="RFC5017" target="https://www.rfc-editor.org/info/rfc5017"> <front> <title>MIB Textual Conventions for Uniform Resource Identifiers (URIs)</title> <author fullname="D. McWalter" initials="D." role="editor" surname="McWalter"/> <date month="September" year="2007"/> <abstract> <t>This MIB module defines textual conventions to represent STD 66 Uniform Resource Identifiers (URIs). The intent is that these textual conventions will be imported and used in MIB modules that would otherwise define their own representation(s). [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5017"/> <seriesInfo name="DOI" value="10.17487/RFC5017"/> </reference> <reference anchor="RFC5131" target="https://www.rfc-editor.org/info/rfc5131"> <front> <title>A MIB Textual Convention for Language Tags</title> <author fullname="D. McWalter" initials="D." role="editor" surname="McWalter"/> <date month="December" year="2007"/> <abstract> <t>This MIB module defines a textual convention to represent BCP 47 language tags. The intent is that this textual convention will be importedobject identifier registration authorities - Part 1: General procedures andused in MIB modules that would otherwise define their own representation. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5131"/> <seriesInfo name="DOI" value="10.17487/RFC5131"/> </reference> <reference anchor="RFC5322" target="https://www.rfc-editor.org/info/rfc5322"> <front> <title>Internet Message Format</title> <author fullname="P. Resnick" initials="P." role="editor" surname="Resnick"/> <date month="October" year="2008"/> <abstract> <t>This document specifies the Internet Message Format (IMF), a syntax for text messages that are sent between computer users, within the framework of "electronic mail" messages. This specification is a revisiontop arcs ofRequest For Comments (RFC) 2822, which itself superseded Request For Comments (RFC) 822, "Standard fortheFormat of ARPA Internet Text Messages", updating it to reflect current practice and incorporating incremental changes that were specified in other RFCs. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5322"/> <seriesInfo name="DOI" value="10.17487/RFC5322"/> </reference> <reference anchor="RFC5646" target="https://www.rfc-editor.org/info/rfc5646"> <front> <title>Tags for Identifying Languages</title> <author fullname="A. Phillips" initials="A." role="editor" surname="Phillips"/> <author fullname="M. Davis" initials="M." role="editor" surname="Davis"/>international object identifier tree </title> <author><organization>ISO/IEC</organization></author> <datemonth="September" year="2009"/> <abstract> <t>This document describes the structure, content, construction, and semantics of language tags for use in cases where it is desirable to indicate the language used in an information object. It also describes how to register values for use in language tags and the creation of user-defined extensions for private interchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract>year="2012"/> </front> <seriesInfoname="BCP" value="47"/> <seriesInfo name="RFC" value="5646"/> <seriesInfo name="DOI" value="10.17487/RFC5646"/>name="ISO/IEC" value="9834-1:2012"/> </reference> <referenceanchor="RFC5890" target="https://www.rfc-editor.org/info/rfc5890">anchor="IEEE-802-2024"> <front><title>Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework</title> <author fullname="J. Klensin" initials="J." surname="Klensin"/> <date month="August" year="2010"/> <abstract> <t>This document is one of a collection that, together, describe the protocol and usage context for a revision of Internationalized Domain Names<title>IEEE Standard forApplications (IDNA), superseding the earlier version. It describes the document collectionLocal andprovides definitionsMetropolitan Area Networks: Overview andother material that are common to the set. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5890"/> <seriesInfo name="DOI" value="10.17487/RFC5890"/> </reference> <reference anchor="RFC5952" target="https://www.rfc-editor.org/info/rfc5952"> <front> <title>A Recommendation for IPv6 Address Text Representation</title> <author fullname="S. Kawamura" initials="S." surname="Kawamura"/> <author fullname="M. Kawashima" initials="M." surname="Kawashima"/>Architecture</title> <author> <organization>IEEE</organization> </author> <datemonth="August" year="2010"/> <abstract> <t>As IPv6 deployment increases, there will be a dramatic increase in the need to use IPv6 addresses in text. While the IPv6 address architecture in Section 2.2 of RFC 4291 describes a flexible model for text representation of an IPv6 address, this flexibility has been causing problems for operators, system engineers, and users. This document defines a canonical textual representation format. It does not define a format for internal storage, such as within an application or database. It is expected that the canonical format will be followed by humans and systems when representing IPv6 addresses as text, but all implementations must accept and be able to handle any legitimate RFC 4291 format. [STANDARDS-TRACK]</t> </abstract>month="3" year="2025"/> </front> <seriesInfoname="RFC" value="5952"/>name="IEEE Std" value="802-2024"/> <seriesInfo name="DOI"value="10.17487/RFC5952"/>value="10.1109/IEEESTD.2025.10935844"/> </reference> <referenceanchor="RFC6021" target="https://www.rfc-editor.org/info/rfc6021">anchor="Err4076" quote-title="false" target="https://www.rfc-editor.org/errata/eid4076"> <front><title>Common YANG Data Types</title> <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/> <date month="October" year="2010"/> <abstract> <t>This document introduces a collection of common data types to be used with the YANG data modeling language. [STANDARDS-TRACK]</t> </abstract><title>Erratum ID 4076</title> <author> <organization>RFC Errata</organization> </author> <date/> </front><seriesInfo name="RFC" value="6021"/> <seriesInfo name="DOI" value="10.17487/RFC6021"/><refcontent>RFC 6991</refcontent> </reference> <referenceanchor="RFC6241" target="https://www.rfc-editor.org/info/rfc6241"> <front> <title>Network Configuration Protocol (NETCONF)</title> <author fullname="R. Enns" initials="R." role="editor" surname="Enns"/> <author fullname="M. Bjorklund" initials="M." role="editor" surname="Bjorklund"/> <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/> <author fullname="A. Bierman" initials="A." role="editor" surname="Bierman"/> <date month="June" year="2011"/> <abstract> <t>The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]</t> </abstract>anchor="Err5105" quote-title="false" target="https://www.rfc-editor.org/errata/eid5105"> <front> <title>Erratum ID 5105</title> <author> <organization>RFC Errata</organization> </author> <date/> </front><seriesInfo name="RFC" value="6241"/> <seriesInfo name="DOI" value="10.17487/RFC6241"/><refcontent>RFC 6991</refcontent> </reference><reference anchor="RFC6793" target="https://www.rfc-editor.org/info/rfc6793"> <front> <title>BGP Support for Four-Octet Autonomous System (AS) Number Space</title> <author fullname="Q. Vohra" initials="Q." surname="Vohra"/> <author fullname="E. Chen" initials="E." surname="Chen"/> <date month="December" year="2012"/> <abstract></references> </references> <section numbered="false"> <name>Acknowledgments</name> <t>TheAutonomous System number is encoded as a two-octet entity in the base BGP specification. This document describes extensions to BGP to carry the Autonomous System numbers as four-octet entities. This document obsoletes RFC 4893 and updates RFC 4271. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="6793"/> <seriesInfo name="DOI" value="10.17487/RFC6793"/> </reference> <reference anchor="RFC6991" target="https://www.rfc-editor.org/info/rfc6991"> <front> <title>Common YANG Data Types</title> <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/> <date month="July" year="2013"/> <abstract> <t>This document introduces a collection of common data typesfollowing people contributed significantly tobe used withtheYANG data modeling language. This document obsoletes RFC 6021.</t> </abstract> </front> <seriesInfo name="RFC" value="6991"/> <seriesInfo name="DOI" value="10.17487/RFC6991"/> </reference> <reference anchor="RFC8200" target="https://www.rfc-editor.org/info/rfc8200"> <front> <title>Internet Protocol, Version 6 (IPv6) Specification</title> <author fullname="S. Deering" initials="S." surname="Deering"/> <author fullname="R. Hinden" initials="R." surname="Hinden"/> <date month="July" year="2017"/> <abstract> <t>This document specifiesoriginal version6ofthe Internet Protocol (IPv6). It obsoletes RFC 2460.</t> </abstract> </front> <seriesInfo name="STD" value="86"/> <seriesInfo name="RFC" value="8200"/> <seriesInfo name="DOI" value="10.17487/RFC8200"/> </reference> <reference anchor="RFC9260" target="https://www.rfc-editor.org/info/rfc9260"> <front> <title>Stream Control Transmission Protocol</title> <author fullname="R. Stewart" initials="R." surname="Stewart"/> <author fullname="M. Tüxen" initials="M." surname="Tüxen"/> <author fullname="K. Nielsen" initials="K." surname="Nielsen"/> <date month="June" year="2022"/> <abstract> <t>This document describes the Stream Control Transmission Protocol (SCTP) and obsoletes RFC 4960. It incorporates the specification of the chunk flags registry from RFC 6096 and the specification of the I bit of DATA chunks from RFC 7053. Therefore, RFCs 6096 and 7053 are also obsoleted bythisdocument. In addition, RFCs 4460 and 8540,document, whichdescribe errata for SCTP, are obsoleted by this document.</t> <t>SCTPwasoriginally designed to transport Public Switched Telephone Network (PSTN) signaling messages over IP networks. It is also suited to be used for other applications, for example, WebRTC.</t> <t>SCTP is a reliable transport protocol operating on top of a connectionless packet network, suchpublished asIP. It offers the following services to its users:</t> <t>The design of SCTP includes appropriate congestion avoidance behavior and resistance to flooding and masquerade attacks.</t> </abstract> </front> <seriesInfo name="RFC" value="9260"/> <seriesInfo name="DOI" value="10.17487/RFC9260"/> </reference> <reference anchor="RFC9293" target="https://www.rfc-editor.org/info/rfc9293"> <front> <title>Transmission Control Protocol (TCP)</title> <author fullname="W. Eddy" initials="W." role="editor" surname="Eddy"/> <date month="August" year="2022"/> <abstract> <t>This document specifies the Transmission Control Protocol (TCP). TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously evolved over decades of use and growth<xref target="RFC6021"/>: <contact fullname="Andy Bierman"/>, <contact fullname="Martin Björklund"/>, <contact fullname="Balazs Lengyel"/>, <contact fullname="David Partain"/>, and <contact fullname="Phil Shafer"/>.</t> <t>Helpful comments on various draft versions ofthe Internet. Overthistime, a number of changes have been made to TCP as it was specified in RFC 793, though these have only been documented in a piecemeal fashion. This document collects and brings those changes together with the protocol specification from RFC 793. Thisdocumentobsoletes RFC 793, as well as RFCs 879, 2873, 6093, 6429, 6528, and 6691 that updated parts of RFC 793. It updates RFCs 1011 and 1122, and it should be considered as a replacement for the portions of those documents dealing with TCP requirements. It also updates RFC 5961were provided byadding a small clarification in reset handling while in the SYN-RECEIVED state. The TCP header control bits from RFC 793 have also been updated based on RFC 3168.</t> </abstract> </front> <seriesInfo name="STD" value="7"/> <seriesInfo name="RFC" value="9293"/> <seriesInfo name="DOI" value="10.17487/RFC9293"/> </reference> <reference anchor="ISO-9834-1"> <front> <title>Information technology -- Open Systems Interconnection -- Procedures fortheoperation of OSI Registration Authorities: General procedures and top arcs of the ASN.1 Object Identifier tree</title> <author><organization>ISO/IEC 9834-1:2008</organization></author> <date year="2008"/> </front> </reference> <reference anchor="IEEE-802-2001"> <front> <title>IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture</title> <author><organization>IEEE Std 802-2001</organization></author> <date month="6" year="2001"/> </front> </reference> <reference anchor="ERR4076"> <front> <title>RFC Errata, Erratum 4076, RFC 6991</title> <author><organization/></author> <date/> </front><refcontent><https://www.rfc-editor.org/errata/eid4076></refcontent> </reference> <reference anchor="ERR5105"> <front> <title>RFC Errata, Erratum 5105, RFC 6991</title> <author><organization/></author> <date/> </front><refcontent><https://www.rfc-editor.org/errata/eid5105></refcontent> </reference> </references>following individuals: <contact fullname="Andy Bierman"/>, <contact fullname="Martin Björklund"/>, <contact fullname="Benoît Claise"/>, <contact fullname="Joel M. Halpern"/>, <contact fullname="Ladislav Lhotka"/>, <contact fullname="Lars-Johan Liman"/>, and <contact fullname="Dan Romascanu"/>.</t> </section> </back> </rfc>