<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="rfc2629.xslt"?>
<?rfc toc="yes"?>
<?rfc compact="no"?>
<?rfc subcompact="no"?>
<?rfc symrefs="yes" ?>
<?rfc sortrefs="yes"?>
<?rfc iprnotified="no"?>
<?rfc strict="yes"?> encoding="utf-8"?>

<!DOCTYPE rfc [
  <!ENTITY nbsp    "&#160;">
  <!ENTITY zwsp   "&#8203;">
  <!ENTITY nbhy   "&#8209;">
  <!ENTITY wj     "&#8288;">
]>

<rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="pre5378Trust200902" category="std" docName="draft-ietf-netmod-rfc6991-bis-18" number="9911" updates="" obsoletes="6991" submissionType="IETF" sortRefs="false" symRefs="true" consensus="true" tocInclude="true" xml:lang="en" version="3">

  <front>
    <title abbrev="Common YANG Data Types">Common YANG Data Types</title>
    <seriesInfo name="RFC" value="9911"/>
    <author role="editor" initials='J.' surname='Schönwälder' fullname='Jürgen Schönwälder'><organization>Constructor University</organization><address><email>jschoenwaelder@constructor.university</email></address></author>  <date/><abstract><t>This initials="J." surname="Schönwälder" fullname="Jürgen Schönwälder">
      <organization>Constructor University</organization>
      <address>
	<email>jschoenwaelder@constructor.university</email>
      </address>
    </author>
    <date month="December" year="2025"/>
    <area>OPS</area>
    <workgroup>netmod</workgroup>

<abstract>
  <t>This document defines a collection of common data types to be used
with the YANG data modeling language. This version of the document
adds
includes several new type definitions and obsoletes RFC 6991.</t></abstract> 6991.</t>
</abstract>
</front>
<middle>

<section title="Introduction">

<section>
  <name>Introduction</name>
<t>YANG <xref target="RFC7950"/> is a data modeling language used to model configuration
and state data manipulated by the Network Configuration Protocol
(NETCONF) <xref target="RFC6241"/>. The YANG language supports a small set of
built-in data types and provides mechanisms to derive other types from
the built-in types.</t>

<t>This document defines a collection of common data types. The
definitions are organized into two YANG modules:</t>

<ul>
<li><t>The "ietf-yang-types" module defines generally useful data types
such as types for counters, counters and gauges, types related to date and time related types, or time, and
types for common string values such as uuids, dotted-quads, or (e.g., UUIDs, dotted-quad notation, and
language tags.</t></li> tags).</t></li>
<li><t>The "ietf-inet-types" module defines data types relevant for the
Internet protocol Protocol suite such as IP address types related types,
domain-name to IP address,
types for domain name, host name, URI, and host-name types, uri email, and email types, as well as
types for values in common protocol fields such as (e.g., port numbers.</t></li> numbers).</t></li>
</ul>

<t>The initial version of these YANG modules were was published as <xref target="RFC6021"/>.
The first revision of <xref target="RFC6021"/>, published as <xref target="RFC6991"/>, added several new
type definitions to the YANG modules. This second revision adds
further new type definitions and addresses errata 4076 Erratum IDs&nbsp;4076 <xref target="ERR4076"/> target="Err4076"/> and
5105 <xref target="ERR5105"/> of <xref target="RFC6991"/>. target="Err5105"/>. Furthermore, the yang-identifier definition
has been aligned with YANG 1.1 <xref target="RFC7950"/> target="RFC7950"/>, and some pattern statements
have been improved. For further details, see the revision statements
of the YANG modules in Sections <xref target="sec-core-yang-types"></xref> target="sec-core-yang-types" format="counter"/> and <xref target="sec-internet-protocol-suite-types"></xref>. target="sec-internet-protocol-suite-types" format="counter"/>. A brief overview of all types and when they were introduced
can be found in <xref target="sec-overview"></xref>. target="sec-overview"/>. Additional type definitions may be added in
the future by submitting proposals to the NETMOD working group.</t> Working Group.</t>

<t>This document uses the YANG terminology defined in Section 3 of
<xref target="RFC7950"/>.</t>

<t>The target="RFC7950" section="3"/>.</t>

        <t>
    The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL
    NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
    "<bcp14>MAY</bcp14>", and
"OPTIONAL" "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as
    described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/>
    when, and only when, they appear in all capitals, as shown here.</t> here.
        </t>

</section>
<section title="Overview" anchor="sec-overview">
<t>Table 1
  <name>Overview</name>
<t>Tables <xref target="T1" format="counter"/> and Table 2 <xref target="T2" format="counter"/> list the types defined in the YANG modules
"ietf-yang-types" and "ietf-inet-types". For each type, the name of
the type, the base type it was derived from, and the RFC introducing
the type is listed.</t>

<table>

<table anchor="T1">
<name>Types defined Defined in ietf-yang-types</name> the "ietf-yang-types" Module</name>
<thead><tr><th>Type</th><th>Base Type</th><th>Introduced</th></tr> Type</th><th>Introduced in</th></tr>
</thead>
<tbody><tr><td>counter32</td><td>uint32</td><td>RFC 6021</td></tr>
<tr><td>zero-based-counter32</td><td>uint32</td><td>RFC 6021</td></tr>
<tr><td>counter64</td><td>uint64</td><td>RFC 6021</td></tr>
<tr><td>zero-based-counter64</td><td>uint64</td><td>RFC 6021</td></tr>
<tr><td>gauge32</td><td>uint32</td><td>RFC 6021</td></tr>
<tr><td>gauge64</td><td>uint64</td><td>RFC 6021</td></tr>
</tbody>
<tbody><tr><td>object-identifier</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>object-identifier-128</td><td>object-identifier</td><td>RFC 6021</td></tr>
</tbody>
<tbody><tr><td>date-and-time</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>date</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>date-no-zone</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>time</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>time-no-zone</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
</tbody>
<tbody><tr><td>hours32</td><td>int32</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>minutes32</td><td>int32</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>seconds32</td><td>int32</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>centiseconds32</td><td>int32</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>milliseconds32</td><td>int32</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>microseconds32</td><td>int32</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>microseconds64</td><td>int64</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>nanoseconds32</td><td>int32</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>nanoseconds64</td><td>int64</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>timeticks</td><td>int32</td><td>RFC 6021</td></tr>
<tr><td>timestamp</td><td>timeticks</td><td>RFC 6021</td></tr>
</tbody>
<tbody><tr><td>phys-address</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>mac-address</td><td>string</td><td>RFC 6021</td></tr>
</tbody>
<tbody><tr><td>xpath1.0</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>hex-string</td><td>string</td><td>RFC 6991</td></tr>
<tr><td>uuid</td><td>string</td><td>RFC 6991</td></tr>
<tr><td>dotted-quad</td><td>string</td><td>RFC 6991</td></tr>
<tr><td>language-tag</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>yang-identifier</td><td>string</td><td>RFC 6991</td></tr>
</tbody>
</table>

<table>

<table anchor="T2">
<name>Types defined Defined in ietf-inet-types</name> the "ietf-inet-types" Module</name>
<thead><tr><th>Type</th><th>Base Type</th><th>Introduced</th></tr> Type</th><th>Introduced in</th></tr>
</thead>
<tbody><tr><td>ip-version</td><td>enum</td><td>RFC 6021</td></tr>
<tr><td>dscp</td><td>uint8</td><td>RFC 6021</td></tr>
<tr><td>ipv6-flow-label</td><td>uint32</td><td>RFC 6021</td></tr>
<tr><td>port-number</td><td>uint16</td><td>RFC 6021</td></tr>
<tr><td>protocol-number</td><td>uint8</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>upper-layer-protocol-number</td><td>protocol-number</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>as-number</td><td>uint32</td><td>RFC 6021</td></tr>
</tbody>
<tbody><tr><td>ip-address</td><td>union</td><td>RFC 6021</td></tr>
<tr><td>ipv4-address</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>ipv6-address</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>ip-address-no-zone</td><td>union</td><td>RFC 6991</td></tr>
<tr><td>ipv4-address-no-zone</td><td>ipv4-address</td><td>RFC 6991</td></tr>
<tr><td>ipv6-address-no-zone</td><td>ipv6-address</td><td>RFC 6991</td></tr>
<tr><td>ip-address-link-local</td><td>union</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>ipv4-address-link-local</td><td>ipv4-address</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>ipv6-address-link-local</td><td>ipv6-address</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>ip-prefix</td><td>union</td><td>RFC 6021</td></tr>
<tr><td>ipv4-prefix</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>ipv6-prefix</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>ip-address-and-prefix</td><td>union</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>ipv4-address-and-prefix</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>ipv6-address-and-prefix</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
</tbody>
<tbody><tr><td>domain-name</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>host-name</td><td>domain-name</td><td>RFC XXXX</td></tr> 9911</td></tr>
<tr><td>host</td><td>union</td><td>RFC 6021</td></tr>
</tbody>
<tbody><tr><td>uri</td><td>string</td><td>RFC 6021</td></tr>
<tr><td>email-address</td><td>string</td><td>RFC XXXX</td></tr> 9911</td></tr>
</tbody>
</table>

<t>Some types have an equivalent Structure of Management Information
Version 2 (SMIv2) <xref target="RFC2578"/> <xref target="RFC2579"/> data type. A YANG data type is
equivalent to an SMIv2 data type if the data types have the same set
of values and the semantics of the values are equivalent.</t>

<t>Table 3

<t><xref target="T3"/> lists the types defined in the "ietf-yang-types" YANG
module with their corresponding SMIv2 types types, and Table 4 <xref target="T4"/> lists
the types defined in the "ietf-inet-types" module with their
corresponding SMIv2 types.</t>

<table>

<table anchor="T3">
<name>Equivalent SMIv2 types Types for ietf-yang-types</name> the "ietf-yang-types" Module</name>
<thead><tr><th>YANG type</th><th>Equivalent SMIv2 type (module)</th></tr>
</thead>
<tbody><tr><td>counter32</td><td>Counter32 (SNMPv2-SMI)</td></tr>
<tr><td>zero-based-counter32</td><td>ZeroBasedCounter32 (RMON2-MIB)</td></tr>
<tr><td>counter64</td><td>Counter64 (SNMPv2-SMI)</td></tr>
<tr><td>zero-based-counter64</td><td>ZeroBasedCounter64 (HCNUM-TC)</td></tr>
<tr><td>gauge32</td><td>Gauge32 (SNMPv2-SMI)</td></tr>
<tr><td>gauge64</td><td>CounterBasedGauge64 (HCNUM-TC)</td></tr>
<tr><td>object-identifier-128</td><td>OBJECT IDENTIFIER</td></tr>
<tr><td>centiseconds32</td><td>TimeInterval (SNMPv2-TC)</td></tr>
<tr><td>timeticks</td><td>TimeTicks (SNMPv2-SMI)</td></tr>
<tr><td>timestamp</td><td>TimeStamp (SNMPv2-TC)</td></tr>
<tr><td>phys-address</td><td>PhysAddress (SNMPv2-TC)</td></tr>
<tr><td>mac-address</td><td>MacAddress (SNMPv2-TC)</td></tr>
<tr><td>language-tag</td><td>LangTag (LANGTAG-TC-MIB)</td></tr>
</tbody>
</table>

<table>

<table anchor="T4">
<name>Equivalent SMIv2 types Types for ietf-inet-types</name> the "ietf-inet-types" Module</name>
<thead><tr><th>YANG type</th><th>Equivalent SMIv2 type (module)</th></tr>
</thead>
<tbody><tr><td>ip-version</td><td>InetVersion (INET-ADDRESS-MIB)</td></tr>
<tr><td>dscp</td><td>Dscp (DIFFSERV-DSCP-TC)</td></tr>
<tr><td>ipv6-flow-label</td><td>IPv6FlowLabel (IPV6-FLOW-LABEL-MIB)</td></tr>
<tr><td>port-number</td><td>InetPortNumber (INET-ADDRESS-MIB)</td></tr>
<tr><td>as-number</td><td>InetAutonomousSystemNumber (INET-ADDRESS-MIB)</td></tr>
<tr><td>uri</td><td>Uri (URI-TC-MIB)</td></tr>
</tbody>
</table>

</section>
<section title="Core YANG Types" anchor="sec-core-yang-types">
  <name>Core YANG Types</name>

<t>The ietf-yang-types "ietf-yang-types" YANG module references
<xref target="IEEE-802-2001"/>, target="IEEE-802-2024"/>,
<xref target="ISO-8601"/>,
<xref target="ISO-9834-1"/>,
<xref target="RFC2578"/>,
<xref target="RFC2579"/>,
<xref target="RFC2856"/>,
<xref target="RFC3339"/>,
<xref target="RFC4122"/>,
<xref target="RFC4502"/>,
<xref target="RFC5131"/>,
<xref target="RFC5646"/>,
<xref target="RFC7950"/>,
<xref target="RFC8294"/>,
<xref target="RFC9557"/>,
<xref target="W3C.xpath"/>, target="RFC9562"/>,
<xref target="XPATH"/>, and
<xref target="W3C.xmlschema11-2"/>.</t>

<sourcecode><![CDATA[
<CODE BEGINS> file "ietf-yang-types@2025-06-23.yang" target="XSD-TYPES"/>.</t>

<sourcecode name="ietf-yang-types@2025-12-01.yang" type="yang" markers="true"><![CDATA[
module ietf-yang-types {
  namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
  prefix "yang"; yang;

  organization
    "IETF Network Modeling (NETMOD) Working Group";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
     WG List:  <mailto:netmod@ietf.org>

     Editor:   Juergen Schoenwaelder   Jürgen Schönwälder
               <mailto:jschoenwaelder@constructor.university>";
  description
    "This module contains a collection of generally useful derived
     YANG data types.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.

     Copyright (c) 2025 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Revised BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC XXXX; 9911;
     see the RFC itself for full legal notices.";

  revision 2025-06-23 2025-12-01 {
    description
      "This revision adds the following new data types:
       - yang:date
       - yang:date-no-zone
       - yang:time
       - yang:time-no-zone
       - yang:hours32
       - yang:minutes32
       - yang:seconds32
       - yang:centiseconds32
       - yang:milliseconds32
       - yang:microseconds32
       - yang:microseconds64
       - yang:nanoseconds32
       - yang:nanoseconds64
       - yang:language-tag
       The yang-identifier definition has been aligned with YANG
      1.1
       1.1, and types representing time support the representation
       of leap seconds.  The representation of time zone offsets
       has been aligned with RFC 9557.  Several description and
       pattern statements have been improved.";
    reference
      "RFC XXXX: 9911: Common YANG Data Types";
  }
  revision 2013-07-15 {
    description
      "This revision adds the following new data types:
       - yang:yang-identifier
       - yang:hex-string
       - yang:uuid
       - yang:dotted-quad";
    reference
      "RFC 6991: Common YANG Data Types";
  }
  revision 2010-09-24 {
    description
      "Initial revision.";
    reference
      "RFC 6021: Common YANG Data Types";
  }

  /*** collection of counter and gauge types ***/

  typedef counter32 {
    type uint32;
    description
      "The counter32 type represents a non-negative integer
       that monotonically increases until it reaches a
       maximum value of 2^32-1 (4294967295 decimal), when it
       wraps around and starts increasing again from zero.

       Counters have no defined 'initial' value, and thus, a
       single value of a counter has (in general) no information
       content.  Discontinuities in the monotonically increasing
       value normally occur at re-initialization of the
       management system, system and at other times as specified in the
       description of a schema node using this type.  If such
      other
       discontinuities occur at times can occur, for other than re-initialization
       (for example, at the instantiation of a schema node of type counter32 at times other than
      re-initialization,
       counter32), then a corresponding schema node should be
       defined, with an appropriate type, to indicate the last
       discontinuity.

       The counter32 type should not be used for configuration
       schema nodes.  A default statement SHOULD NOT be used in
       combination with the type counter32.

       In the value set and its semantics, this type is equivalent
       to the Counter32 type of the SMIv2.";
    reference
      "RFC 2578: Structure of Management Information Version 2
                 (SMIv2)";
  }

  typedef zero-based-counter32 {
    type counter32;
    default "0";
    description
      "The zero-based-counter32 type represents a counter32
       that has the defined 'initial' value zero.

       A data tree node using this type will be set to zero (0)
       on creation and will thereafter increase monotonically until
       it reaches a maximum value of 2^32-1 (4294967295 decimal),
       when it wraps around and starts increasing again from zero.

       Provided that an application discovers a new data tree node
       using this type within the minimum time to wrap, it can use
       the 'initial' value as a delta.  It is important for a
       management station to be aware of this minimum time and the
       actual time between polls, and to discard data if the actual
       time is too long or there is no defined minimum time.

       In the value set and its semantics, this type is equivalent
       to the ZeroBasedCounter32 textual convention of the SMIv2.";
    reference
      "RFC 4502: Remote Network Monitoring Management Information
                 Base Version 2";
  }

  typedef counter64 {
    type uint64;
    description
      "The counter64 type represents a non-negative integer
       that monotonically increases until it reaches a
       maximum value of 2^64-1 (18446744073709551615 decimal),
       when it wraps around and starts increasing again from zero.

       Counters have no defined 'initial' value, and thus, a
       single value of a counter has (in general) no information
       content.  Discontinuities in the monotonically increasing
       value normally occur at re-initialization of the
       management system, system and at other times as specified in the
       description of a schema node using this type.  If such
      other
       discontinuities occur at times can occur, for other than re-initialization
       (for example, at the instantiation of a schema node of type counter64 at times other than
      re-initialization,
       counter64), then a corresponding schema node should be
       defined, with an appropriate type, to indicate the last
       discontinuity.

       The counter64 type should not be used for configuration
       schema nodes.  A default statement SHOULD NOT be used in
       combination with the type counter64.

       In the value set and its semantics, this type is equivalent
       to the Counter64 type of the SMIv2.";
    reference
      "RFC 2578: Structure of Management Information Version 2
                 (SMIv2)";
  }

  typedef zero-based-counter64 {
    type counter64;
    default "0";
    description
      "The zero-based-counter64 type represents a counter64 that
       has the defined 'initial' value zero.

       A data tree node using this type will be set to zero (0)
       on creation and will thereafter increase monotonically until
       it reaches a maximum value of 2^64-1 (18446744073709551615
       decimal), when it wraps around and starts increasing again
       from zero.

       Provided that an application discovers a new data tree node
       using this type within the minimum time to wrap, it can use
       the 'initial' value as a delta.  It is important for a
       management station to be aware of this minimum time and the
       actual time between polls, and to discard data if the actual
       time is too long or there is no defined minimum time.

       In the value set and its semantics, this type is equivalent
       to the ZeroBasedCounter64 textual convention of the SMIv2.";
    reference
      "RFC 2856: Textual Conventions for Additional High Capacity
                 Data Types";
  }

  typedef gauge32 {
    type uint32;
    description
      "The gauge32 type represents a non-negative integer, which
       may increase or decrease, but shall never exceed a maximum
       value, nor fall below a minimum value.  The maximum value
       cannot be greater than 2^32-1 (4294967295 decimal), and
       the minimum value cannot be smaller than 0.  The value of
       a gauge32 has its maximum value whenever the information
       being modeled is greater than or equal to its maximum
       value, and has its minimum value whenever the information
       being modeled is smaller than or equal to its minimum value.
       If the information being modeled subsequently decreases below (increases above)
       the maximum (minimum) value, the gauge32 also decreases (increases). decreases; likewise, if
       the information increases above the minimum value, the
       gauge32 also increases.

       In the value set and its semantics, this type is equivalent
       to the Gauge32 type of the SMIv2.";
    reference
      "RFC 2578: Structure of Management Information Version 2
                 (SMIv2)";
  }

  typedef gauge64 {
    type uint64;
    description
      "The gauge64 type represents a non-negative integer, which
       may increase or decrease, but shall never exceed a maximum
       value, nor fall below a minimum value.  The maximum value
       cannot be greater than 2^64-1 (18446744073709551615), and
       the minimum value cannot be smaller than 0.  The value of
       a gauge64 has its maximum value whenever the information
       being modeled is greater than or equal to its maximum
       value, and has its minimum value whenever the information
       being modeled is smaller than or equal to its minimum value.
       If the information being modeled subsequently decreases
       below (increases above) the maximum (minimum) value, the
       gauge64 also decreases (increases).

       In the value set and its semantics, this type is equivalent
       to the CounterBasedGauge64 SMIv2 textual convention defined
       in RFC 2856";
    reference
      "RFC 2856: Textual Conventions for Additional High Capacity
                 Data Types";
  }

  /*** collection of identifier-related types ***/

  typedef object-identifier {
    type string {
      pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9][0-9]*))))'
            + '(\.(0|([1-9][0-9]*)))*';
    }
    description
      "The object-identifier type represents administratively
       assigned names in a registration-hierarchical-name tree.

       Values of this type are denoted as a sequence of numerical
       non-negative sub-identifier values.  Each sub-identifier
       value MUST NOT exceed 2^32-1 (4294967295).  Sub-identifiers
       are separated by single dots and without any intermediate
       whitespace.

       The ASN.1 standard restricts the value space of the first
       sub-identifier to 0, 1, or 2.  Furthermore, the value space
       of the second sub-identifier is restricted to the range
       0 to 39 if the first sub-identifier is 0 or 1.  Finally,
       the ASN.1 standard requires that an object identifier
       has always at least two sub-identifiers.  The pattern
       captures these restrictions.

       Although the number of sub-identifiers is not limited,
       module designers should realize that there may be
       implementations that stick with the SMIv2 limit of 128
       sub-identifiers.

       This type is a superset of the SMIv2 OBJECT IDENTIFIER type
       since it is not restricted to 128 sub-identifiers.  Hence,
       this type SHOULD NOT be used to represent the SMIv2 OBJECT
       IDENTIFIER type; the object-identifier-128 type SHOULD be
       used instead.";
    reference
     "ISO9834-1:
      "ISO 9834-1: Information technology -- Open Systems
      Interconnection -- Procedures for the
       operation of OSI
      Registration Authorities: object identifier registration authorities -
       Part 1: General procedures and top arcs of the ASN.1 Object Identifier international
       object identifier tree";
  }

  typedef object-identifier-128 {
    type object-identifier {
      pattern '[0-9]*(\.[0-9]*){1,127}';
    }
    description
      "This type represents object-identifiers restricted to 128
       sub-identifiers.

       In the value set and its semantics, this type is equivalent
       to the OBJECT IDENTIFIER type of the SMIv2.";
    reference
      "RFC 2578: Structure of Management Information Version 2
                 (SMIv2)";
  }

  /*** collection of types related to date and time ***/

  typedef date-and-time {
    type string {
      pattern
        '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])'
      + 'T(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?' 'T(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)'
      + '(\.[0-9]+)?'
      + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
    }
    description
      "The date-and-time type is a profile of the ISO 8601
       standard for representation of dates and times using the
       Gregorian calendar.  The profile is defined by the
       date-time production in Section 5.6 of RFC 3339 and the
       update defined in Section 2 of RFC 9557 . 9557.  The value of
       60 for seconds is allowed only in the case of leap seconds.

       The date-and-time type is compatible with the dateTime XML
       schema dateTime type with the following notable exceptions:

       (a) The date-and-time type does not allow negative years.

       (b) The time-offset Z indicates that the date-and-time
           value is reported in UTC and that the local time zone
           reference point is unknown.  The time-offsets time-offset +00:00
           indicates that the date-and-time value is reported in
           UTC and that the local time zone reference point is UTC
           (see Section 2 of RFC 9557 section 2). 9557).

       This type is not equivalent to the DateAndTime textual
       convention of the SMIv2 since RFC 3339 uses a different
       separator between full-date and full-time and provides
       higher resolution of time-secfrac.

       The canonical format for date-and-time values with a known
       time zone uses a numeric time zone offset that is calculated
       using the device's configured known offset to UTC time.  A
       change of the device's offset to UTC time will cause
       date-and-time values to change accordingly.  Such changes
       might happen periodically
      in case if a server follows automatically follows
       daylight saving time (DST) time zone offset changes.  The
       canonical format for date-and-time values reported in UTC
       with an unknown local time zone offset SHOULD use the
       time-offset Z and MAY use -00:00 for backwards
       compatibility.";
    reference
     "RFC
      "ISO 8601: Data elements and interchange formats -- Information
                 interchange -- Representation of dates and times
       RFC 3339: Date and Time on the Internet: Timestamps
       RFC 9557: Date and Time on the Internet: Timestamps
                 with Additional Information
       RFC 2579: Textual Conventions for SMIv2
       XSD-TYPES: XML Schema Definition Language (XSD) 1.1
                  Part 2: Datatypes";
  }

  typedef date {
    type string {
      pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])'
            + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
    }
    description
      "The date type represents a time-interval of the length
       of a day, i.e., 24 hours.  It includes an optional time
       zone offset.

       The date type is compatible with the XML schema date
       type with the following notable exceptions:

       (a) The date type does not allow negative years.

       (b) The time-offset Z indicates that the date value is
           reported in UTC and that the local time zone reference
           point is unknown.  The time-offset +00:00 indicates that
           the date value is reported in UTC and that the local
           time zone reference point is UTC (see Section 2 of
           RFC 9557 section 2). 9557).

       The canonical format for date values with a known time
       zone uses a numeric time zone offset that is calculated using
       the device's configured known offset to UTC time.  A change of
       the device's offset to UTC time will cause date values
       to change accordingly.  Such changes might happen periodically
      in case
       if a server follows automatically follows daylight saving time
       (DST) time zone offset changes.  The canonical format for
       date values reported in UTC with an unknown local time zone
       offset uses the time-offset Z.";
    reference
      "RFC 3339: Date and Time on the Internet: Timestamps
       RFC 9557: Date and Time on the Internet: Timestamps
                 with Additional Information
       XSD-TYPES: XML Schema Definition Language (XSD) 1.1
                  Part 2: Datatypes";
  }

  typedef date-no-zone {
    type date {
      pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])';
    }
    description
      "The date-no-zone type represents a date without the optional
       time zone offset information.";
  }

  typedef time {
    type string {
      pattern
          '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?'
        '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)'
      + '(\.[0-9]+)?'
      + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
    }
    description
      "The time type represents an instance of time of zero-duration zero duration
       that recurs every day.  It includes an optional time zone
       offset.  The value of 60 for seconds is allowed only in the
       case of leap seconds.

       The time type is compatible with the XML schema time
       type with the following notable exception:

       (a) The time-offset Z indicates that the time value is
           reported in UTC and that the local time zone reference
           point is unknown.  The time-offset +00:00 indicates that
           the time value is reported in UTC and that the local
           time zone reference point is UTC (see Section 2 of
           RFC 9557 section 2). 9557).

       The canonical format for time values with a known time
       zone uses a numeric time zone offset that is calculated using
       the device's configured known offset to UTC time.  A change of
       the device's offset to UTC time will cause time values
       to change accordingly.  Such changes might happen periodically
      in case
       if a server follows automatically follows daylight saving time
       (DST) time zone offset changes.  The canonical format for
       time values reported in UTC with an unknown local time zone
       offset uses the time-offset Z.";
    reference
      "RFC 3339: Date and Time on the Internet: Timestamps
       RFC 9557: Date and Time on the Internet: Timestamps
                 with Additional Information
       XSD-TYPES: XML Schema Definition Language (XSD) 1.1
                  Part 2: Datatypes";
  }

  typedef time-no-zone {
    type time {
      pattern
          '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?';
        '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)'
      + '(\.[0-9]+)?';
    }
    description
      "The time-no-zone type represents a time without the optional
       time zone offset information.";
  }

  typedef hours32 {
    type int32;
    units "hours";
    description
      "A period of time, time measured in units of hours.

       The maximum time period that can be expressed is in the
       range [-89478485 days 08:00:00 to 89478485 days 07:00:00].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef minutes32 {
    type int32;
    units "minutes";
    description
      "A period of time, time measured in units of minutes.

       The maximum time period that can be expressed is in the
       range [-1491308 days 2:08:00 to 1491308 days 2:07:00].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef seconds32 {
    type int32;
    units "seconds";
    description
      "A period of time, time measured in units of seconds.

       The maximum time period that can be expressed is in the
       range [-24855 days 03:14:08 to 24855 days 03:14:07].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef centiseconds32 {
    type int32;
    units "centiseconds";
    description
      "A period of time, time measured in units of 10^-2 seconds.

       The maximum time period that can be expressed is in the
       range [-248 days 13:13:56 to 248 days 13:13:56].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef milliseconds32 {
    type int32;
    units "milliseconds";
    description
      "A period of time, time measured in units of 10^-3 seconds.

       The maximum time period that can be expressed is in the
       range [-24 days 20:31:23 to 24 days 20:31:23].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef microseconds32 {
    type int32;
    units "microseconds";
    description
      "A period of time, time measured in units of 10^-6 seconds.

       The maximum time period that can be expressed is in the
       range [-00:35:47 to 00:35:47].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef microseconds64 {
    type int64;
    units "microseconds";
    description
      "A period of time, time measured in units of 10^-6 seconds.

       The maximum time period that can be expressed is in the
       range [-106751991 days 04:00:54 to 106751991 days 04:00:54].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef nanoseconds32 {
    type int32;
    units "nanoseconds";
    description
      "A period of time, time measured in units of 10^-9 seconds.

       The maximum time period that can be expressed is in the
       range [-00:00:02 to 00:00:02].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef nanoseconds64 {
    type int64;
    units "nanoseconds";
    description
      "A period of time, time measured in units of 10^-9 seconds.

       The maximum time period that can be expressed is in the
       range [-106753 days 23:12:44 to 106752 days 0:47:16].

       This type should be range restricted range-restricted in situations
       where only non-negative time periods are desirable, desirable
       (i.e., range '0..max').";
  }

  typedef timeticks {
    type uint32;
    description
      "The timeticks type represents a non-negative integer that
       represents the time, modulo 2^32 (4294967296 decimal), in
       hundredths of a second between two epochs.  When a schema
       node is defined that uses this type, the description of
       the schema node identifies both of the reference epochs.

       In the value set and its semantics, this type is equivalent
       to the TimeTicks type of the SMIv2.";
    reference
      "RFC 2578: Structure of Management Information Version 2
                 (SMIv2)";
  }

  typedef timestamp {
    type timeticks;
    description
      "The timestamp type represents the value of an associated
       timeticks schema node instance at which a specific occurrence
       happened.  The specific occurrence must be defined in the
       description of any schema node defined using this type.  When
       the specific occurrence occurred prior to the last time the
       associated timeticks schema node instance was zero, then the
       timestamp value is zero.

       Note that this requires all timestamp values to be reset to
       zero when the value of the associated timeticks schema node
       instance reaches 497+ days and wraps around to zero.

       The associated timeticks schema node must be specified
       in the description of any schema node using this type.

       In the value set and its semantics, this type is equivalent
       to the TimeStamp textual convention of the SMIv2.";
    reference
      "RFC 2579: Textual Conventions for SMIv2";
  }

  /*** collection of generic address types ***/

  typedef phys-address {
    type string {
      pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
    }
    description
      "Represents media- or physical-level addresses represented
       as a sequence of octets, each octet represented by two
       hexadecimal numbers.  Octets are separated by colons.  The
       canonical representation uses lowercase characters.

       In the value set and its semantics, this type is equivalent
       to the PhysAddress textual convention of the SMIv2.";
    reference
      "RFC 2579: Textual Conventions for SMIv2";
  }

  typedef mac-address {
    type string {
      pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
    }
    description
      "The mac-address type represents a 48-bit IEEE 802 MAC Media
       Access Control (MAC) address.  The canonical representation
       uses lowercase characters.  Note that there are IEEE 802 MAC
       addresses with a different length that this type cannot
       represent.  The phys-address type may be used to represent
       physical addresses of varying length.

       In the value set and its semantics, this type is equivalent
       to the MacAddress textual convention of the SMIv2.";
    reference
      "IEEE 802: IEEE Standard for Local and Metropolitan Area
                 Networks: Overview and Architecture
       RFC 2579: Textual Conventions for SMIv2";
  }

  /*** collection of XML-specific types ***/

  typedef xpath1.0 {
    type string;
    description
      "This type represents an XPATH 1.0 expression.

       When a schema node is defined that uses this type, the
       description of the schema node MUST specify the XPath
       context in which the XPath expression is evaluated.";
    reference
      "XPATH: XML Path Language (XPath) Version 1.0";
  }

  /*** collection of string types ***/

  typedef hex-string {
    type string {
      pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
    }
    description
      "A hexadecimal string with octets represented as hex digits
       separated by colons.  The canonical representation uses
       lowercase characters.";
  }

  typedef uuid {
    type string {
      pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-'
            + '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
    }
    description
      "A Universally Unique IDentifier in the string representation
       defined in RFC 4122. 9562.  The canonical representation uses
       lowercase characters.

       The following is an example of a UUID in string
       representation:
      f81d4fae-7dec-11d0-a765-00a0c91e6bf6
       f81d4fae-7dec-11d0-a765-00a0c91e6bf6.
      ";
    reference
      "RFC 4122: A 9562: Universally Unique IDentifier (UUID) URN
                Namespace"; IDentifiers (UUIDs)";
  }

  typedef dotted-quad {
    type string {
      pattern
        '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
      + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
    }
    description
      "An unsigned 32-bit number expressed in the dotted-quad
       notation, i.e., four octets written as decimal numbers
       and separated with the '.' (full stop) character.";
  }

  typedef language-tag {
    type string;
    description
      "A language tag according to RFC 5646 (BCP 47).  The
       canonical representation uses lowercase characters.

       Values of this type must be well-formed language tags,
       in conformance with the definition of well-formed tags
       in BCP 47.  Implementations MAY further limit the values
       they accept to those permitted by a 'validating'
       processor, as defined in BCP 47.

       The canonical representation of values of this type is
       aligned with the SMIv2 LangTag textual convention for
       language tags fitting the length constraints imposed
       by the LangTag textual convention.";
    reference
      "RFC 5646: Tags for Identifying Languages
       RFC 5131: A MIB Textual Convention for Language Tags";
  }

  /*** collection of YANG specific YANG-specific types ***/

  typedef yang-identifier {
    type string {
      length "1..max";
      pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
    }
    description
      "A YANG identifier string as defined by the 'identifier'
       rule in Section 14 of RFC 7950.  An identifier must
       start with an alphabetic character or an underscore
       followed by an arbitrary sequence of alphabetic or
       numeric characters, underscores, hyphens, or dots.

       This definition conforms to YANG 1.1 defined in RFC
       7950. An earlier version of  In RFC 6991, this definition excluded
       all identifiers starting with any possible combination
       of the lowercase or uppercase character sequence 'xml',
       as required by YANG 1 defined in RFC 6020.  If this type
       is used in a YANG 1 context, then this restriction still
       applies.";
    reference
      "RFC 7950: The YANG 1.1 Data Modeling Language
       RFC 6020: YANG - A Data Modeling Language for the
                 Network Configuration Protocol (NETCONF)";
  }
}

<CODE ENDS>
]]></sourcecode>

</section>
<section title="Internet anchor="sec-internet-protocol-suite-types">
  <name>Internet Protocol Suite Types" anchor="sec-internet-protocol-suite-types"> Types</name>

<t>The ietf-inet-types "ietf-inet-types" YANG module references
<xref target="RFC0768"/>,
<xref target="RFC0791"/>,
<xref target="RFC0952"/>,
<xref target="RFC1034"/>,
<xref target="RFC1123"/>,
<xref target="RFC1930"/>,
<xref target="RFC2317"/>,
<xref target="RFC2474"/>,
<xref target="RFC2780"/>,
<xref target="RFC2782"/>,
<xref target="RFC3289"/>,
<xref target="RFC3305"/>,
<xref target="RFC3595"/>,
<xref target="RFC3927"/>,
<xref target="RFC3986"/>,
<xref target="RFC4001"/>,
<xref target="RFC4007"/>,
<xref target="RFC4271"/>,
<xref target="RFC4291"/>,
<xref target="RFC4340"/>,
<xref target="RFC4592"/>,
<xref target="RFC5017"/>,
<xref target="RFC5322"/>,
<xref target="RFC5890"/>,
<xref target="RFC5952"/>,
<xref target="RFC6532"/>,
<xref target="RFC6793"/>,
<xref target="RFC8200"/>,
<xref target="RFC9260"/>,
<xref target="RFC9293"/>, and
<xref target="RFC9499"/>.</t>

<sourcecode><![CDATA[
<CODE BEGINS> file "ietf-inet-types@2025-06-23.yang"

<sourcecode name="ietf-inet-types@2025-12-01.yang" type="yang" markers="true"><![CDATA[
module ietf-inet-types {
  namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
  prefix "inet"; inet;

  organization
    "IETF Network Modeling (NETMOD) Working Group";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
     WG List:  <mailto:netmod@ietf.org>

     Editor:   Juergen Schoenwaelder   Jürgen Schönwälder
               <mailto:jschoenwaelder@constructor.university>";
  description
    "This module contains a collection of generally useful derived
     YANG data types for Internet addresses and related things.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.

     Copyright (c) 2025 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Revised BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC XXXX; 9911;
     see the RFC itself for full legal notices.";

  revision 2025-06-23 2025-12-01 {
    description
      "This revision adds the following new data types:
       - inet:ip-address-and-prefix
       - inet:ipv4-address-and-prefix
       - inet:ipv6-address-and-prefix
       - inet:protocol-number
       - inet:upper-layer-protocol-number
       - inet:host-name
       - inet:email-address
       - inet:ip-address-link-local
       - inet:ipv4-address-link-local
       - inet:ipv6-address-link-local
       The inet:host union was changed to use inet:host-name instead
       of inet:domain-name.  Several pattern statements have been
       improved.";
    reference
      "RFC XXXX: 9911: Common YANG Data Types";
  }
  revision 2013-07-15 {
    description
      "This revision adds the following new data types:
       - inet:ip-address-no-zone
       - inet:ipv4-address-no-zone
       - inet:ipv6-address-no-zone";
    reference
      "RFC 6991: Common YANG Data Types";
  }
  revision 2010-09-24 {
    description
      "Initial revision.";
    reference
      "RFC 6021: Common YANG Data Types";
  }

  /*** collection of types related to protocol fields ***/

  typedef ip-version {
    type enumeration {
      enum unknown {
        value "0"; 0;
        description
          "An unknown or unspecified version of the Internet
          protocol.";
           Protocol.";
      }
      enum ipv4 {
        value "1"; 1;
        description
          "The IPv4 protocol as defined in RFC 791.";
      }
      enum ipv6 {
        value "2"; 2;
        description
          "The IPv6 protocol as defined in RFC 8200.";
      }
    }
    description
      "This value represents the version of the IP protocol. Internet Protocol.

       In the value set and its semantics, this type is equivalent
       to the InetVersion textual convention of the SMIv2.";
    reference
      "RFC  791: Internet Protocol
       RFC 8200: Internet Protocol, Version 6 (IPv6) Specification
       RFC 4001: Textual Conventions for Internet Network Addresses";
  }

  typedef dscp {
    type uint8 {
      range "0..63";
    }
    description
      "The dscp type represents a Differentiated Services Code Point
       that may be used for marking packets in a traffic stream.

       In the value set and its semantics, this type is equivalent
       to the Dscp textual convention of the SMIv2.";
    reference
      "RFC 3289: Management Information Base for the Differentiated
                 Services Architecture
       RFC 2474: Definition of the Differentiated Services Field
                 (DS Field) in the IPv4 and IPv6 Headers
       RFC 2780: IANA Allocation Guidelines For Values In
                 the Internet Protocol and Related Headers";
  }

  typedef ipv6-flow-label {
    type uint32 {
      range "0..1048575";
    }
    description
      "The ipv6-flow-label type represents the flow identifier or
       Flow Label in an IPv6 packet header that may be used to
       discriminate traffic flows.

       In the value set and its semantics, this type is equivalent
       to the IPv6FlowLabel textual convention of the SMIv2.";
    reference
      "RFC 3595: Textual Conventions for IPv6 Flow Label
       RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
  }

  typedef port-number {
    type uint16 {
      range "0..65535";
    }
    description
      "The port-number type represents a 16-bit port number of an
       Internet transport-layer protocol such as UDP, TCP, DCCP, or
       SCTP.

       Port numbers are assigned by IANA.  The current list of
       all assignments is available from <https://www.iana.org/>.

       Note that the port number value zero is reserved by IANA.  In
       situations where the value zero does not make sense, it can
       be excluded by subtyping the port-number type.

       In the value set and its semantics, this type is equivalent
       to the InetPortNumber textual convention of the SMIv2.";
    reference
      "RFC  768: User Datagram Protocol
       RFC 9293: Transmission Control Protocol (TCP)
       RFC 9260: Stream Control Transmission Protocol
       RFC 4340: Datagram Congestion Control Protocol (DCCP)
       RFC 4001: Textual Conventions for Internet Network Addresses";
  }

  typedef protocol-number {
    type uint8;
    description
      "The protocol-number type represents an 8-bit Internet
      protocol
       Protocol number, carried in the 'protocol' field of the
       IPv4 header or in the 'next header' field of the IPv6
       header.

       Protocol numbers are assigned by IANA.  The current list of
       all assignments is available from <https://www.iana.org/>.";
    reference
      "RFC  791: Internet Protocol
       RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
  }

  typedef upper-layer-protocol-number {
    type protocol-number;
    description
      "The upper-layer-protocol-number represents the upper-layer
       protocol number carried in an IP packet.  For IPv6 packets
       with extension headers, this is the protocol number carried
       in the last 'next header' field of the chain of IPv6 extension
       headers.";
    reference
      "RFC  791: Internet Protocol
       RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
  }

  /*** collection of types related to autonomous systems ***/

  typedef as-number {
    type uint32;
    description
      "The as-number type represents autonomous system numbers
      which
       that identify an Autonomous System (AS).  An AS is a set
       of routers under a single technical administration, using
       an interior gateway protocol and common metrics to route
       packets within the AS, and using an exterior gateway
       protocol to route packets to other ASes.  IANA maintains
       the AS autonomous system number space and has delegated large
       parts to the regional registries.

       Autonomous system numbers were originally limited to 16
       bits.  BGP extensions have enlarged the autonomous system
       number space to 32 bits.  This type therefore uses an uint32
       base type without a range restriction in order to support
       a larger autonomous system number space.

       In the value set and its semantics, this type is equivalent
       to the InetAutonomousSystemNumber textual convention of
       the SMIv2.";
    reference
      "RFC 1930: Guidelines for creation, selection, and registration
                 of an Autonomous System (AS)
       RFC 4271: A Border Gateway Protocol 4 (BGP-4)
       RFC 4001: Textual Conventions for Internet Network Addresses
       RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
                 Number Space";
  }

  /*** collection of types related to IP addresses and hostnames ***/

  typedef ip-address {
    type union {
      type ipv4-address;
      type ipv6-address;
    }
    description
      "The ip-address type represents an IP address and is IP
       version neutral.  The format of the textual representation
       implies the IP version.  This type supports scoped addresses
       by allowing zone identifiers in the address format.";
    reference
      "RFC 4007: IPv6 Scoped Address Architecture";
  }

  typedef ipv4-address {
    type string {
      pattern
        '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
      + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
      + '(%.+)?';
    }
    description
      "The ipv4-address type represents an IPv4 address in
       dotted-quad notation.  The IPv4 address may include a zone
       index, separated by a % sign.  If a system uses zone names
       that are not represented in UTF-8, then an implementation
       needs to use some mechanism to transform the local name
       into UTF-8.  The definition of such a mechanism is outside
       the scope of this document.

       The zone index is used to disambiguate identical address
       values.  For link-local addresses, the zone index will
       typically be the interface index number or the name of an
       interface.  If the zone index is not present, the default
       zone of the device will be used.

       The canonical format for the zone index is the numerical
       format";
  }

  typedef ipv6-address {
    type string {
      pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
            + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
            + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
            + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
            + '(%[A-Za-z0-9][A-Za-z0-9\-\._~/]*)?';
      pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
            + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
            + '(%.+)?';
    }
    description
      "The ipv6-address type represents an IPv6 address in full,
       mixed, shortened, and shortened-mixed notation.  The IPv6
       address may include a zone index, separated by a % sign.
       If a system uses zone names that are not represented in
       UTF-8, then an implementation needs to use some mechanism
       to transform the local name into UTF-8.  The definition of
       such a mechanism is outside the scope of this document.

       The zone index is used to disambiguate identical address
       values.  For link-local addresses, the zone index will
       typically be the interface index number or the name of an
       interface.  If the zone index is not present, the default
       zone of the device will be used.

       The canonical format of IPv6 addresses uses the textual
       representation defined in Section 4 of RFC 5952.  The
       canonical format for the zone index is the numerical
       format as described in Section 11.2 of RFC 4007.";
    reference
      "RFC 4291: IP Version 6 Addressing Architecture
       RFC 4007: IPv6 Scoped Address Architecture
       RFC 5952: A Recommendation for IPv6 Address Text
                 Representation";
  }

  typedef ip-address-no-zone {
    type union {
      type ipv4-address-no-zone;
      type ipv6-address-no-zone;
    }
    description
      "The ip-address-no-zone type represents an IP address and is
       IP version neutral.  The format of the textual representation
       implies the IP version.  This type does not support scoped
       addresses since it does not allow zone identifiers in the
       address format.";
    reference
      "RFC 4007: IPv6 Scoped Address Architecture";
  }

  typedef ipv4-address-no-zone {
    type ipv4-address {
      pattern '[0-9\.]*';
    }
    description
      "An IPv4 address without a zone index.  This type, derived
       from the type ipv4-address, may be used in situations where
       the zone is known from the context and no zone index is
       needed.";
  }

  typedef ipv6-address-no-zone {
    type ipv6-address {
      pattern '[0-9a-fA-F:\.]*';
    }
    description
      "An IPv6 address without a zone index.  This type, derived
       from the type ipv6-address, may be used in situations where
       the zone is known from the context and no zone index is
       needed.";
    reference
      "RFC 4291: IP Version 6 Addressing Architecture
       RFC 4007: IPv6 Scoped Address Architecture
       RFC 5952: A Recommendation for IPv6 Address Text
                 Representation";
  }

  typedef ip-address-link-local {
    type union {
      type ipv4-address-link-local;
      type ipv6-address-link-local;
    }
    description
      "The ip-address-link-local type represents a link-local IP
       address and is IP version neutral.  The format of the textual
       representation implies the IP version.";
  }

  typedef ipv4-address-link-local {
    type ipv4-address {
      pattern '169\.254\..*';
    }
    description
      "A
      "The ipv4-address-link-local type represents a link-local IPv4
       address in the prefix 169.254.0.0/16 as defined in section 2.1. Section 2.1
       of RFC 3927.";
    reference
      "RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses";
  }

  typedef ipv6-address-link-local {
    type ipv6-address {
      pattern '[fF][eE]80:.*';
    }
    description
      "A
      "The ipv6-address-link-local type represents a link-local IPv6
       address in the prefix fe80::/10 as defined in section 2.5.6. Section 2.5.6 of
       RFC 4291.";
    reference
      "RFC 4291: IP Version 6 Addressing Architecture";
  }

  typedef ip-prefix {
    type union {
      type ipv4-prefix;
      type ipv6-prefix;
    }
    description
      "The ip-prefix type represents an IP prefix and is IP
       version neutral.  The format of the textual representations
       implies the IP version.";
  }

  typedef ipv4-prefix {
    type string {
      pattern
        '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
      + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
      + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
    }
    description
      "The ipv4-prefix type represents an IPv4 prefix.
       The prefix length is given by the number following the
       slash character and must be less than or equal to 32.

       A prefix length value of n corresponds to an IP address
       mask that has n contiguous 1-bits from the most
       significant bit (MSB) and all other bits set to 0.

       The canonical format of an IPv4 prefix has all bits of
       the IPv4 address set to zero that are not part of the
       IPv4 prefix.

       The definition of ipv4-prefix does not require that bits,
      which bits
       that are not part of the prefix, are prefix be set to zero.  However,
       implementations have to return values in canonical format,
       which requires non-prefix bits to be set to zero.  This means
       that 192.0.2.1/24 must be accepted as a valid value value, but it
       will be converted into the canonical format 192.0.2.0/24.";
  }

  typedef ipv6-prefix {
    type string {
      pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
            + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
            + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
            + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
            + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
      pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
            + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
            + '(/.+)';
    }
    description
      "The ipv6-prefix type represents an IPv6 prefix.
       The prefix length is given by the number following the
       slash character and must be less than or equal to 128.

       A prefix length value of n corresponds to an IP address
       mask that has n contiguous 1-bits from the most
       significant bit (MSB) and all other bits set to 0.

       The canonical format of an IPv6 prefix has all bits of
       the IPv6 address set to zero that are not part of the
       IPv6 prefix.  Furthermore, the IPv6 address is represented
       as defined in Section 4 of RFC 5952.

       The definition of ipv6-prefix does not require that bits,
      which bits
       that are not part of the prefix, are prefix be set to zero.  However,
       implementations have to return values in canonical format,
       which requires non-prefix bits to be set to zero.  This means
       that 2001:db8::1/64 must be accepted as a valid value value, but it
       will be converted into the canonical format 2001:db8::/64.";
    reference
      "RFC 5952: A Recommendation for IPv6 Address Text
                 Representation";
  }

  typedef ip-address-and-prefix {
    type union {
      type ipv4-address-and-prefix;
      type ipv6-address-and-prefix;
    }
    description
      "The ip-address-and-prefix type represents an IP address and
       prefix and is IP version neutral.  The format of the textual
       representations implies the IP version.";
  }

  typedef ipv4-address-and-prefix {
    type string {
      pattern
        '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
      + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
      + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
    }
    description
      "The ipv4-address-and-prefix type represents an IPv4
       address and an associated IPv4 prefix.
       The prefix length is given by the number following the
       slash character and must be less than or equal to 32.

       A prefix length value of n corresponds to an IP address
       mask that has n contiguous 1-bits from the most
       significant bit (MSB) and all other bits set to 0.";
  }

  typedef ipv6-address-and-prefix {
    type string {
      pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
            + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
            + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
            + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
            + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
      pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
            + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
            + '(/.+)';
    }
    description
      "The ipv6-address-and-prefix type represents an IPv6
       address and an associated IPv6 prefix.
       The prefix length is given by the number following the
       slash character and must be less than or equal to 128.

       A prefix length value of n corresponds to an IP address
       mask that has n contiguous 1-bits from the most
       significant bit (MSB) and all other bits set to 0.

       The canonical format requires that the IPv6 address is
       represented as defined in Section 4 of RFC 5952.";
    reference
      "RFC 5952: A Recommendation for IPv6 Address Text
                 Representation";
  }

  /*** collection of domain name and URI types ***/

  typedef domain-name {
    type string {
      length "1..253";
      pattern
        '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
      + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
      + '|\.';
    }
    description
      "The domain-name type represents a DNS domain name.  The
       name SHOULD be fully qualified whenever possible.  This
       type does not support wildcards (see RFC 4592) or
       classless in-addr.arpa delegations (see RFC 2317).

       Internet domain names are only loosely specified.  Section
       3.5 of RFC 1034 recommends a syntax (modified in Section
       2.1 of RFC 1123).  The pattern above is intended to allow
       for current practice in domain name use, use and some possible
       future expansion.  Note that Internet host names have a
       stricter syntax (described in RFC 952) than the DNS
       recommendations in RFCs 1034 and 1123.  Schema nodes
       representing host names should use the host-name type
       instead of the domain-type.

       The encoding of DNS names in the DNS protocol is limited
       to 255 characters.  Since the encoding consists of labels
       prefixed by a length bytes byte and there is a trailing NULL NUL
       byte, only 253 characters can appear in the textual dotted
       notation.

       The description clause of schema nodes using the domain-name
       type MUST describe when and how these names are resolved to
       IP addresses.  Note that the resolution of a domain-name value
       may require to query multiple DNS records (e.g., A for IPv4
       and AAAA for IPv6).  The order of the resolution process and
       which DNS record takes precedence can either be defined
       explicitly or may depend on the configuration of the
       resolver.

       Domain-name values use the US-ASCII ASCII encoding.  Their canonical
       format uses lowercase US-ASCII ASCII characters.  Internationalized
       domain names MUST be A-labels as per RFC 5890.";
    reference
      "RFC  952: DoD Internet Host Table Specification
       RFC 1034: Domain Names - Concepts and Facilities
       RFC 1123: Requirements for Internet Hosts -- Application
                 and Support
       RFC 2317: Classless IN-ADDR.ARPA delegation
       RFC 2782: A DNS RR for specifying the location of services
                 (DNS SRV)
       RFC 4592: The Role of Wildcards in the Domain Name System
       RFC 5890: Internationalized Domain Names in Applications
                 (IDNA): Definitions and Document Framework
       RFC 9499: DNS Terminology";
  }

  typedef host-name {
    type domain-name {
      length "2..max";
      pattern '[a-zA-Z0-9\-\.]+';
    }
    description
      "The host-name type represents (fully qualified) fully qualified host names.
       Host names must be at least two characters long (see RFC 952) 952),
       and they are restricted to labels consisting of letters, digits
       digits, and hyphens separated by dots (see RFC1123 RFCs 1123 and RFC
       952).";
    reference
      "RFC  952: DoD Internet Host Table Specification
       RFC 1123: Requirements for Internet Hosts -- Application
                 and Support";
  }

  typedef host {
    type union {
      type ip-address;
      type host-name;
    }
    description
      "The host type represents either an IP address or a (fully
      qualified) fully
       qualified host name.";
  }

  typedef uri {
    type string {
      pattern '[a-z][a-z0-9+.-]*:.*';
    }
    description
      "The uri type represents a Uniform Resource Identifier
       (URI) as defined by the rule 'URI' in RFC 3986.

       Objects using the uri type MUST be in US-ASCII encoding, ASCII encoding
       and MUST be normalized as described by RFC 3986 in Sections 6.2.1,
       6.2.2.1, and 6.2.2.2. 6.2.2.2 of RFC 3986.  Characters that can be
       represented without using percent-encoding are represented
       as characters (without percent-encoding), and all
       case-insensitive characters are set to lowercase except
       for hexadecimal digits within a percent-encoded triplet,
       which are normalized to uppercase as described in
       Section 6.2.2.1 of RFC 3986.

       The purpose of this normalization is to help provide
       unique URIs.  Note that this normalization is not
       sufficient to provide uniqueness.  Two URIs that are
       textually distinct after this normalization may still be
       equivalent.

       Objects using the uri type may restrict the schemes that
       they permit.  For example, 'data:' and 'urn:' schemes
       might not be appropriate.

       A zero-length URI is not a valid URI.  This can be used to
       express 'URI absent' where required.

       In the value set and its semantics, this type is equivalent
       to the Uri SMIv2 textual convention defined in RFC 5017.";
    reference
      "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
       RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
                 Group: Uniform Resource Identifiers (URIs), URLs,
                 and Uniform Resource Names (URNs): Clarifications
                 and Recommendations
       RFC 5017: MIB Textual Conventions for Uniform Resource
                 Identifiers (URIs)";
  }

  typedef email-address {
    type string {
      pattern '.+@.+';
    }
    description
      "The email-address type represents an internationalized
       email address.

       The email address format is defined by the addr-spec
       ABNF rule in Section 3.4.1 of RFC 5322 section 3.4.1. 5322.  This format has
       been extended by RFC 6532 to support internationalized
       email addresses.  Implementations MUST support the
       internationalization extensions of RFC 6532.  Support
      of
       for the obsolete obs-local-part, obs-domain, and
       obs-qtext parts of in RFC 5322 is not required.

       The domain part may use both A-labels and U-labels
       (see RFC 5890).  The canonical format of the domain part
       uses lowercase characters and U-labels (RFC 5890) where
       applicable.";
    reference
      "RFC 5322: Internet Message Format
       RFC 5890: Internationalized Domain Names in Applications
                 (IDNA): Definitions and Document Framework
       RFC 6531: SMTP Extension for 6532: Internationalized Email"; Email Headers";
  }
}
<CODE ENDS>
]]></sourcecode>

</section>
<section title="IANA Considerations">
<section>
  <name>IANA Considerations</name>
<t>This document reuses the URIs for "ietf-yang-types" and
"ietf-inet-types" in the "IETF XML Registry" <xref target="RFC3688"/>.</t>

<t>This document updates the module registration in

<t>Per this document, IANA has updated the "YANG Module
Names" registry to reference this RFC instead of <xref target="RFC6991"/> for
the "ietf-yang-types" and "ietf-inet-types". "ietf-inet-types" modules.  Following the format in
<xref target="RFC6020"/>, the following has these registrations have been registered.</t>
<artwork><![CDATA[
  name:         ietf-yang-types
  namespace:    urn:ietf:params:xml:ns:yang:ietf-yang-types
  prefix:       yang
  reference:    RFC XXXX
]]></artwork>
<artwork><![CDATA[
  name:         ietf-inet-types
  namespace:    urn:ietf:params:xml:ns:yang:ietf-inet-types
  prefix:       inet
  reference:    RFC XXXX
]]></artwork> made.</t>

<dl spacing="compact" newline="false">
  <dt>Name:</dt><dd>ietf-yang-types</dd>
  <dt>Namespace:</dt><dd>urn:ietf:params:xml:ns:yang:ietf-yang-types</dd>
  <dt>Prefix:</dt><dd>yang</dd>
  <dt>Reference:</dt><dd>RFC 9911</dd>
</dl>
<dl spacing="compact" newline="false">
  <dt>Name:</dt><dd>ietf-inet-types</dd>
  <dt>Namespace:</dt><dd>urn:ietf:params:xml:ns:yang:ietf-inet-types</dd>
  <dt>Prefix:</dt><dd>inet</dd>
  <dt>Reference:</dt><dd>RFC 9911</dd>
</dl>

</section>
<section title="Security Considerations">
<section>

  <name>Security Considerations</name>
<t>This document defines common data types using the YANG data modeling
language. The definitions themselves have no security impact on the
Internet, but the usage of these definitions in concrete YANG modules
might have. The security considerations spelled out in the YANG
specification <xref target="RFC7950"/> apply for this document as well.</t>

</section>
<section title="Acknowledgments">
<t>The following people contributed significantly to the original version
of this document published as <xref target="RFC6020"/>: Andy Bierman, Martin
Bjorklund, Balazs Lengyel, David Partain and Phil Shafer.</t>

<t>Helpful comments on various versions of this document were provided by
the following individuals: Andy Bierman, Martin Bjorklund, Benoit
Claise, Joel M. Halpern, Ladislav Lhotka, Lars-Johan Liman, and Dan
Romascanu.</t>

</section>

</middle>
<back>
<references title="Normative References">
<reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119">
  <front>
    <title>Key words for use in RFCs to Indicate Requirement Levels</title>
    <author fullname="S. Bradner" initials="S." surname="Bradner"/>
    <date month="March" year="1997"/>
    <abstract>
      <t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
    </abstract>
  </front>
  <seriesInfo name="BCP" value="14"/>
  <seriesInfo name="RFC" value="2119"/>
  <seriesInfo name="DOI" value="10.17487/RFC2119"/>
</reference>
<reference anchor="RFC3339" target="https://www.rfc-editor.org/info/rfc3339">
  <front>
    <title>Date and Time on the Internet: Timestamps</title>
    <author fullname="G. Klyne" initials="G." surname="Klyne"/>
    <author fullname="C. Newman" initials="C." surname="Newman"/>
    <date month="July" year="2002"/>
    <abstract>
      <t>This document defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar.</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="3339"/>
  <seriesInfo name="DOI" value="10.17487/RFC3339"/>
</reference>
<reference anchor="RFC3688" target="https://www.rfc-editor.org/info/rfc3688">
  <front>
    <title>The IETF XML Registry</title>
    <author fullname="M. Mealling" initials="M." surname="Mealling"/>
    <date month="January" year="2004"/>
    <abstract>
      <t>This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.</t>
    </abstract>
  </front>
  <seriesInfo name="BCP" value="81"/>
  <seriesInfo name="RFC" value="3688"/>
  <seriesInfo name="DOI" value="10.17487/RFC3688"/>
</reference>
<reference anchor="RFC3986" target="https://www.rfc-editor.org/info/rfc3986">
  <front>
    <title>Uniform Resource Identifier (URI): Generic Syntax</title>
    <author fullname="T. Berners-Lee" initials="T." surname="Berners-Lee"/>
    <author fullname="R. Fielding" initials="R." surname="Fielding"/>
    <author fullname="L. Masinter" initials="L." surname="Masinter"/>
    <date month="January" year="2005"/>
    <abstract>
      <t>A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="STD" value="66"/>
  <seriesInfo name="RFC" value="3986"/>
  <seriesInfo name="DOI" value="10.17487/RFC3986"/>
</reference>
  <references>

  <name>References</name>
<references>
  <name>Normative References</name>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3339.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3688.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3986.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4007.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4291.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6020.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7950.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>

<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9499.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9557.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9562.xml"/>
<reference anchor="RFC4007" target="https://www.rfc-editor.org/info/rfc4007">
  <front>
    <title>IPv6 Scoped Address Architecture</title>
    <author fullname="S. Deering" initials="S." surname="Deering"/>
    <author fullname="B. Haberman" initials="B." surname="Haberman"/>
    <author fullname="T. Jinmei" initials="T." surname="Jinmei"/>
    <author fullname="E. Nordmark" initials="E." surname="Nordmark"/>
    <author fullname="B. Zill" initials="B." surname="Zill"/>
    <date month="March" year="2005"/>
    <abstract>
      <t>This document specifies the architectural characteristics, expected behavior, textual representation, and usage of IPv6 addresses of different scopes. According to a decision in the IPv6 working group, this document intentionally avoids the syntax and usage of unicast site-local addresses. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="4007"/>
  <seriesInfo name="DOI" value="10.17487/RFC4007"/>
</reference>
<reference anchor="RFC4122" target="https://www.rfc-editor.org/info/rfc4122">
  <front>
    <title>A Universally Unique IDentifier (UUID) URN Namespace</title>
    <author fullname="P. Leach" initials="P." surname="Leach"/>
    <author fullname="M. Mealling" initials="M." surname="Mealling"/>
    <author fullname="R. Salz" initials="R." surname="Salz"/>
    <date month="July" year="2005"/>
    <abstract>
      <t>This specification defines a Uniform Resource Name namespace for UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier). A UUID is 128 bits long, and can guarantee uniqueness across space and time. UUIDs were originally used in the Apollo Network Computing System and later in the Open Software Foundation\'s (OSF) Distributed Computing Environment (DCE), and then in Microsoft Windows platforms.</t>
      <t>This specification is derived from the DCE specification with the kind permission of the OSF (now known as The Open Group). Information from earlier versions of the DCE specification have been incorporated into this document. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="4122"/>
  <seriesInfo name="DOI" value="10.17487/RFC4122"/>
</reference>
<reference anchor="RFC4291" target="https://www.rfc-editor.org/info/rfc4291">
  <front>
    <title>IP Version 6 Addressing Architecture</title>
    <author fullname="R. Hinden" initials="R." surname="Hinden"/>
    <author fullname="S. Deering" initials="S." surname="Deering"/>
    <date month="February" year="2006"/>
    <abstract>
      <t>This specification defines the addressing architecture of the IP Version 6 (IPv6) protocol. The document includes the IPv6 addressing model, text representations of IPv6 addresses, definition of IPv6 unicast addresses, anycast addresses, and multicast addresses, and an IPv6 node's required addresses.</t>
      <t>This document obsoletes RFC 3513, "IP Version 6 Addressing Architecture". [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="4291"/>
  <seriesInfo name="DOI" value="10.17487/RFC4291"/>
</reference>
<reference anchor="RFC6020" target="https://www.rfc-editor.org/info/rfc6020">
  <front>
    <title>YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)</title>
    <author fullname="M. Bjorklund" initials="M." role="editor" surname="Bjorklund"/>
    <date month="October" year="2010"/>
    <abstract>
      <t>YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="6020"/>
  <seriesInfo name="DOI" value="10.17487/RFC6020"/>
</reference>
<reference anchor="RFC7950" target="https://www.rfc-editor.org/info/rfc7950">
  <front>
    <title>The YANG 1.1 Data Modeling Language</title>
    <author fullname="M. Bjorklund" initials="M." role="editor" surname="Bjorklund"/>
    <date month="August" year="2016"/>
    <abstract>
      <t>YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="7950"/>
  <seriesInfo name="DOI" value="10.17487/RFC7950"/>
</reference>
<reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174">
  <front>
    <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
    <author fullname="B. Leiba" initials="B." surname="Leiba"/>
    <date month="May" year="2017"/>
    <abstract>
      <t>RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t>
    </abstract>
  </front>
  <seriesInfo name="BCP" value="14"/>
  <seriesInfo name="RFC" value="8174"/>
  <seriesInfo name="DOI" value="10.17487/RFC8174"/>
</reference>
<reference anchor="RFC8294" target="https://www.rfc-editor.org/info/rfc8294">
  <front>
    <title>Common YANG Data Types for the Routing Area</title>
    <author fullname="X. Liu" initials="X." surname="Liu"/>
    <author fullname="Y. Qu" initials="Y." surname="Qu"/>
    <author fullname="A. Lindem" initials="A." surname="Lindem"/>
    <author fullname="C. Hopps" initials="C." surname="Hopps"/>
    <author fullname="L. Berger" initials="L." surname="Berger"/>
    <date month="December" year="2017"/>
    <abstract>
      <t>This document defines a collection of common data types using the YANG data modeling language. These derived common types are designed to be imported by other modules defined in the routing area.</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="8294"/>
  <seriesInfo name="DOI" value="10.17487/RFC8294"/>
</reference>
<reference anchor="RFC9499" target="https://www.rfc-editor.org/info/rfc9499">
  <front>
    <title>DNS Terminology</title>
    <author fullname="P. Hoffman" initials="P." surname="Hoffman"/>
    <author fullname="K. Fujiwara" initials="K." surname="Fujiwara"/>
    <date month="March" year="2024"/>
    <abstract>
      <t>The Domain Name System (DNS) is defined in literally dozens of different RFCs. The terminology used by implementers and developers of DNS protocols, and by operators of DNS systems, has changed in the decades since the DNS was first defined. This document gives current definitions for many of the terms used in the DNS in a single document.</t>
      <t>This document updates RFC 2308 by clarifying the definitions of "forwarder" and "QNAME". It obsoletes RFC 8499 by adding multiple terms and clarifications. Comprehensive lists of changed and new definitions can be found in Appendices A and B.</t>
    </abstract>
  </front>
  <seriesInfo name="BCP" value="219"/>
  <seriesInfo name="RFC" value="9499"/>
  <seriesInfo name="DOI" value="10.17487/RFC9499"/>
</reference>
<reference anchor="RFC9557" target="https://www.rfc-editor.org/info/rfc9557">
  <front>
    <title>Date and Time on the Internet: Timestamps with Additional Information</title>
    <author fullname="U. Sharma" initials="U." surname="Sharma"/>
    <author fullname="C. Bormann" initials="C." surname="Bormann"/>
    <date month="April" year="2024"/>
    <abstract>
      <t>This document defines an extension to the timestamp format defined in RFC 3339 for representing additional information, including a time zone.</t>
      <t>It updates RFC 3339 in the specific interpretation of the local offset Z, which is no longer understood to "imply that UTC is the preferred reference point for the specified time".</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="9557"/>
  <seriesInfo name="DOI" value="10.17487/RFC9557"/>
</reference>
<reference anchor="W3C.xpath" target="http://www.w3.org/TR/xpath"> anchor="XPATH" target="http://www.w3.org/TR/xpath-10">
  <front>
    <title>XML Path Language (XPath) Version 1.0</title>
    <author fullname="James Clark" initials="J." surname="Clark"> surname="Clark" role="editor">
      <organization>
      </organization>
    </author>
    <author fullname="Steve DeRose" initials="S." surname="DeRose"> surname="DeRose" role="editor">
      <organization>
      </organization>
    </author>
    <date day="16" month="November" year="1999"/>
  </front>
  <seriesInfo name="W3C REC" value="xpath"/>
  <seriesInfo name="W3C Recommendation" value="xpath"/>
  <seriesInfo name="W3C" value="xpath"/>
  <refcontent>W3C Recommendation</refcontent>
</reference>
<reference anchor="W3C.xmlschema11-2" anchor="XSD-TYPES" target="https://www.w3.org/TR/xmlschema11-2/">
  <front>
    <title>W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes</title>
    <author/>
  </front>
  <seriesInfo name="W3C REC" value="xmlschema11-2"/>
  <seriesInfo name="W3C" value="xmlschema11-2"/>
</reference>
</references>
<references title="Informative References">
<reference anchor="RFC0768" target="https://www.rfc-editor.org/info/rfc768">
  <front>
    <title>User Datagram Protocol</title>
    <author fullname="J. Postel" initials="J." surname="Postel"/>
    <date month="August" year="1980"/>
  </front>
  <seriesInfo name="STD" value="6"/>
  <seriesInfo name="RFC" value="768"/>
  <seriesInfo name="DOI" value="10.17487/RFC0768"/>
</reference>
<reference anchor="RFC0791" target="https://www.rfc-editor.org/info/rfc791">
  <front>
    <title>Internet Protocol</title>
    <author fullname="J. Postel" initials="J." surname="Postel"/>
    <date month="September" year="1981"/>
  </front>
  <seriesInfo name="STD" value="5"/>
  <seriesInfo name="RFC" value="791"/>
  <seriesInfo name="DOI" value="10.17487/RFC0791"/>
</reference>
<reference anchor="RFC0952" target="https://www.rfc-editor.org/info/rfc952">
  <front>
    <title>DoD Internet host table specification</title>
    <author fullname="K. Harrenstien" initials="K." surname="Harrenstien"/>
    <author fullname="M.K. Stahl" initials="M.K." surname="Stahl"/>
    <author fullname="E.J. Feinler" initials="E.J." surname="Feinler"/>
    <date month="October" year="1985"/>
    <abstract>
      <t>This RFC is the official specification of the format of the Internet Host Table. This edition of the specification includes minor revisions to RFC-810 which brings it up to date.</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="952"/>
  <seriesInfo name="DOI" value="10.17487/RFC0952"/>
</reference>
<reference anchor="RFC1034" target="https://www.rfc-editor.org/info/rfc1034">
  <front>
    <title>Domain names - concepts and facilities</title>
    <author fullname="P. Mockapetris" initials="P." surname="Mockapetris"/>
    <date month="November" year="1987"/>
    <abstract>
      <t>This RFC is the revised basic definition of The Domain Name System. It obsoletes RFC-882. This memo describes the domain style names and their used for host address look up and electronic mail forwarding. It discusses the clients and servers in the domain name system and the protocol used between them.</t>
    </abstract>
  </front>
  <seriesInfo name="STD" value="13"/>
  <seriesInfo name="RFC" value="1034"/>
  <seriesInfo name="DOI" value="10.17487/RFC1034"/>
</reference>
<reference anchor="RFC1123" target="https://www.rfc-editor.org/info/rfc1123">
  <front>
    <title>Requirements for Internet Hosts - Application and Support</title>
    <author fullname="R. Braden" initials="R." role="editor" surname="Braden"/>
    <date month="October" year="1989"/>
    <abstract>
      <t>This RFC is an official specification for the Internet community. It incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="STD" value="3"/>
  <seriesInfo name="RFC" value="1123"/>
  <seriesInfo name="DOI" value="10.17487/RFC1123"/>
</reference>
<reference anchor="RFC1930" target="https://www.rfc-editor.org/info/rfc1930">
  <front>
    <title>Guidelines for creation, selection, and registration of an Autonomous System (AS)</title>
    <author fullname="J. Hawkinson" initials="J." surname="Hawkinson"/>
    <author fullname="T. Bates" initials="T." surname="Bates"/>
    <date month="March" year="1996"/>
    <abstract>
      <t>This memo discusses when it is appropriate to register and utilize an Autonomous System (AS), and lists criteria for such. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
    </abstract>
  </front>
  <seriesInfo name="BCP" value="6"/>
  <seriesInfo name="RFC" value="1930"/>
  <seriesInfo name="DOI" value="10.17487/RFC1930"/>
</reference>
<reference anchor="RFC2317" target="https://www.rfc-editor.org/info/rfc2317">
  <front>
    <title>Classless IN-ADDR.ARPA delegation</title>
    <author fullname="H. Eidnes" initials="H." surname="Eidnes"/>
    <author fullname="G. de Groot" initials="G." surname="de Groot"/>
    <author fullname="P. Vixie" initials="P." surname="Vixie"/>
    <date month="March" year="1998"/>
    <abstract>
      <t>This document describes a way to do IN-ADDR.ARPA delegation on non-octet boundaries for address spaces covering fewer than 256 addresses. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
    </abstract>
  </front>
  <seriesInfo name="BCP" value="20"/>
  <seriesInfo name="RFC" value="2317"/>
  <seriesInfo name="DOI" value="10.17487/RFC2317"/>
</reference>
<reference anchor="RFC2474" target="https://www.rfc-editor.org/info/rfc2474">
  <front>
    <title>Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers</title>
    <author fullname="K. Nichols" initials="K." surname="Nichols"/>
    <author fullname="S. Blake" initials="S." surname="Blake"/>
    <author fullname="F. Baker" initials="F." surname="Baker"/>
    <author fullname="D. Black" initials="D." surname="Black"/>
    <date month="December" year="1998"/>
    <abstract>
      <t>This document defines the IP header field, called the DS (for differentiated services) field. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="2474"/>
  <seriesInfo name="DOI" value="10.17487/RFC2474"/>
</reference>
<reference anchor="RFC2578" target="https://www.rfc-editor.org/info/rfc2578">
  <front>
    <title>Structure of Management Information Version 2 (SMIv2)</title>
    <author fullname="K. McCloghrie" initials="K." role="editor" surname="McCloghrie"/>
    <author fullname="D. Perkins" initials="D." role="editor" surname="Perkins"/>
    <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/> fullname="David Peterson" role="editor"/>
    <author fullname="Shudi Gao" role="editor"/>
    <author fullname="Ashok Malhotra" role="editor"/>
    <author fullname="C.M. Sperberg-McQueen" role="editor"/>
    <author fullname="Henry S. Thompson" role="editor"/>
    <date day="5" month="April" year="1999"/>
    <abstract>
      <t>It is the purpose of this document, the Structure of Management Information Version 2 (SMIv2), to define that adapted subset, and to assign a set of associated administrative values. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="STD" value="58"/>
  <seriesInfo name="RFC" value="2578"/>
  <seriesInfo name="DOI" value="10.17487/RFC2578"/>
</reference>
<reference anchor="RFC2579" target="https://www.rfc-editor.org/info/rfc2579">
  <front>
    <title>Textual Conventions for SMIv2</title>
    <author fullname="K. McCloghrie" initials="K." role="editor" surname="McCloghrie"/>
    <author fullname="D. Perkins" initials="D." role="editor" surname="Perkins"/>
    <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/>
    <date month="April" year="1999"/>
    <abstract>
      <t>It is the purpose of this document to define the initial set of textual conventions available to all MIB modules. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="STD" value="58"/>
  <seriesInfo name="RFC" value="2579"/>
  <seriesInfo name="DOI" value="10.17487/RFC2579"/>
</reference>
<reference anchor="RFC2780" target="https://www.rfc-editor.org/info/rfc2780">
  <front>
    <title>IANA Allocation Guidelines For Values In the Internet Protocol and Related Headers</title>
    <author fullname="S. Bradner" initials="S." surname="Bradner"/>
    <author fullname="V. Paxson" initials="V." surname="Paxson"/>
    <date month="March" year="2000"/>
    <abstract>
      <t>This memo provides guidance for the IANA to use in assigning parameters for fields in the IPv4, IPv6, ICMP, UDP and TCP protocol headers. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
    </abstract> year="2012"/>
  </front>
  <seriesInfo name="BCP" value="37"/>
  <seriesInfo name="RFC" value="2780"/>
  <seriesInfo name="DOI" value="10.17487/RFC2780"/>
  <refcontent>W3C Recommendation</refcontent>
</reference>
</references>
<references>
  <name>Informative References</name>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0768.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0791.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.0952.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1034.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1123.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1930.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2317.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2474.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2578.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2579.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2780.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2782.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2856.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3289.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3305.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3595.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3927.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4001.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4271.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4340.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4502.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4592.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5017.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5131.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5322.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5646.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5890.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5952.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6021.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6241.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6532.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6793.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6991.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9260.xml"/>
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9293.xml"/>

<reference anchor="RFC2782" target="https://www.rfc-editor.org/info/rfc2782"> anchor="ISO-8601" target="https://www.iso.org/standard/26780.html">
  <front>
    <title>A DNS RR for specifying the location of services (DNS SRV)</title>
    <author fullname="A. Gulbrandsen" initials="A." surname="Gulbrandsen"/>
    <author fullname="P. Vixie" initials="P." surname="Vixie"/>
    <author fullname="L. Esibov" initials="L." surname="Esibov"/>
    <date month="February" year="2000"/>
    <abstract>
      <t>This document describes a DNS RR which specifies the location of the server(s) for a specific protocol
    <title>Data elements and domain. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="2782"/>
  <seriesInfo name="DOI" value="10.17487/RFC2782"/>
</reference>
<reference anchor="RFC2856" target="https://www.rfc-editor.org/info/rfc2856">
  <front>
    <title>Textual Conventions for Additional High Capacity Data Types</title>
    <author fullname="A. Bierman" initials="A." surname="Bierman"/>
    <author fullname="K. McCloghrie" initials="K." surname="McCloghrie"/>
    <author fullname="R. Presuhn" initials="R." surname="Presuhn"/>
    <date month="June" year="2000"/>
    <abstract>
      <t>This memo specifies new textual conventions for additional high capacity data types, intended for SNMP implementations which already support the Counter64 data type. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="2856"/>
  <seriesInfo name="DOI" value="10.17487/RFC2856"/>
</reference>
<reference anchor="RFC3289" target="https://www.rfc-editor.org/info/rfc3289">
  <front>
    <title>Management Information Base for the Differentiated Services Architecture</title>
    <author fullname="F. Baker" initials="F." surname="Baker"/>
    <author fullname="K. Chan" initials="K." surname="Chan"/>
    <author fullname="A. Smith" initials="A." surname="Smith"/>
    <date month="May" year="2002"/>
    <abstract>
      <t>This memo describes an SMIv2 (Structure of Management interchange formats -- Information version 2) MIB for a device implementing the Differentiated Services Architecture. It may be used both for monitoring and configuration of a router or switch capable of Differentiated Services functionality. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="3289"/>
  <seriesInfo name="DOI" value="10.17487/RFC3289"/>
</reference>
<reference anchor="RFC3305" target="https://www.rfc-editor.org/info/rfc3305">
  <front>
    <title>Report from the Joint W3C/IETF URI Planning Interest Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names (URNs): Clarifications and Recommendations</title>
    <author fullname="M. Mealling" initials="M." role="editor" surname="Mealling"/>
    <author fullname="R. Denenberg" initials="R." role="editor" surname="Denenberg"/>
    <date month="August" year="2002"/>
  </front>
  <seriesInfo name="RFC" value="3305"/>
  <seriesInfo name="DOI" value="10.17487/RFC3305"/>
</reference>
<reference anchor="RFC3595" target="https://www.rfc-editor.org/info/rfc3595">
  <front>
    <title>Textual Conventions for IPv6 Flow Label</title>
    <author fullname="B. Wijnen" initials="B." surname="Wijnen"/>
    <date month="September" year="2003"/>
    <abstract>
      <t>This MIB module defines textual conventions to represent the commonly used IPv6 Flow Label. The intent is that these textual conventions (TCs) will be imported and used in MIB modules that would otherwise define their own representations. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="3595"/>
  <seriesInfo name="DOI" value="10.17487/RFC3595"/>
</reference>
<reference anchor="RFC3927" target="https://www.rfc-editor.org/info/rfc3927">
  <front>
    <title>Dynamic Configuration of IPv4 Link-Local Addresses</title>
    <author fullname="S. Cheshire" initials="S." surname="Cheshire"/>
    <author fullname="B. Aboba" initials="B." surname="Aboba"/>
    <author fullname="E. Guttman" initials="E." surname="Guttman"/>
    <date month="May" year="2005"/>
    <abstract>
      <t>To participate in wide-area IP networking, a host needs to be configured with IP addresses for its interfaces, either manually by the user or automatically from a source on the network such as a Dynamic Host Configuration Protocol (DHCP) server. Unfortunately, such address configuration information may not always be available. It is therefore beneficial for a host to be able to depend on a useful subset of IP networking functions even when no address configuration is available. This document describes how a host may automatically configure an interface with an IPv4 address within the 169.254/16 prefix that is valid for communication with other devices connected to the same physical (or logical) link.</t>
      <t>IPv4 Link-Local addresses are not suitable for communication with devices not directly connected to the same physical (or logical) link, and are only used where stable, routable addresses are not available (such as on ad hoc or isolated networks). This document does not recommend that IPv4 Link-Local addresses and routable addresses be configured simultaneously on the same interface. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="3927"/>
  <seriesInfo name="DOI" value="10.17487/RFC3927"/>
</reference>
<reference anchor="RFC4001" target="https://www.rfc-editor.org/info/rfc4001">
  <front>
    <title>Textual Conventions for Internet Network Addresses</title>
    <author fullname="M. Daniele" initials="M." surname="Daniele"/>
    <author fullname="B. Haberman" initials="B." surname="Haberman"/>
    <author fullname="S. Routhier" initials="S." surname="Routhier"/>
    <author fullname="J. Schoenwaelder" initials="J." surname="Schoenwaelder"/>
    <date month="February" year="2005"/>
    <abstract>
      <t>This MIB module defines textual conventions to represent commonly used Internet network layer addressing information. The intent is that these textual conventions will be imported and used in MIB modules that would otherwise define their own representations. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="4001"/>
  <seriesInfo name="DOI" value="10.17487/RFC4001"/>
</reference>
<reference anchor="RFC4271" target="https://www.rfc-editor.org/info/rfc4271">
  <front>
    <title>A Border Gateway Protocol 4 (BGP-4)</title>
    <author fullname="Y. Rekhter" initials="Y." role="editor" surname="Rekhter"/>
    <author fullname="T. Li" initials="T." role="editor" surname="Li"/>
    <author fullname="S. Hares" initials="S." role="editor" surname="Hares"/>
    <date month="January" year="2006"/>
    <abstract>
      <t>This document discusses the Border Gateway Protocol (BGP), which is an inter-Autonomous System routing protocol.</t>
      <t>The primary function of a BGP speaking system is to exchange network reachability information with other BGP systems. This network reachability information includes information on the list of Autonomous Systems (ASes) that reachability information traverses. This information is sufficient for constructing a graph of AS connectivity for this reachability from which routing loops may be pruned, and, at the AS level, some policy decisions may be enforced.</t>
      <t>BGP-4 provides a set of mechanisms for supporting Classless Inter-Domain Routing (CIDR). These mechanisms include support for advertising a set interchange -- Representation of destinations as an IP prefix, dates and eliminating the concept of network "class" within BGP. BGP-4 also introduces mechanisms that allow aggregation of routes, including aggregation of AS paths.</t>
      <t>This document obsoletes RFC 1771. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="4271"/>
  <seriesInfo name="DOI" value="10.17487/RFC4271"/>
</reference>
<reference anchor="RFC4340" target="https://www.rfc-editor.org/info/rfc4340">
  <front>
    <title>Datagram Congestion Control Protocol (DCCP)</title>
    <author fullname="E. Kohler" initials="E." surname="Kohler"/>
    <author fullname="M. Handley" initials="M." surname="Handley"/>
    <author fullname="S. Floyd" initials="S." surname="Floyd"/> times
    </title>
    <author><organization>ISO/IEC</organization></author>
    <date month="March" year="2006"/>
    <abstract>
      <t>The Datagram Congestion Control Protocol (DCCP) is a transport protocol that provides bidirectional unicast connections of congestion-controlled unreliable datagrams. DCCP is suitable for applications that transfer fairly large amounts of data and that can benefit from control over the tradeoff between timeliness and reliability. [STANDARDS-TRACK]</t>
    </abstract> year="2008" month="December"/>
  </front>
  <seriesInfo name="RFC" value="4340"/>
  <seriesInfo name="DOI" value="10.17487/RFC4340"/> name="ISO/IEC" value="8601:2000"/>
</reference>

<reference anchor="RFC4502" target="https://www.rfc-editor.org/info/rfc4502"> anchor="ISO-9834-1" target="https://www.iso.org/standard/58055.html">
  <front>
    <title>Remote Network Monitoring Management Information Base Version 2</title>
    <author fullname="S. Waldbusser" initials="S." surname="Waldbusser"/>
    <date month="May" year="2006"/>
    <abstract>
      <t>This document defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects
    <title>Information technology - Procedures for managing remote network monitoring devices.</t>
      <t>This document obsoletes RFC 2021, updates RFC 3273, and contains a new version of the RMON2-MIB module. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="4502"/>
  <seriesInfo name="DOI" value="10.17487/RFC4502"/>
</reference>
<reference anchor="RFC4592" target="https://www.rfc-editor.org/info/rfc4592">
  <front>
    <title>The Role of Wildcards in the Domain Name System</title>
    <author fullname="E. Lewis" initials="E." surname="Lewis"/>
    <date month="July" year="2006"/>
    <abstract>
      <t>This is an update to the wildcard definition of RFC 1034. The interaction with wildcards and CNAME is changed, an error condition is removed, and the words defining some concepts central to wildcards are changed. The overall goal is not to change wildcards, but to refine the definition operation of RFC 1034. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="4592"/>
  <seriesInfo name="DOI" value="10.17487/RFC4592"/>
</reference>
<reference anchor="RFC5017" target="https://www.rfc-editor.org/info/rfc5017">
  <front>
    <title>MIB Textual Conventions for Uniform Resource Identifiers (URIs)</title>
    <author fullname="D. McWalter" initials="D." role="editor" surname="McWalter"/>
    <date month="September" year="2007"/>
    <abstract>
      <t>This MIB module defines textual conventions to represent STD 66 Uniform Resource Identifiers (URIs). The intent is that these textual conventions will be imported and used in MIB modules that would otherwise define their own representation(s). [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="5017"/>
  <seriesInfo name="DOI" value="10.17487/RFC5017"/>
</reference>
<reference anchor="RFC5131" target="https://www.rfc-editor.org/info/rfc5131">
  <front>
    <title>A MIB Textual Convention for Language Tags</title>
    <author fullname="D. McWalter" initials="D." role="editor" surname="McWalter"/>
    <date month="December" year="2007"/>
    <abstract>
      <t>This MIB module defines a textual convention to represent BCP 47 language tags. The intent is that this textual convention will be imported object identifier registration authorities - Part 1: General procedures and used in MIB modules that would otherwise define their own representation. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="5131"/>
  <seriesInfo name="DOI" value="10.17487/RFC5131"/>
</reference>
<reference anchor="RFC5322" target="https://www.rfc-editor.org/info/rfc5322">
  <front>
    <title>Internet Message Format</title>
    <author fullname="P. Resnick" initials="P." role="editor" surname="Resnick"/>
    <date month="October" year="2008"/>
    <abstract>
      <t>This document specifies the Internet Message Format (IMF), a syntax for text messages that are sent between computer users, within the framework of "electronic mail" messages. This specification is a revision top arcs of Request For Comments (RFC) 2822, which itself superseded Request For Comments (RFC) 822, "Standard for the Format of ARPA Internet Text Messages", updating it to reflect current practice and incorporating incremental changes that were specified in other RFCs. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="5322"/>
  <seriesInfo name="DOI" value="10.17487/RFC5322"/>
</reference>
<reference anchor="RFC5646" target="https://www.rfc-editor.org/info/rfc5646">
  <front>
    <title>Tags for Identifying Languages</title>
    <author fullname="A. Phillips" initials="A." role="editor" surname="Phillips"/>
    <author fullname="M. Davis" initials="M." role="editor" surname="Davis"/> international object identifier tree
</title>
    <author><organization>ISO/IEC</organization></author>
    <date month="September" year="2009"/>
    <abstract>
      <t>This document describes the structure, content, construction, and semantics of language tags for use in cases where it is desirable to indicate the language used in an information object. It also describes how to register values for use in language tags and the creation of user-defined extensions for private interchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
    </abstract> year="2012"/>
  </front>
  <seriesInfo name="BCP" value="47"/>
  <seriesInfo name="RFC" value="5646"/>
  <seriesInfo name="DOI" value="10.17487/RFC5646"/> name="ISO/IEC" value="9834-1:2012"/>
</reference>

<reference anchor="RFC5890" target="https://www.rfc-editor.org/info/rfc5890"> anchor="IEEE-802-2024">
  <front>
    <title>Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework</title>
    <author fullname="J. Klensin" initials="J." surname="Klensin"/>
    <date month="August" year="2010"/>
    <abstract>
      <t>This document is one of a collection that, together, describe the protocol and usage context for a revision of Internationalized Domain Names
    <title>IEEE Standard for Applications (IDNA), superseding the earlier version. It describes the document collection Local and provides definitions Metropolitan Area Networks: Overview and other material that are common to the set. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="5890"/>
  <seriesInfo name="DOI" value="10.17487/RFC5890"/>
</reference>
<reference anchor="RFC5952" target="https://www.rfc-editor.org/info/rfc5952">
  <front>
    <title>A Recommendation for IPv6 Address Text Representation</title>
    <author fullname="S. Kawamura" initials="S." surname="Kawamura"/>
    <author fullname="M. Kawashima" initials="M." surname="Kawashima"/> Architecture</title>
    <author>
      <organization>IEEE</organization>
    </author>
    <date month="August" year="2010"/>
    <abstract>
      <t>As IPv6 deployment increases, there will be a dramatic increase in the need to use IPv6 addresses in text. While the IPv6 address architecture in Section 2.2 of RFC 4291 describes a flexible model for text representation of an IPv6 address, this flexibility has been causing problems for operators, system engineers, and users. This document defines a canonical textual representation format. It does not define a format for internal storage, such as within an application or database. It is expected that the canonical format will be followed by humans and systems when representing IPv6 addresses as text, but all implementations must accept and be able to handle any legitimate RFC 4291 format. [STANDARDS-TRACK]</t>
    </abstract> month="3" year="2025"/>
  </front>
  <seriesInfo name="RFC" value="5952"/> name="IEEE Std" value="802-2024"/>
  <seriesInfo name="DOI" value="10.17487/RFC5952"/> value="10.1109/IEEESTD.2025.10935844"/>
</reference>

<reference anchor="RFC6021" target="https://www.rfc-editor.org/info/rfc6021"> anchor="Err4076" quote-title="false" target="https://www.rfc-editor.org/errata/eid4076">
  <front>
    <title>Common YANG Data Types</title>
    <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/>
    <date month="October" year="2010"/>
    <abstract>
      <t>This document introduces a collection of common data types to be used with the YANG data modeling language. [STANDARDS-TRACK]</t>
    </abstract>
    <title>Erratum ID 4076</title>
    <author>
      <organization>RFC Errata</organization>
    </author>
    <date/>
    </front>
  <seriesInfo name="RFC" value="6021"/>
  <seriesInfo name="DOI" value="10.17487/RFC6021"/>
    <refcontent>RFC 6991</refcontent>
</reference>
<reference anchor="RFC6241" target="https://www.rfc-editor.org/info/rfc6241">
  <front>
    <title>Network Configuration Protocol (NETCONF)</title>
    <author fullname="R. Enns" initials="R." role="editor" surname="Enns"/>
    <author fullname="M. Bjorklund" initials="M." role="editor" surname="Bjorklund"/>
    <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/>
    <author fullname="A. Bierman" initials="A." role="editor" surname="Bierman"/>
    <date month="June" year="2011"/>
    <abstract>
      <t>The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]</t>
    </abstract> anchor="Err5105" quote-title="false" target="https://www.rfc-editor.org/errata/eid5105">
  <front>
    <title>Erratum ID 5105</title>
    <author>
      <organization>RFC Errata</organization>
    </author>
    <date/>
  </front>
  <seriesInfo name="RFC" value="6241"/>
  <seriesInfo name="DOI" value="10.17487/RFC6241"/>
  <refcontent>RFC 6991</refcontent>
</reference>
<reference anchor="RFC6793" target="https://www.rfc-editor.org/info/rfc6793">
  <front>
    <title>BGP Support for Four-Octet Autonomous System (AS) Number Space</title>
    <author fullname="Q. Vohra" initials="Q." surname="Vohra"/>
    <author fullname="E. Chen" initials="E." surname="Chen"/>
    <date month="December" year="2012"/>
    <abstract>
</references>
</references>

<section numbered="false">
  <name>Acknowledgments</name>

<t>The Autonomous System number is encoded as a two-octet entity in the base BGP specification. This document describes extensions to BGP to carry the Autonomous System numbers as four-octet entities. This document obsoletes RFC 4893 and updates RFC 4271. [STANDARDS-TRACK]</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="6793"/>
  <seriesInfo name="DOI" value="10.17487/RFC6793"/>
</reference>
<reference anchor="RFC6991" target="https://www.rfc-editor.org/info/rfc6991">
  <front>
    <title>Common YANG Data Types</title>
    <author fullname="J. Schoenwaelder" initials="J." role="editor" surname="Schoenwaelder"/>
    <date month="July" year="2013"/>
    <abstract>
      <t>This document introduces a collection of common data types following people contributed significantly to be used with the YANG data modeling language. This document obsoletes RFC 6021.</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="6991"/>
  <seriesInfo name="DOI" value="10.17487/RFC6991"/>
</reference>
<reference anchor="RFC8200" target="https://www.rfc-editor.org/info/rfc8200">
  <front>
    <title>Internet Protocol, Version 6 (IPv6) Specification</title>
    <author fullname="S. Deering" initials="S." surname="Deering"/>
    <author fullname="R. Hinden" initials="R." surname="Hinden"/>
    <date month="July" year="2017"/>
    <abstract>
      <t>This document specifies original version 6
of the Internet Protocol (IPv6). It obsoletes RFC 2460.</t>
    </abstract>
  </front>
  <seriesInfo name="STD" value="86"/>
  <seriesInfo name="RFC" value="8200"/>
  <seriesInfo name="DOI" value="10.17487/RFC8200"/>
</reference>
<reference anchor="RFC9260" target="https://www.rfc-editor.org/info/rfc9260">
  <front>
    <title>Stream Control Transmission Protocol</title>
    <author fullname="R. Stewart" initials="R." surname="Stewart"/>
    <author fullname="M. Tüxen" initials="M." surname="Tüxen"/>
    <author fullname="K. Nielsen" initials="K." surname="Nielsen"/>
    <date month="June" year="2022"/>
    <abstract>
      <t>This document describes the Stream Control Transmission Protocol (SCTP) and obsoletes RFC 4960. It incorporates the specification of the chunk flags registry from RFC 6096 and the specification of the I bit of DATA chunks from RFC 7053. Therefore, RFCs 6096 and 7053 are also obsoleted by this document. In addition, RFCs 4460 and 8540, document, which describe errata for SCTP, are obsoleted by this document.</t>
      <t>SCTP was originally designed to transport Public Switched Telephone Network (PSTN) signaling messages over IP networks. It is also suited to be used for other applications, for example, WebRTC.</t>
      <t>SCTP is a reliable transport protocol operating on top of a connectionless packet network, such published as IP. It offers the following services to its users:</t>
      <t>The design of SCTP includes appropriate congestion avoidance behavior and resistance to flooding and masquerade attacks.</t>
    </abstract>
  </front>
  <seriesInfo name="RFC" value="9260"/>
  <seriesInfo name="DOI" value="10.17487/RFC9260"/>
</reference>
<reference anchor="RFC9293" target="https://www.rfc-editor.org/info/rfc9293">
  <front>
    <title>Transmission Control Protocol (TCP)</title>
    <author fullname="W. Eddy" initials="W." role="editor" surname="Eddy"/>
    <date month="August" year="2022"/>
    <abstract>
      <t>This document specifies the Transmission Control Protocol (TCP). TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously evolved over decades of use and growth <xref target="RFC6021"/>: <contact fullname="Andy Bierman"/>, <contact fullname="Martin
Björklund"/>, <contact fullname="Balazs Lengyel"/>, <contact fullname="David Partain"/>, and <contact fullname="Phil Shafer"/>.</t>

<t>Helpful comments on various draft versions of the Internet. Over this time, a number of changes have been made to TCP as it was specified in RFC 793, though these have only been documented in a piecemeal fashion. This document collects and brings those changes together with the protocol specification from RFC 793. This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093, 6429, 6528, and 6691 that updated parts of RFC 793. It updates RFCs 1011 and 1122, and it should be considered as a replacement for the portions of those documents dealing with TCP requirements. It also updates RFC 5961 were provided by adding a small clarification in reset handling while in the SYN-RECEIVED state. The TCP header control bits from RFC 793 have also been updated based on RFC 3168.</t>
    </abstract>
  </front>
  <seriesInfo name="STD" value="7"/>
  <seriesInfo name="RFC" value="9293"/>
  <seriesInfo name="DOI" value="10.17487/RFC9293"/>
</reference>
<reference anchor="ISO-9834-1">
<front>
<title>Information technology -- Open Systems Interconnection -- Procedures for
the operation of OSI Registration Authorities: General procedures and top arcs of the ASN.1 Object Identifier tree</title>
<author><organization>ISO/IEC 9834-1:2008</organization></author>
<date year="2008"/>
</front>
</reference>
<reference anchor="IEEE-802-2001">
<front>
<title>IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture</title>
<author><organization>IEEE Std 802-2001</organization></author>
<date month="6" year="2001"/>
</front>
</reference>
<reference anchor="ERR4076">
<front>
<title>RFC Errata, Erratum 4076, RFC 6991</title>
<author><organization/></author>
<date/>
</front><refcontent>&lt;https://www.rfc-editor.org/errata/eid4076&gt;</refcontent>
</reference>
<reference anchor="ERR5105">
<front>
<title>RFC Errata, Erratum 5105, RFC 6991</title>
<author><organization/></author>
<date/>
</front><refcontent>&lt;https://www.rfc-editor.org/errata/eid5105&gt;</refcontent>
</reference>
</references> following individuals: <contact fullname="Andy Bierman"/>, <contact fullname="Martin Björklund"/>, <contact fullname="Benoît
Claise"/>, <contact fullname="Joel M. Halpern"/>, <contact fullname="Ladislav Lhotka"/>, <contact fullname="Lars-Johan Liman"/>, and <contact fullname="Dan
Romascanu"/>.</t>

</section>

  </back>
</rfc>