
Paxson
Spring 2011

CS 161
Computer Security Project 2

Due: Thursday May 5, 11:59pm

Updated 22Apr11: We linked the two Bro scripts at the end of Section 2. Thus far they were only
available in the VM at /root/bro-scripts.

1 Background
Huge Big Dairy is a farming and poultry conglomerate run out of Madison, Wisconsin. They pride
themselves on their yogurts, brie cheeses, and buffalo wings (made out of Real Buffalotm). However,
Huge Big has many detractors who allege that the company not only manifests incompetence when
it comes to dairy products, but also a propensity towards venal undertakings.

During an ill-advised television interview, Huge Big’s CEO, Chuck “Mondo” Cheeze, brashly trum-
pets his company’s expertise, not only in all things dairy, but their emarketing prowess and home-
grown Internet security savvy. Mondo’s biggest gaffe, however, is to imply that he does not consider
cows as bovines—instantly incurring the wrath of the shadowy underground hacker group Syn-
onymous, whose members unite in their violent objection to any terminology errors that confuse
whether two words have the same meaning.

Synonymous decides to humiliate HBDairy, exposing their secrets and incompetence, and disrupting
the activity of their employees. In a series of Internet attacks that HBDairy finds itself powerless
to counter, Synonymous deeply embarrasses the company. Eventually, HBDairy must admit they
have been outmatched, and in desperation they turn to expert outside help: you. They commission
your team to analyze how Synonymous achieved their exploits. Luckily, the one facet of computer
security they managed not to screw up is logging: they have full packet traces of all of the systems
in question.

One gloomy morning as the end of the semester looms, you head out to Richmond Field, board the
HBDairy corporate jet, and 5 hours later find yourself at their offices in Madison, armed only with
a trusty VM image that contains all of your analysis tools. You need to complete your forensic
analysis, file your report, hop back on their jet, and return to Berkeley—with enough time left in
RRR Week so you can adequately prepare for your final exams.

2 The Project
The goals of this project are to build up your familiarity with both (1) how real network attacks
manifest, and (2) how to effectively employ some widely available tools for analyzing network
activity.

Collaboration. We intend for you to work on this project in teams of two. Beyond your team,
you may not collaborate with other students. You can share general information on how to use

Page 1 of 16



Wireshark, tshark, and Bro with other students if it is not specific to the questions on this project,
but you must not share tips, advice, hints, etc. on how to solve any of the questions on this project.

You must write up your solutions entirely between the two of you on your team. You must never
read or copy the solutions of other teams, and you must not share your own solutions—including
partial solutions—with other students. If you have any questions, please contact the instructors.

VM. To minimize the steps required for you to have a working analysis environment, we have
pre-built VirtualBox and (soon-to-be-available) VMware virtual machine (VM) images that come
with both the network traces and the analysis tools pre-installed.

VirtualBox is freely available open-source software running on Windows, Linux, Macintosh, and
Solaris. You can download it from:

http://www.virtualbox.org/wiki/Downloads

VMware is installed on the instructional machines iserver1.eecs.berkeley.edu, is-
erver2.eecs.berkeley.edu, and iserver3.eecs.berkeley.edu (all running Windows). You
can log into any of those remotely with a Remote Desktop Client, as discussed at
http://inst.eecs.berkeley.edu/connecting.html#labs (and in particular at http:

//inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=microsoft-rdc.help).

The VMs are based on the BackTrack Linux distribution. You can login with username root and
password toor. After logging in, you can type startx to launch the X window system or SSH
to the machine (the steps to obtain the IP address are described below). If you choose to work
remotely via SSH, use the -X switch to enable X forwarding, allowing you to run graphical tools
like Wireshark on your local machine over the SSH connection.

You will perform all actions as user root whose home directory is /root. Inside is a bro-scripts

which contains two Bro policy scripts you might find useful. If you opt to work with the VM over
SSH, you can login remotely via ssh -X root@IP-address-of-VM.

Depending on the virtual machine software you wish to use, follow the corresponding instructions
below:

VirtualBox: After having installed it, you should change the IP address of the VM host to be
static. To this end, launch VirtualBox and click on “Preferences” and then “Network,” where you
should see a list of “Host-only Networks.” Usually you are presented with one single interface
vboxnet0; if not, select the interface you want to choose with the guest VM. Go ahead an click
the little screwdriver button to edit the interface settings. In the “Adapter” tab, change the IPv4
address to 10.1.1.1 (and leave the subnet mask at 255.255.255.0). In the “DHCP Server” tab,
uncheck “Enable Server” to disable the DHCP server. Next you need to download a copy of the
VM image, which you can download from:

http://www.eecs.berkeley.edu/~mobin/teaching/cs161vbox.tar.bz2

Project 2 Page 2 of 16 CS 161 – SP 11

http://www.virtualbox.org/wiki/Downloads
http://inst.eecs.berkeley.edu/connecting.html#labs
http://inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=microsoft-rdc.help
http://inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=microsoft-rdc.help
http://www.eecs.berkeley.edu/~mobin/teaching/cs161vbox.tar.bz2


Once you have downloaded it, extract the image and import it into VirtualBox by clicking “File”
followed by “Import Appliance.” The import should also take place by double-clicking the file
cs161vbox.ova. To launch it, simply press the “Start” button.

VMware: A copy of the VMware image will soon be available at:

http://www.eecs.berkeley.edu/~mobin/teaching/cs161vm.tar.bz2

To find out the IP address of the VM, run the command ifconfig from the terminal.

Traces. You can retrieve the HBDairy traces from:

http://www.eecs.berkeley.edu/~mobin/teaching/cs161traces.zip

If you decide to use the VM environment we have prepared for you, then it also comes pre-loaded
with the traces at /root/traces. These traces store the corresponding packets in the PCAP1 file
format, a simple and widely used standard.

Tools. Once you have obtained the traces, you can use whatever tools you wish to analyze them
and come up with your answers to the forensic challenges that appear below. You will not need to
submit any code with your answers, though we will ask for a list of the tools you used.

In general, we believe you will find two tools particularly helpful. The first is Wireshark, an
open-source program for graphically viewing and analyzing packet traces, and its command-line
counterpart, tshark. Wireshark and tshark are particularly useful for packet-level analysis. The
second tool is Bro, an open-source scriptable program/environment for network traffic analysis.
For the most part, Bro operates at a higher semantic level than individual packets, though it has
some support for per-packet analysis. We intend for Bro to suffice to solve most of the forensic
challenges, though Wireshark and tshark may also prove helpful, and in some cases we have them
in mind as the tool of choice. We wrote two Bro scripts that you might find useful during your
analysis. If you’re using the VM, they reside in /root/bro-scripts but you can also download
them at:

• http://cs.berkeley.edu/~mavam/teaching/cs161-sp11/facebook.bro

• http://cs.berkeley.edu/~mavam/teaching/cs161-sp11/mime-attachment.bro

1If you’re curious, you can find a description of the format at the following address, although you will not likely
want to write any code that reads the file directly: http://wiki.wireshark.org/Development/LibpcapFileFormat.

Project 2 Page 3 of 16 CS 161 – SP 11

http://www.eecs.berkeley.edu/~mobin/teaching/cs161vm.tar.bz2
http://www.eecs.berkeley.edu/~mobin/teaching/cs161traces.zip
http://cs.berkeley.edu/~mavam/teaching/cs161-sp11/facebook.bro
http://cs.berkeley.edu/~mavam/teaching/cs161-sp11/mime-attachment.bro
http://wiki.wireshark.org/Development/LibpcapFileFormat


3 Some Tips
We have in general designed the forensic questions to not require exhaustive manual analysis to
answer. You should instead determine how to use various tools in an effective manner.

Further, some questions require the knowledge of specific header fields (which we might not have
talked about in the class) to locate a “needle in the haystack.” We recommend that before diving
into a question, you spend some time thinking about your analysis plan, i.e., how you can explore
the logs in an efficient manner. This process might benefit from some (often light) web surfing to
get ideas about how to locate particular features. You will likely find that Unix utilities such as
grep, awk, sort, and uniq can prove to be your best friends for this project.

In general, we anticipate that the biggest pitfall for completing this project effectively is the tempta-
tion to poke through the logs “blindly” rather than thoughtfully. That often won’t work effectively
here—and in actual practice will work even less well, because the logs you’ll encounter in real life
will be much larger than those here.

The next sections frame the forensic questions and how to submit your team’s solutions. After that
comes two sections that discuss use of Wireshark/tshark and Bro.

4 Submission Instructions
You will be examining a different scenario in each problem. For each scenario, you will submit the
summary of your forensic analysis. Use the questions in each problem as a roadmap to present your
case. We expect you to provide as strong a case as you can by including the relevant information
from the log files formatted according to the following skeleton:

• For the scenarios involving attacks:

<Name of the attack>

<Attacker: IP address and domain (if relevant)>

<Victim: (User account | document | IP address)>

<Action of attacker: description supported by evidence from the relevant

log files>

• For the scenarios involving vulnerability,

<Vulnerability: description of the vulnerability>

<IPs of vulnerable hosts supported by evidence (e.g., a successful attack)>

• For scenarios involving information leakage due to sniffing, provide the following:

<Name/Email address of the sender>

<Leaked data: Name & contents of the document (as specified by the question) |

Account, password>

Project 2 Page 4 of 16 CS 161 – SP 11



All submissions for this project will be electronic. For each of the problems, create a text file named
q〈#〉.txt. So, for example, if you submit feedback for the final, optional question, you will put it
in the file q10.txt.

Please also submit a file collaborators.txt that contains the class accounts of the team members.

To submit, put all these files into a directory, and then run submit proj2. It suffices to submit
the project from the account of one team member.

5 Forensic Questions
Each of the traces is labeled with the corresponding problem number.

Question 1 The vulnerable DNS clients (12 points)
Recall that most DNS clients now select a random UDP source port when making DNS queries
to help defend against the Kaminsky attack. When you mention this threat to HBDairy’s IT
staff, they reply “The K-huh-what attack?” Thus, you view it as prudent to assess whether
any of their clients making DNS queries lack UDP source port randomization.

Analyze the q1 trace to assess the sequence of source ports seen for each resolver that makes
more than one query. If you find they all appear to be okay, then list the resolvers you ana-
lyzed. If you find some that appear to not use randomization, list those and the corresponding
evidence.2

Note, we have designed this problem to be suitable for familiarizing yourself with
Wireshark/tshark, though as in general you can solve it however you wish.

Question 2 Information theft from a web server (12 points)
Mr. Cheeze informs you that some of the sensitive information that Synonymous leaked came
from a file on the HBDairy web server, though the file was not part of the content to which
the server was supposed to provide access. He is reluctant to tell you the specifics of the
information, but wants you to determine how the theft occurred.

Analyze the web accesses in the q2 trace. Determine the type of attack used to access the file.
What was the filename? How do you know it was successfully accessed?

Question 3 Email leakage (12 points)
Due to some other information leaked by Synonymous, HBDairy is certain that someone care-
lessly forwarded a sensitive document using unencrypted email. Analyze the SMTP traffic in
the q3 trace to locate the document and determine who sent the email. Who appears to have
authored the document? What are the two links contained in the document? Explain how

2 You will find that some of the traffic uses MDNS, a form of DNS activity sent using “IP multicast,” a type of
transmission similar to IP broadcast. For this problem, ignore such traffic.

Project 2 Page 5 of 16 CS 161 – SP 11



you located the document. Your method should be significantly more efficient than manually
examining every email in the trace in its entirety.

Question 4 The mysterious wall post (12 points)
One fine morning, Udder Kaos, an HBDairy employee, noticed that a secret message that he
had sent last night to his colleague Fro Yo using Facebook messaging (i.e., sent to his friend’s
inbox) was subsequently posted using his account to his friend’s wall.

Examine the web traffic in q4 trace to find evidence of the attack used for the wall post. Sketch
the steps of the attacker.

Question 5 YouTube becomes NoTube (12 points)
One of the competitive benefits that HBDairy provides to its employees is on-the-job access to
YouTube. Lately, many disgruntled employees have complained that they have lost this benefit
because their browsers report “page could not be loaded” when they try to access YouTube.

Analyze the web traffic in the q5 trace to find out how Synonymous disrupted the YouTube
access. How much downtime did this result in?

Question 6 The mysterious DairyStock transaction (12 points)
DairyStock is a stock management web application favored by HBDairy employees that allows
registered users to buy and sell stocks and transfer them to each other. Synonymous denounces
its use as an example of HBDairy’s ineptitude when dealing with Internet security issues, and
states that as a demonstration they arranged to introduce a bogus transaction for a “modest”
sum of money.

Examine the traffic in the q6 trace to find the unauthorized transfer Synonymous refers to.
Sketch the attacker’s steps.

Question 7 Ill-Considered Authentication (12 points)
You discover that the users at HBDairy don’t have much sense when it comes to passwords.
One employee uses a single password for many different web services, and it appears clear that
one of those services uses a weak form of standardized web authentication because Synonymous
was able to public demonstrate that they possess the user’s password.

Examine the web traffic in the q7 trace to discover which web server used the weak authenti-
cation scheme. What was the user’s password?

Question 8 The Leaked URL (12 points)
Among the information leaked by Synonymous is a URL that an employee swears was only
shared in an encrypted form. Sure, he talked about it during an unencrypted Facebook webchat
with Mr. Cheeze, but the URL itself was encrypted.

Analyze the chat traffic in the q8 trace. Determine how by sniffing the session Synonymous
could have extracted the URL. What do you find when you visit the URL?

Question 9 Tools used (4 points)
Write up a brief description of the tools you used for your analysis (including Wireshark, tshark,

Project 2 Page 6 of 16 CS 161 – SP 11



and Bro, if you indeed used them), and your views on their strengths and weaknesses. You do
not need to include standard Unix utilities like grep or awk.

Question 10 Optional Feedback (0 points)
This is a brand new project. We (naturally) hope it proved quite beneficial to undertake, but
realize it may have shortcomings, both regarding specific points, and possibly in its overall
inception. Accordingly, it would be very helpful to hear any feedback you would like to offer:
was it fun, frustrating, annoying, stimulating? How worthwhile was it in terms of learning?
What would you change about it in the future? How much time did you spend on it in
comparison to Project #1? What were the best and worst facets of the project? Anything else
you want to add?

This question is wholly optional, and your comments will not factor into the grading of your
project in any way.

6 Wireshark and tshark
Two useful tools for completing the project are Wireshark and tshark. Wireshark is an open-
source program for graphically viewing and analyzing packet traces: http://www.wireshark.org/.
Wireshark (formerly known as Ethereal) is the most popular tool of this type. It runs on all major
operating systems. It comes preinstalled on the VM image (see below); or you can go ahead
and install it on your own machine. A companion tool that comes with Wireshark is tshark—
Wireshark’s textual command-line counterpart.

Wireshark allows you to use a GUI to manually explore packet traces, so it is mot convenient for
interactive use. tshark can be helpful if you want to analyze the trace with a shell script. Another
tool similar to tshark is tcpdump, which is older and more well-known/wide-spread.

All of these tools (and Bro, as discussed below) can be used in two modes: live capture of packets
from the network interface of the machine running the program, and reading a trace from a file.
For this project, you will only need to use them in the latter mode. (Note that live capture often
requires administrator access due to its security/privacy implications.)

We recommend you begin the project by loading a trace into Wireshark and spending a little
time looking through it and familiarizing yourself with Wireshark’s features. You might then try a
similar exploration using tshark. Both tools are available in the VM; you invoke them as wireshark
and tshark, respectively.

Here are some more tips to get you started with Wireshark:

• One of Wireshark’s most important capabilities is its filtering system. Filtering lets you
display only a subset of the packets. This is very helpful when dealing with large traces,
to let you focus on a small subset of the packets. You can configure a filter by typing an
expression into the box at the top of the window, to display only the packets relevant to what

Project 2 Page 7 of 16 CS 161 – SP 11

http://www.wireshark.org/


you are investigating. Wireshark provides a special language for these expressions, which you
may want to learn to some extent.

• Try clicking on the “Filter:” button to see a list of examples of filtering expressions. Select
each of the filters listed in the popup box one by one and take a look at the expression that
appears for each in the bottom box.

• Expressions can specify a protocol (e.g., http). You can also filter on values in headers (e.g.,
ip.src==1.2.3.4 or ip.src==1.2.0.0/16 or tcp.port==80). You can combine filters using
logical expressions (e.g., http || telnet or http && ip.src==1.2.0.0/16).

• For a complete list of the supported protocols, click the “Expression. . .” button in the main
window. The vast majority of these won’t be useful on this project, but the list will give you
an idea of how comprehensive the tool is.

• To get an overview of the protocols that are used in the trace, you might try “Statistics” then
“Protocol Hierarchy.” You can right-click on an individual protocol, then click on “Apply as
Filter” and “Selected” to add a filter that selects just that protocol.

• To get a list of the endpoints that appear in the trace, you can click on “Statistics” then
“Endpoints”, then select either the “IPv4,” “TCP,” or “UDP” tab at the top. You can right-
click on individual end host addresses to add a filter that selects just packets associated with
that endpoint.

• Another useful feature is Wireshark’s ability to reassemble TCP streams. Try right clicking
on a TCP packet and selecting “follow TCP stream.” You can use this feature to read the
contents (HTML and the like) of a web page someone loaded over HTTP, for example.

• You will probably want to maximize the Wireshark so that it uses the entire display, to
maximize the number of packets you can view at a time.

You can learn more about using Wireshark and tshark at http://www.wireshark.org/docs/.
Note, however, that we designed the project so that the bulk of the analysis is particularly well-
suited to tackle using Bro, which we describe in the next section.

7 The Bro NIDS
The Bro [2] network intrusion detection system (NIDS) provides a powerful framework for analyzing
network traffic. In this project, you will use Bro to analyze packet-level traces that contain the
above attacks.

Bro is quite different from other popular network analysis tools such as Wireshark or Snort [3].
It is not limited to basic filtering via regular expressions but has its own rich scripting language
geared towards in-depth analysis of traffic.

Project 2 Page 8 of 16 CS 161 – SP 11

http://www.wireshark.org/docs/


From a high-level perspective, Bro works as follows: it reads packets from a source, such as a network
interface or PCAP trace, and reassembles them into a connection that represents communication
between two endpoints. This process is illustrated for TCP below.

IP packets

Connection 1

Connection 2

Originator Responder

...

Bro demultiplexes the IP packets captured from the network source into their corresponding con-
nections, which are defined by the 4-tuple of originator address, originator port, responder address,
and responder port. Bro determines the application protocols (e.g., HTTP or SMTP) present in
a given connection and runs corresponding analyzers on the data transmitted using the connec-
tion. These analyzers generate events that summarize the particular type of network activity. For
example, when Bro sees a new TCP connection, it generates an event with the IP addresses and
ports of the endpoints. In general, events are “policy neutral” in the sense that they merely reflect
what’s going on in the network, without a determination of whether it reflects some sort of security
problem.

The figure below illustrates the event generation process, which occurs for multiple network protocol
layers:

Transport

(Inter)Network

ApplicationMessages

Byte stream

Packets

LinkFrames

Event
extraction

http_request, smtp_reply, ssl_certificate

new_connection, udp_request

new_packet, packet_contents

arp_request, arp_reply

Project 2 Page 9 of 16 CS 161 – SP 11



To the right the figure lists as examples just a few of the many events that can occur reflecting
activity at the given layers.

Users write policy scripts that contain the counterpart to events, handlers. Handlers are code
blocks that execute when an event is generated. For example, if you want to track the number of
rejected connections, you would write an event handler that increments a counter when the event
connection rejected is generated.

Numerous analyzers and policy scripts for a wide range of transport and application-layer protocols
ship with Bro. For the most part, you will use existing scripts and do not need to write your own
ones.

7.1 Installation
Bro requires a Unix-like platform such as Linux or Mac OS. We have pre-installed it in the
VM image mentioned above using the prefix /usr/local. You can find the policy scripts un-
der /usr/local/share/bro. You can also build it directly if you wish by following the instructions
in the next section. Note, however, that it will not build under Windows or Solaris, so you cannot
use it directly on the instructional machines other than by using the VM.

7.1.1 Installing it by yourself

You can skip this section if you will use the version of Bro present in the VM.

Installing Bro follows the standard autotools procedure. That is, (i) you have to choose an instal-
lation prefix, i.e., the directory under which you like to install the files, (ii) build the program, and
(iii) copy it into the prefix. You can use the following steps to install Bro under the prefix PREFIX:3

$ wget ftp://bro-ids.org/bro-1.5.3.tar.gz

$ tar xzf bro-1.5.3.tar.gz

$ cd bro-1.5.3

$ ./configure --prefix=PREFIX --disable-broccoli --disable-broctl

$ make

$ make install

If all went well, you should now have a Bro executable at PREFIX/bin/bro. If you installed Bro
using a different prefix from / or /usr/local, you should add the absolute path to your prefix to
the PATH environment variable, so that you can directly invoke bro from the command line. Finally,
you need to set the BROPATH environment variable to tell Bro where to find your own policy scripts,
say $HOME/scripts. In Bash-like shells, you can perform these two steps as follows:

$ export PATH=$PATH:PREFIX /bin

3 The default prefix is /usr/local/bro. You can get a list of full configuration options with ./configure --help.

Project 2 Page 10 of 16 CS 161 – SP 11



$ export BROPATH=PREFIX /share/bro/policy:$HOME/scripts

To test whether everything worked out as well, you can type bro -h to display the usage informa-
tion.

7.2 Invocation
Bro can read network traffic from a PCAP trace file or from a network interface. To read packets
from a trace, we pass Bro the trace file via the -r switch on the command line.4 We also have to
tell Bro which policy scripts we want to load. To this end, specify a space-separated list of script
file names at the end of the command line. For example, to activate the connection, DNS, and
HTTP analyzer (request and replies only), you could use the following invocation:

bro -C -r trace.pcap conn dns http-request http-reply

The -C switch tells Bro to ignore checksum errors. (That is, Bro will still process packets whose
checksums fail to verify, even though normally systems will discard such packets.) This option is
necessary for this project because some of the packet traces have such errors due to the process by
which they were created.

If you are interested to see a list of all of the available analysis scripts, look in the directory
PREFIX/share/bro. All files ending in *.bro, as well as those in your $BROPATH, are valid names
to pass on the command line. The .bro suffix is optional, so for example the name conn in the
example above will cause the file conn.bro to be loaded.

When you run Bro, you will often not see much output on the console. Instead, Bro creates log
files ending in .log in the current directory. For instance, conn.log is the file of the connection
analyzer, dns.log of the DNS analyzer, and http.log of the HTTP analyzer.

7.3 Log Analysis
After having generated several log files, let us now understand how to interpret them. We will look
at some particularly handy log files, conn.log and http.log.

7.3.1 The Connection Analyzer

The conn.log file concisely summarizes the network activity of communicating endhosts. Each
line represents a single connection. Here is an example:

4 Although not required for this project, you might find it interesting to monitor your own network traffic. To this
end, replace -r pcap.trace with -i interface , where interface is the name of your network card. Depending on
your operating system, this could be for example eth1, wlan0, or en1.

Project 2 Page 11 of 16 CS 161 – SP 11



1258133122.311639 0.351037 192.168.1.2 199.7.58.72 http 1247 80 tcp 548 2057 SF X %2

1258133122.233438 18.981099 192.168.1.2 63.245.209.91 https 1245 443 tcp 1094 5652 SF X @93

1258133305.205123 0.000000 192.168.1.2 192.43.244.18 ntp 4234 123 udp 48 ? S0 X

The columns have the following meaning.

Column Meaning

1 Timestamp (epoch seconds)
2 Duration (seconds)
3 IP address of the connection originator
4 IP address of the connection responder
5 Application-layer protocol
6 Port of the originator
7 Port of the responder
8 Transport protocol
9 Bytes sent by the originator
10 Bytes sent by the responder
11 Connection status flag
12 Direction flag
13 Application-layer protocol identifier

Column 12 tells the TCP connection status as seen by Bro. Here are some important values (the
complete list is available at [1]):

State Meaning

S0 Connection attempt seen, no reply.
SF Normal establishment and termination.

REJ Connection attempt rejected.
RSTO Connection established, originator aborted via RST.
RSTR Connection established, responder aborted via RST.

This convenient line-based and space-separated format facilitates the quick extraction of the desired
information with Unix utilities. For example, to get a quick histogram of the application-layer
protocols in the trace, use this one-liner:

$ awk ’{ print $5 }’ conn.log | sort | uniq -c

This is how you list the top-10 connections by duration:

$ sort -rn -k 2 conn.log | head -n 10

To filter a specific IP address, you could do either of the two:

$ fgrep 1.2.3.4 conn.log

$ awk ’$3 == "1.2.3.4" || $4 == "1.2.3.4"’ conn.log

Project 2 Page 12 of 16 CS 161 – SP 11



(Note that the first of these can have “false positives,” for example by matching activity involving
a host 71.2.3.48. Use of fgrep rather than grep helps avoid additional false positives; grep

interprets its argument as a regular expression, so ‘.’s can match any character, but fgrep treats
the argument as a fixed string.)

7.3.2 The HTTP Analyzer

A number of the attacks in this project concern web traffic, which generally means use of the HTTP
protocol. Consider the following example entries from the http.log, as generated when loading
the scripts http-request and http-reply:

1297822344.650231 %2 start 128.32.131.208:64574 > 74.125.224.20:80

1297822344.652659 %2 GET / (200 "OK" [318] google.com)

1297822344.986041 %3 start 128.32.131.208:64575 > 74.125.224.20:80

1297822344.989589 %3 GET /favicon.ico (200 "OK" [329] google.com)

The first line shows the initiation of a new HTTP connection, denoted by start. The syntax
is source:port > destination:port. The corresponding TCP connection for a HTTP session is
referenced in the second column. Note that this globally unique identifier (%2 or %3 in this example)
is also used in other log files, such as conn.log. Each line that has the same ID belongs to the
same connection.

The log represents requests and responses using the following syntax:

METHOD path (response code [bytes transferred] host)

The part in parentheses contains the response to the request and only appears when loading the
script http-reply in addition to http-request. For example, ignoring timestamp and connection
ID, the line

GET /favicon.ico (200 "OK" [329] google.com)

represents a GET request for the file favicon.ico from google.com, which was successfully re-
turned (200) and has a size of 329 bytes.

To get a list of URLs for GET and POST requests, you could use the following one-liner:

$ awk ’/GET|POST/ { print sub(/\)$/, "", $NF) $4 }’ http.log

Another important HTTP script is http-header, which displays each header of request in response
in a single line. Here is some sample output:

1302221602.533038 %1 start 128.32.45.53:60883 > 128.32.244.172:80

1302221602.533038 %1 > HOST: www.eecs.berkeley.edu

1302221602.533038 %1 > CONNECTION: keep-alive

1302221602.533038 %1 > USER-AGENT: Mozilla/5.0 (Macintosh; U; Intel Mac OS ...

1302221602.533038 %1 > ACCEPT: application/xml,application/xhtml+xml,text/html;q=0.9,...

Project 2 Page 13 of 16 CS 161 – SP 11



1302221602.533038 %1 > ACCEPT-ENCODING: gzip,deflate,sdch

1302221602.533038 %1 > ACCEPT-LANGUAGE: en-US,en;q=0.8

1302221602.533038 %1 > ACCEPT-CHARSET: ISO-8859-1,utf-8;q=0.7,*;q=0.3

1302221602.533038 %1 > COOKIE: __utma=42; __utma=4711

1302221602.649961 %2 start 128.32.45.53:60884 > 209.160.22.33:80

1302221602.649961 %2 > HOST: virusscan.jotti.org

1302221602.649961 %2 > CONNECTION: keep-alive

1302221602.649961 %2 > REFERER: http://virusscan.jotti.org/en

1302221602.649961 %2 > USER-AGENT: Mozilla/5.0 (Macintosh; U; Intel Mac OS ...

1302221602.649961 %2 > ACCEPT: */*

1302221602.649961 %2 > ACCEPT-ENCODING: gzip,deflate,sdch

1302221602.649961 %2 > ACCEPT-LANGUAGE: en-US,en;q=0.8

1302221602.649961 %2 > ACCEPT-CHARSET: ISO-8859-1,utf-8;q=0.7,*;q=0.3

1302221602.649961 %2 > COOKIE: sessionid=b45777470be76f47110b5faaedb0ece172a25c1e; lang=en

1302221602.690460 %1 < DATE: Fri, 08 Apr 2011 00:13:22 GMT

1302221602.690460 %1 < SERVER: Apache

1302221602.691400 %1 GET /Scheduling/CS/ (200 "OK" [15128] www.eecs.berkeley.edu)

The additional header lines are demarcated with an additional ‘>’ or ‘<’ for an HTTP request
and an HTTP response, respectively.

7.4 Writing Policy Scripts
We finish with a brief look at how to write your own simple policy scripts. Our main goal with
doing so is to familiarize you with the scripting language a bit so you can get a sense of how the
different policy scripts provided with the Bro distribution work. You might also find it quite helpful
for your forensic analysis to write some simple scripts of your own.

Bro has a richly typed domain-specific language. The language reflects Bro’s asynchronous, event-
based execution model. A typical Bro script contains several event handlers that fire whenever Bro
detects the corresponding activity in the network. Here is a small, fully functional example:

global cnt = 0;

event connection_established(c: connection)

{

++cnt;

}

event bro_done()

{

print cnt;

}

This script initializes a global counter to 0 and defines event handlers for the events
connection established and bro done. The former executes whenever Bro sees a successfully
established connection, and simply increments a counter. The latter prints the counter when Bro
terminates. Note the syntax: the argument to connection established is of type connection

Project 2 Page 14 of 16 CS 161 – SP 11



and named c. It is a record type, which is a heterogeneous tuple akin to a C struct. You can find
its definition in the file PREFIX/share/bro/bro.init, where it looks like:

type conn_id: record {

orig_h: addr;

orig_p: port;

resp_h: addr;

resp_p: port;

};

type connection: record {

id: conn_id;

...

start_time: time;

duration: interval;

service: string_set; # if empty, service hasn’t been determined

...

};

Accessing record fields in Bro is done using the $ operator (cf. dot in C). The next example uses
this feature and is a little more elaborate:

global hosts: table[addr] of count &default=0;

event connection_established(c: connection)

{

local orig = c$id$orig_h;

++hosts[orig];

}

event bro_done()

{

for ( h in hosts )

print h, hosts[h];

}

The first line declares a global table whose keys are addresses and whose values are counters (i.e.,
unsigned integers). The &default=0 part is an attribute that specifies a default value for table
values. The connection established event handler first extracts the connection originator by
c$id$orig h (mnemonic: originating host) and then increments a per-address counter. When Bro
terminates, it executes any event handlers for the bro done event. Here, we simply print each
key-value pair in the hash table.

7.5 Summary
Here we have covered the basic architecture of Bro, the installation procedure, and how to load
policy scripts and analyze their output. We also looked briefly at the Bro scripting language to get
a flavor of its asynchronous event-driven style. This should suffice to get you started. Naturally,
we also expect questions to arise, with Piazzza providing a good place to discuss them.

Project 2 Page 15 of 16 CS 161 – SP 11



References
[1] Bro connection states. http://www.bro-ids.org/wiki/index.php/Reference_Manual:

_Analyzers_and_Events#Connection_summaries.

[2] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time. 31(23–24), 1999.
Bro homepage: http://www.bro-ids.org.

[3] Martin Roesch. Snort: Lightweight Intrusion Detection for Networks. In Proceedings of the
Systems Administration Conference, 1999. Snort homepage: http://www.snort.org.

Project 2 Page 16 of 16 CS 161 – SP 11

http://www.bro-ids.org/wiki/index.php/Reference_Manual:_Analyzers_and_Events#Connection_summaries
http://www.bro-ids.org/wiki/index.php/Reference_Manual:_Analyzers_and_Events#Connection_summaries
http://www.bro-ids.org
http://www.snort.org

	Background
	The Project
	Some Tips
	Submission Instructions
	Forensic Questions
	Wireshark and tshark
	The Bro NIDS
	Installation
	Installing it by yourself

	Invocation
	Log Analysis
	The Connection Analyzer
	The HTTP Analyzer

	Writing Policy Scripts
	Summary


