
wxErlang
Copyright © 2009-2024 Ericsson AB. All Rights Reserved.

wxErlang 2.4.1
March 7, 2024

Copyright © 2009-2024 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 7, 2024

1.1 wx the erlang binding of wxWidgets

1 wxErlang User's Guide

The wxErlang application is an api for writing graphical user interfaces with wxWidgets.

1.1 wx the erlang binding of wxWidgets
The wx application is an erlang binding of wxWidgets. This document describes the erlang mapping to wxWidgets
and it's implementation. It is not a complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with the original API so that the original
documentation and examples shall be as easy as possible to use.

wxErlang examples and test suite can be found in the erlang src release. They can also provide some help on how
to use the API.

This is currently a very brief introduction to wx. The application is still under development, which means the interface
may change, and the test suite currently have a poor coverage ratio.

1.1.1 Contents
• Introduction

• Multiple processes and memory handling

• Event Handling

• Acknowledgments

1.1.2 Introduction
The original wxWidgets is an object-oriented (C++) API and that is reflected in the erlang mapping. In most cases
each class in wxWidgets is represented as a module in erlang. This gives the wx application a huge interface, spread
over several modules, and it all starts with the wx module. The wx module contains functions to create and destroy
the GUI, i.e. wx:new/0, wx:destroy/0, and some other useful functions.

Objects or object references in wx should be seen as erlang processes rather than erlang terms. When you operate on
them they can change state, e.g. they are not functional objects as erlang terms are. Each object has a type or rather
a class, which is manipulated with the corresponding module or by sub-classes of that object. Type checking is done
so that a module only operates on it's objects or inherited classes.

An object is created with new and destroyed with destroy. Most functions in the classes are named the same as their
C++ counterpart, except that for convenience, in erlang they start with a lowercase letter and the first argument is the
object reference. Optional arguments are last and expressed as tagged tuples in any order.

For example the wxWindow C++ class is implemented in the wxWindow erlang module and the member
wxWindow::CenterOnParent is thus wxWindow:centerOnParent. The following C++ code:

 wxWindow MyWin = new wxWindow();
 MyWin.CenterOnParent(wxVERTICAL);
 ...
 delete MyWin;

would in erlang look like:

Ericsson AB. All Rights Reserved.: wxErlang | 1

1.1 wx the erlang binding of wxWidgets

 MyWin = wxWindow:new(),
 wxWindow:centerOnParent(MyWin, [{dir,?wxVERTICAL}]),
 ...
 wxWindow:destroy(MyWin),

When you are reading wxWidgets documentation or the examples, you will notice that some of the most basic classes
are missing in wx, they are directly mapped to corresponding erlang terms:

wxPoint is represented by {Xcoord,Ycoord}
wxSize is represented by {Width,Height}
wxRect is represented by {Xcoord,Ycoord,Width,Height}
wxColour is represented by {Red,Green,Blue[,Alpha]}
wxPoint is represented by {Xcoord,Ycoord}
wxString is represented by unicode:charlist()
wxGBPosition is represented by {Row,Column}
wxGBSpan is represented by {RowSpan,ColumnSPan}
wxGridCellCoords is represented by {Row,Column}

In the places where the erlang API differs from the original one it should be obvious from the erlang documentation
which representation has been used. E.g. the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.

Colours are represented with {Red,Green,Blue[,Alpha]}, the Alpha value is optional when used as an argument to
functions, but it will always be returned from wx functions.

Defines, enumerations and global variables exists in wx.hrl as defines. Most of these defines are constants but not
all. Some are platform dependent and therefore the global variables must be instantiated during runtime. These will be
acquired from the driver with a call, so not all defines can be used in matching statements. Class local enumerations
will be prefixed with the class name and a underscore as in ClassName_Enum.

Additionally some global functions, i.e. non-class functions, exist in the wx_misc module.

wxErlang is implemented as a (threaded) driver and a rather direct interface to the C++ API, with the drawback that
if the erlang programmer does an error, it might crash the emulator.

Since the driver is threaded it requires a smp enabled emulator, that provides a thread safe interface to the driver.

1.1.3 Multiple processes and memory handling
The intention is that each erlang application calls wx:new() once to setup it's GUI which creates an environment and a
memory mapping. To be able to use wx from several processes in your application, you must share the environment.
You can get the active environment with wx:get_env/0 and set it in the new processes with wx:set_env/1.
Two processes or applications which have both called wx:new() will not be able use each others objects.

 wx:new(),
 MyWin = wxFrame:new(wx:null(), 42, "Example", []),
 Env = wx:get_env(),
 spawn(fun() ->
 wx:set_env(Env),
 %% Here you can do wx calls from your helper process.
 ...
 end),
 ...

When wx:destroy/0 is invoked or when all processes in the application have died, the memory is deleted and all
windows created by that application are closed.

2 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

The wx application never cleans or garbage collects memory as long as the user application is alive. Most of the objects
are deleted when a window is closed, or at least all the objects which have a parent argument that is non null. By using
wxCLASS:destroy/1 when possible you can avoid an increasing memory usage. This is especially important when
wxWidgets assumes or recommends that you (or rather the C++ programmer) have allocated the object on the stack
since that will never be done in the erlang binding. For example wxDC class or its sub-classes or wxSizerFlags.

Currently the dialogs show modal function freezes wxWidgets until the dialog is closed. That is intended but in erlang
where you can have several GUI applications running at the same time it causes trouble. This will hopefully be fixed
in future wxWidgets releases.

1.1.4 Event Handling
Event handling in wx differs most from the original API. You must specify every event you want to handle in
wxWidgets, that is the same in the erlang binding but you can choose to receive the events as messages or handle
them with callback funs.

Otherwise the event subscription is handled as wxWidgets dynamic event-handler connection. You subscribe to events
of a certain type from objects with an ID or within a range of IDs. The callback fun is optional, if not supplied the
event will be sent to the process that called connect/2. Thus, a handler is a callback fun or a process which will receive
an event message.

Events are handled in order from bottom to top, in the widgets hierarchy, by the last subscribed handler first. Depending
on if wxEvent:skip() is called the event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.

Message events looks like #wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec }. The id is the
identifier of the object that received the event. The obj field contains the object that you used connect on. The userData
field contains a user supplied term, this is an option to connect. And the event field contains a record with event type
dependent information. The first element in the event record is always the type you subscribed to. For example if you
subscribed to key_up events you will receive the #wx{event=Event} where Event will be a wxKey event record
where Event#wxKey.type = key_up.

In wxWidgets the developer has to call wxEvent:skip() if he wants the event to be processed by other handlers.
You can do the same in wx if you use callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the default it is false. True means that you get the
message but let the subsequent handlers also handle the event. If you want to change this behavior dynamically you
must use callbacks and call wxEvent:skip().

Callback event handling is done by using the optional callback fun/2 when attaching the handler. The
fun(#wx{},wxObject() must take two arguments where the first is the same as with message events described above
and the second is an object reference to the actual event object. With the event object you can call wxEvent:skip()
and access all the data. When using callbacks you must call wxEvent:skip() by yourself if you want any of the
events to be forwarded to the following handlers. The actual event objects are deleted after the fun returns.

The callbacks are always invoked by another process and have exclusive usage of the GUI when invoked. This means
that a callback fun cannot use the process dictionary and should not make calls to other processes. Calls to another
process inside a callback fun may cause a deadlock if the other process is waiting on completion of his call to the GUI.

1.1.5 Acknowledgments
Mats-Ola Persson wrote the initial wxWidgets binding as part of his master thesis. The current version is a total re-
write but many ideas have been reused. The reason for the re-write was mostly due to the limited requirements he
had been given by us.

Also thanks to the wxWidgets team that develops and supports it so we have something to use.

Ericsson AB. All Rights Reserved.: wxErlang | 3

1.1 wx the erlang binding of wxWidgets

2 Reference Manual

The wxErlang application is an api for writing graphical user interfaces with wxWidgets.

4 | Ericsson AB. All Rights Reserved.: wxErlang

wx

wx
Erlang module

A port of wxWidgets.

This is the base api of wxWidgets. This module contains functions for starting and stopping the wx-server, as well
as other utility functions.

wxWidgets is object oriented, and not functional. Thus, in wxErlang a module represents a class, and the object created
by this class has an own type, wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.

Objects of a class are created with wxCLASS:new(...) and destroyed with wxCLASS:destroy(). Member functions are
called with wxCLASS:member(Object, ...) instead of as in C++ Object.member(...).

Sub class modules inherit (non static) functions from their parents. The inherited functions are not documented in
the sub-classes.

This erlang port of wxWidgets tries to be a one-to-one mapping with the original wxWidgets library. Some things are
different though, as the optional arguments use property lists and can be in any order. The main difference is the event
handling which is different from the original library. See wxEvtHandler.

The following classes are implemented directly as erlang types:
wxPoint={x,y},wxSize={w,h},wxRect={x,y,w,h},wxColour={r,g,b [,a]}, wxString=unicode:chardata(),
wxGBPosition={r,c},wxGBSpan={rs,cs},wxGridCellCoords={r,c}.

wxWidgets uses a process specific environment, which is created by wx:new/0. To be able to use the environment from
other processes, call get_env/0 to retrieve the environment and set_env/1 to assign the environment in the other process.

Global (classless) functions are located in the wx_misc module.

DATA TYPES
wx_colour() = {R::byte(), G::byte(), B::byte()} | wx_colour4()

wx_colour4() = {R::byte(), G::byte(), B::byte(), A::byte()}

wx_datetime() = {{Year::integer(), Month::integer(), Day::integer()}, {Hour::integer(), Minute::integer(),
Second::integer()}}

In Local Timezone

wx_enum() = integer()

Constant defined in wx.hrl

wx_env() = #wx_env{}

Opaque process environment

wx_memory() = binary() | #wx_mem{}

Opaque memory reference

wx_object() = #wx_ref{}

Opaque object reference

wx_wxHtmlLinkInfo() = #wxHtmlLinkInfo{href=unicode:chardata(), target=unicode:chardata()}

Ericsson AB. All Rights Reserved.: wxErlang | 5

href
href

wx

wx_wxMouseState() = #wxMouseState{x=integer(), y=integer(), leftDown=boolean(), middleDown=boolean(),
rightDown=boolean(), controlDown=boolean(), shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}

See #wxMouseState{} defined in wx.hrl

Exports

parent_class(X1) -> term()

new() -> wx_object()
Starts a wx server.

new(Options::[Option]) -> wx_object()
Types:

Option = {debug, list() | atom()} | {silent_start, boolean()}

Starts a wx server. Option may be {debug, Level}, see debug/1. Or {silent_start, Bool}, which causes error messages
at startup to be suppressed. The latter can be used as a silent test of whether wx is properly installed or not.

destroy() -> ok
Stops a wx server.

get_env() -> wx_env()
Gets this process's current wx environment. Can be sent to other processes to allow them use this process wx
environment.

See also: set_env/1.

set_env(Wx_env::wx_env()) -> ok
Sets the process wx environment, allows this process to use another process wx environment.

subscribe_events() -> ok
Adds the calling process to the list of of processes that are listening to wx application events.

At the moment these are all MacOSX specific events corresponding to MacNewFile() and friends from wxWidgets
wxApp:

• {new_file, ""}

• {open_file, Filename}

• {print_file, Filename}

• {open_url, Url}

• {reopen_app, ""}

The call always returns ok but will have sent any already received events to the calling process.

null() -> wx_object()
Returns the null object

6 | Ericsson AB. All Rights Reserved.: wxErlang

href

wx

is_null(Wx_ref::wx_object()) -> boolean()
Returns true if object is null, false otherwise

equal(Wx_ref::wx_object(), X2::wx_object()) -> boolean()
Returns true if both arguments references the same object, false otherwise

getObjectType(Wx_ref::wx_object()) -> atom()
Returns the object type

typeCast(Old::wx_object(), NewType::atom()) -> wx_object()
Casts the object to class NewType. It is needed when using functions like wxWindow:findWindow/2, which returns
a generic wxObject type.

batch(Fun::function()) -> term()
Batches all wx commands used in the fun. Improves performance of the command processing by grabbing the
wxWidgets thread so that no event processing will be done before the complete batch of commands is invoked.

See also: foldl/3, foldr/3, foreach/2, map/2.

foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.

map(Fun::function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.

foldl(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.

foldr(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldr/3 but batches wx commands. See batch/1.

create_memory(Size::integer()) -> wx_memory()
Creates a memory area (of Size in bytes) which can be used by an external library (i.e. opengl). It is up to the client to
keep a reference to this object so it does not get garbage collected by erlang while still in use by the external library.

This is far from erlang's intentional usage and can crash the erlang emulator. Use it carefully.

get_memory_bin(Wx_mem::wx_memory()) -> binary()
Returns the memory area as a binary.

retain_memory(Wx_mem::wx_memory()) -> ok
Saves the memory from deletion until release_memory/1 is called. If release_memory/1 is not called the memory will
not be garbage collected.

Ericsson AB. All Rights Reserved.: wxErlang | 7

wx

release_memory(Wx_mem::wx_memory()) -> ok

debug(Debug::Level | [Level]) -> ok
Types:

Level = none | verbose | trace | driver | integer()

Sets debug level. If debug level is 'verbose' or 'trace' each call is printed on console. If Level is 'driver' each allocated
object and deletion is printed on the console.

demo() -> ok | {error, atom()}
Starts a wxErlang demo if examples directory exists and is compiled

8 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

wx_object
Erlang module

wx_object - Generic wx object behaviour

This is a behaviour module that can be used for "sub classing" wx objects. It works like a regular gen_server module
and creates a server per object.

NOTE: Currently no form of inheritance is implemented.

The user module should export:

init(Args) should return
{wxObject, State} | {wxObject, State, Timeout} | ignore | {stop, Reason}

Asynchronous window event handling:
handle_event(#wx{}, State) should return
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}

The user module can export the following callback functions:

handle_call(Msg, {From, Tag}, State) should return
{reply, Reply, State} | {reply, Reply, State, Timeout} | {noreply, State} | {noreply, State, Timeout} | {stop, Reason,
Reply, State}

handle_cast(Msg, State) should return
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}

If the above are not exported but called, the wx_object process will crash. The user module can also export:

Info is message e.g. {'EXIT', P, R}, {nodedown, N}, ...
handle_info(Info, State) should return , ...
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}

If a message is sent to the wx_object process when handle_info is not exported, the message will be dropped and
ignored.

When stop is returned in one of the functions above with Reason = normal | shutdown | Term, terminate(State) is
called. It lets the user module clean up, it is always called when server terminates or when wx_object() in the driver
is deleted. If the Parent process terminates the Module:terminate/2 function is called.
terminate(Reason, State)

Example:

Ericsson AB. All Rights Reserved.: wxErlang | 9

wx_object

 -module(myDialog).
 -export([new/2, show/1, destroy/1]). %% API
 -export([init/1, handle_call/3, handle_event/2,
 handle_info/2, code_change/3, terminate/2]).
 new/2, showModal/1, destroy/1]). %% Callbacks

 %% Client API
 new(Parent, Msg) ->
 wx_object:start(?MODULE, [Parent,Id], []).

 show(Dialog) ->
 wx_object:call(Dialog, show_modal).

 destroy(Dialog) ->
 wx_object:call(Dialog, destroy).

 %% Server Implementation ala gen_server
 init([Parent, Str]) ->
 Dialog = wxDialog:new(Parent, 42, "Testing", []),
 ...
 wxDialog:connect(Dialog, command_button_clicked),
 {Dialog, MyState}.

 handle_call(show, _From, State) ->
 wxDialog:show(State#state.win),
 {reply, ok, State};
 ...
 handle_event(#wx{}, State) ->
 io:format("Users clicked button~n",[]),
 {noreply, State};
 ...

DATA TYPES
request_id() = term()

server_ref() = wx:wx_object() | atom() | pid()

Exports

start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types:

Name = {local, atom()}

Mod = atom()

Args = term()

Flag = trace | log | {logfile, string()} | statistics | debug

Options = [{timeout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start_link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types:

Mod = atom()

Args = term()

Flag = trace | log | {logfile, string()} | statistics | debug

10 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

Options = [{timeout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start_link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types:

Name = {local, atom()}

Mod = atom()

Args = term()

Flag = trace | log | {logfile, string()} | statistics | debug

Options = [{timeout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

stop(Obj) -> ok
Types:

Obj = wx:wx_object() | atom() | pid()

Stops a generic wx_object server with reason 'normal'. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the process does not exist, an exception is raised.

stop(Obj, Reason, Timeout) -> ok
Types:

Obj = wx:wx_object() | atom() | pid()

Reason = term()

Timeout = timeout()

Stops a generic wx_object server with the given Reason. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the call times out, or if the process does not exist, an exception is raised.

call(Obj, Request) -> term()
Types:

Obj = wx:wx_object() | atom() | pid()

Request = term()

Make a call to a wx_object server. The call waits until it gets a result. Invokes handle_call(Request, From, State) in
the server

call(Obj, Request, Timeout) -> term()
Types:

Obj = wx:wx_object() | atom() | pid()

Request = term()

Timeout = integer()

Make a call to a wx_object server with a timeout. Invokes handle_call(Request, From, State) in server

send_request(Obj, Request::term()) -> request_id()
Types:

Obj = wx:wx_object() | atom() | pid()

Ericsson AB. All Rights Reserved.: wxErlang | 11

wx_object

Make an send_request to a generic server. and return a RequestId which can/should be used with wait_response/[1|
2]. Invokes handle_call(Request, From, State) in server.

wait_response(RequestId::request_id()) -> {reply, Reply::term()} | {error,
{term(), server_ref()}}
Wait infinitely for a reply from a generic server.

wait_response(Key::request_id(), Timeout::timeout()) -> {reply,
Reply::term()} | timeout | {error, {term(), server_ref()}}
Wait 'timeout' for a reply from a generic server.

check_response(Msg::term(), Key::request_id()) -> {reply, Reply::term()} |
false | {error, {term(), server_ref()}}
Check if a received message was a reply to a RequestId

cast(Obj, Request) -> ok
Types:

Obj = wx:wx_object() | atom() | pid()

Request = term()

Make a cast to a wx_object server. Invokes handle_cast(Request, State) in the server

get_pid(Obj) -> pid()
Types:

Obj = wx:wx_object() | atom() | pid()

Get the pid of the object handle.

set_pid(Obj, Pid::pid()) -> wx:wx_object()
Types:

Obj = wx:wx_object() | atom() | pid()

Sets the controlling process of the object handle.

reply(X1::{pid(), Tag::term()}, Reply::term()) -> pid()
Get the pid of the object handle.

12 | Ericsson AB. All Rights Reserved.: wxErlang

wxAcceleratorEntry

wxAcceleratorEntry
Erlang module

An object used by an application wishing to create an accelerator table (see wxAcceleratorTable).

See: wxAcceleratorTable, wxWindow:setAcceleratorTable/2

wxWidgets docs: wxAcceleratorEntry

Data Types
wxAcceleratorEntry() = wx:wx_object()

Exports

new() -> wxAcceleratorEntry()

new(Options :: [Option]) -> wxAcceleratorEntry()
new(Entry) -> wxAcceleratorEntry()
Types:

Entry = wxAcceleratorEntry()
Copy ctor.

getCommand(This) -> integer()
Types:

This = wxAcceleratorEntry()
Returns the command identifier for the accelerator table entry.

getFlags(This) -> integer()
Types:

This = wxAcceleratorEntry()
Returns the flags for the accelerator table entry.

getKeyCode(This) -> integer()
Types:

This = wxAcceleratorEntry()
Returns the keycode for the accelerator table entry.

set(This, Flags, KeyCode, Cmd) -> ok
Types:

This = wxAcceleratorEntry()
Flags = KeyCode = Cmd = integer()

set(This, Flags, KeyCode, Cmd, Options :: [Option]) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 13

href

wxAcceleratorEntry

This = wxAcceleratorEntry()
Flags = KeyCode = Cmd = integer()
Option = {item, wxMenuItem:wxMenuItem()}

Sets the accelerator entry parameters.

destroy(This :: wxAcceleratorEntry()) -> ok
Destroys the object.

14 | Ericsson AB. All Rights Reserved.: wxErlang

wxAcceleratorTable

wxAcceleratorTable
Erlang module

An accelerator table allows the application to specify a table of keyboard shortcuts for menu or button commands.

The object ?wxNullAcceleratorTable is defined to be a table with no data, and is the initial accelerator table for a
window.

Example:

Remark: An accelerator takes precedence over normal processing and can be a convenient way to program some event
handling. For example, you can use an accelerator table to enable a dialog with a multi-line text control to accept
CTRL-Enter as meaning 'OK'.

Predefined objects (include wx.hrl): ?wxNullAcceleratorTable

See: wxAcceleratorEntry, wxWindow:setAcceleratorTable/2

wxWidgets docs: wxAcceleratorTable

Data Types
wxAcceleratorTable() = wx:wx_object()

Exports

new() -> wxAcceleratorTable()
Default ctor.

new(N, Entries) -> wxAcceleratorTable()
Types:

N = integer()
Entries = [wxAcceleratorEntry:wxAcceleratorEntry()]

Initializes the accelerator table from an array of wxAcceleratorEntry.

destroy(This :: wxAcceleratorTable()) -> ok
Destroys the wxAcceleratorTable object.

See overview_refcount_destruct for more info.

ok(This) -> boolean()
Types:

This = wxAcceleratorTable()
See: isOk/1.

isOk(This) -> boolean()
Types:

This = wxAcceleratorTable()
Returns true if the accelerator table is valid.

Ericsson AB. All Rights Reserved.: wxErlang | 15

href

wxActivateEvent

wxActivateEvent
Erlang module

An activate event is sent when a window or application is being activated or deactivated.

Note: Until wxWidgets 3.1.0 activation events could be sent by wxMSW when the window was minimized. This
reflected the native MSW behaviour but was often surprising and unexpected, so starting from 3.1.0 such events are
not sent any more when the window is in the minimized state.

See: Overview events, wxApp::IsActive (not implemented in wx)

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxActivateEvent

Events
Use wxEvtHandler:connect/3 with wxActivateEventType to subscribe to events of this type.

Data Types
wxActivateEvent() = wx:wx_object()
wxActivate() =
 #wxActivate{type = wxActivateEvent:wxActivateEventType(),
 active = boolean()}
wxActivateEventType() = activate | activate_app | hibernate

Exports

getActive(This) -> boolean()
Types:

This = wxActivateEvent()
Returns true if the application or window is being activated, false otherwise.

16 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxArtProvider

wxArtProvider
Erlang module

wxArtProvider class is used to customize the look of wxWidgets application.

When wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog), it does not use a hard-coded
resource but asks wxArtProvider for it instead. This way users can plug in their own wxArtProvider class
and easily replace standard art with their own version.

All that is needed is to derive a class from wxArtProvider, override
either its wxArtProvider::CreateBitmap() (not implemented in wx) and/or its
wxArtProvider::CreateIconBundle() (not implemented in wx) methods and register the provider with
wxArtProvider::Push() (not implemented in wx):

If you need bitmap images (of the same artwork) that should be displayed at different sizes you should probably
consider overriding wxArtProvider::CreateIconBundle (not implemented in wx) and supplying icon
bundles that contain different bitmap sizes.

There's another way of taking advantage of this class: you can use it in your code and use platform native icons as
provided by getBitmap/2 or getIcon/2.

Identifying art resources

Every bitmap and icon bundle are known to wxArtProvider under an unique ID that is used when requesting a
resource from it. The ID is represented by the ?wxArtID type and can have one of these predefined values (you can
see bitmaps represented by these constants in the page_samples_artprov):

Additionally, any string recognized by custom art providers registered using wxArtProvider::Push (not
implemented in wx) may be used.

Note: When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom") may be used as well: For a list
of the GTK+ stock items please refer to the GTK+ documentation page. It is also possible to load icons from the
current icon theme by specifying their name (without extension and directory components). Icon themes recognized
by GTK+ follow the freedesktop.org Icon Themes specification. Note that themes are not guaranteed to contain all
icons, so wxArtProvider may return ?wxNullBitmap or ?wxNullIcon. The default theme is typically installed in
/usr/share/icons/hicolor.

Clients

The client is the entity that calls wxArtProvider's getBitmap/2 or getIcon/2 function. It is represented
by wxClientID type and can have one of these values:

Client ID serve as a hint to wxArtProvider that is supposed to help it to choose the best looking bitmap. For
example it is often desirable to use slightly different icons in menus and toolbars even though they represent the same
action (e.g. wxART_FILE_OPEN). Remember that this is really only a hint for wxArtProvider - it is common
that getBitmap/2 returns identical bitmap for different client values!

See: Examples, wxArtProvider, usage; stock ID list

wxWidgets docs: wxArtProvider

Ericsson AB. All Rights Reserved.: wxErlang | 17

href
href
href
href

wxArtProvider

Data Types
wxArtProvider() = wx:wx_object()

Exports

getBitmap(Id) -> wxBitmap:wxBitmap()
Types:

Id = unicode:chardata()

getBitmap(Id, Options :: [Option]) -> wxBitmap:wxBitmap()
Types:

Id = unicode:chardata()
Option =
 {client, unicode:chardata()} |
 {size, {W :: integer(), H :: integer()}}

Query registered providers for bitmap with given ID.

Return: The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

getIcon(Id) -> wxIcon:wxIcon()
Types:

Id = unicode:chardata()

getIcon(Id, Options :: [Option]) -> wxIcon:wxIcon()
Types:

Id = unicode:chardata()
Option =
 {client, unicode:chardata()} |
 {size, {W :: integer(), H :: integer()}}

Same as getBitmap/2, but return a wxIcon object (or ?wxNullIcon on failure).

18 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiDockArt

wxAuiDockArt
Erlang module

wxAuiDockArt is part of the wxAUI class framework. See also overview_aui.

wxAuiDockArt is the art provider: provides all drawing functionality to the wxAui dock manager. This allows the
dock manager to have a pluggable look-and-feel.

By default, a wxAuiManager uses an instance of this class called wxAuiDefaultDockArt (not implemented
in wx) which provides bitmap art and a colour scheme that is adapted to the major platforms' look. You
can either derive from that class to alter its behaviour or write a completely new dock art class. Call
wxAuiManager:setArtProvider/2 to force wxAUI to use your new dock art provider.

See: wxAuiManager, wxAuiPaneInfo

wxWidgets docs: wxAuiDockArt

Data Types
wxAuiDockArt() = wx:wx_object()

Exports

getColour(This, Id) -> wx:wx_colour4()
Types:

This = wxAuiDockArt()
Id = integer()

Get the colour of a certain setting.

id can be one of the colour values of wxAuiPaneDockArtSetting.

getFont(This, Id) -> wxFont:wxFont()
Types:

This = wxAuiDockArt()
Id = integer()

Get a font setting.

getMetric(This, Id) -> integer()
Types:

This = wxAuiDockArt()
Id = integer()

Get the value of a certain setting.

id can be one of the size values of wxAuiPaneDockArtSetting.

setColour(This, Id, Colour) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 19

href

wxAuiDockArt

This = wxAuiDockArt()
Id = integer()
Colour = wx:wx_colour()

Set a certain setting with the value colour.

id can be one of the colour values of wxAuiPaneDockArtSetting.

setFont(This, Id, Font) -> ok
Types:

This = wxAuiDockArt()
Id = integer()
Font = wxFont:wxFont()

Set a font setting.

setMetric(This, Id, New_val) -> ok
Types:

This = wxAuiDockArt()
Id = New_val = integer()

Set a certain setting with the value new_val.

id can be one of the size values of wxAuiPaneDockArtSetting.

20 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

wxAuiManagerEvent
Erlang module

Event used to indicate various actions taken with wxAuiManager.

See wxAuiManager for available event types.

See: wxAuiManager, wxAuiPaneInfo

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxAuiManagerEvent

Events
Use wxEvtHandler:connect/3 with wxAuiManagerEventType to subscribe to events of this type.

Data Types
wxAuiManagerEvent() = wx:wx_object()
wxAuiManager() =
 #wxAuiManager{type =
 wxAuiManagerEvent:wxAuiManagerEventType(),
 manager = wxAuiManager:wxAuiManager(),
 pane = wxAuiPaneInfo:wxAuiPaneInfo(),
 button = integer(),
 veto_flag = boolean(),
 canveto_flag = boolean(),
 dc = wxDC:wxDC()}
wxAuiManagerEventType() =
 aui_pane_button | aui_pane_close | aui_pane_maximize |
 aui_pane_restore | aui_pane_activated | aui_render |
 aui_find_manager

Exports

setManager(This, Manager) -> ok
Types:

This = wxAuiManagerEvent()
Manager = wxAuiManager:wxAuiManager()

Sets the wxAuiManager this event is associated with.

getManager(This) -> wxAuiManager:wxAuiManager()
Types:

This = wxAuiManagerEvent()
Return: The wxAuiManager this event is associated with.

setPane(This, Pane) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 21

href

wxAuiManagerEvent

This = wxAuiManagerEvent()
Pane = wxAuiPaneInfo:wxAuiPaneInfo()

Sets the pane this event is associated with.

getPane(This) -> wxAuiPaneInfo:wxAuiPaneInfo()
Types:

This = wxAuiManagerEvent()
Return: The pane this event is associated with.

setButton(This, Button) -> ok
Types:

This = wxAuiManagerEvent()
Button = integer()

Sets the ID of the button clicked that triggered this event.

getButton(This) -> integer()
Types:

This = wxAuiManagerEvent()
Return: The ID of the button that was clicked.

setDC(This, Pdc) -> ok
Types:

This = wxAuiManagerEvent()
Pdc = wxDC:wxDC()

getDC(This) -> wxDC:wxDC()
Types:

This = wxAuiManagerEvent()

veto(This) -> ok
Types:

This = wxAuiManagerEvent()

veto(This, Options :: [Option]) -> ok
Types:

This = wxAuiManagerEvent()
Option = {veto, boolean()}

Cancels the action indicated by this event if canVeto/1 is true.

getVeto(This) -> boolean()
Types:

This = wxAuiManagerEvent()
Return: true if this event was vetoed.

22 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

See: veto/2

setCanVeto(This, Can_veto) -> ok
Types:

This = wxAuiManagerEvent()
Can_veto = boolean()

Sets whether or not this event can be vetoed.

canVeto(This) -> boolean()
Types:

This = wxAuiManagerEvent()
Return: true if this event can be vetoed.

See: veto/2

Ericsson AB. All Rights Reserved.: wxErlang | 23

wxAuiManager

wxAuiManager
Erlang module

wxAuiManager is the central class of the wxAUI class framework.

wxAuiManager manages the panes associated with it for a particular wxFrame, using a pane's wxAuiPaneInfo
information to determine each pane's docking and floating behaviour.

wxAuiManager uses wxWidgets' sizer mechanism to plan the layout of each frame. It uses a replaceable dock art
class to do all drawing, so all drawing is localized in one area, and may be customized depending on an application's
specific needs.

wxAuiManager works as follows: the programmer adds panes to the class, or makes changes to existing pane
properties (dock position, floating state, show state, etc.). To apply these changes, wxAuiManager's update/1
function is called. This batch processing can be used to avoid flicker, by modifying more than one pane at a time, and
then "committing" all of the changes at once by calling update/1.

Panes can be added quite easily:

Later on, the positions can be modified easily. The following will float an existing pane in a tool window:

Layers, Rows and Directions, Positions

Inside wxAUI, the docking layout is figured out by checking several pane parameters. Four of these are important for
determining where a pane will end up:

Styles

This class supports the following styles:

See: Overview aui, wxAuiNotebook, wxAuiDockArt, wxAuiPaneInfo

This class is derived (and can use functions) from: wxEvtHandler

wxWidgets docs: wxAuiManager

Events
Event types emitted from this class: aui_pane_button, aui_pane_close, aui_pane_maximize,
aui_pane_restore, aui_pane_activated, aui_render

Data Types
wxAuiManager() = wx:wx_object()

Exports

new() -> wxAuiManager()

new(Options :: [Option]) -> wxAuiManager()
Types:

Option =
 {managed_wnd, wxWindow:wxWindow()} | {flags, integer()}

Constructor.

24 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxAuiManager

destroy(This :: wxAuiManager()) -> ok
Dtor.

addPane(This, Window) -> boolean()
Types:

This = wxAuiManager()
Window = wxWindow:wxWindow()

addPane(This, Window, Options :: [Option]) -> boolean()
addPane(This, Window, Pane_info) -> boolean()
Types:

This = wxAuiManager()
Window = wxWindow:wxWindow()
Pane_info = wxAuiPaneInfo:wxAuiPaneInfo()

addPane/4 tells the frame manager to start managing a child window.

There are several versions of this function. The first version allows the full spectrum of pane parameter possibilities.
The second version is used for simpler user interfaces which do not require as much configuration. The last version
allows a drop position to be specified, which will determine where the pane will be added.

addPane(This, Window, Pane_info, Drop_pos) -> boolean()
Types:

This = wxAuiManager()
Window = wxWindow:wxWindow()
Pane_info = wxAuiPaneInfo:wxAuiPaneInfo()
Drop_pos = {X :: integer(), Y :: integer()}

detachPane(This, Window) -> boolean()
Types:

This = wxAuiManager()
Window = wxWindow:wxWindow()

Tells the wxAuiManager to stop managing the pane specified by window.

The window, if in a floated frame, is reparented to the frame managed by wxAuiManager.

getAllPanes(This) -> [wxAuiPaneInfo:wxAuiPaneInfo()]
Types:

This = wxAuiManager()
Returns an array of all panes managed by the frame manager.

getArtProvider(This) -> wxAuiDockArt:wxAuiDockArt()
Types:

This = wxAuiManager()
Returns the current art provider being used.

See: wxAuiDockArt

Ericsson AB. All Rights Reserved.: wxErlang | 25

wxAuiManager

getDockSizeConstraint(This) ->
 {Widthpct :: number(),
 Heightpct :: number()}
Types:

This = wxAuiManager()
Returns the current dock constraint values.

See setDockSizeConstraint/3 for more information.

getFlags(This) -> integer()
Types:

This = wxAuiManager()
Returns the current ?wxAuiManagerOption's flags.

getManagedWindow(This) -> wxWindow:wxWindow()
Types:

This = wxAuiManager()
Returns the frame currently being managed by wxAuiManager.

getManager(Window) -> wxAuiManager()
Types:

Window = wxWindow:wxWindow()
Calling this method will return the wxAuiManager for a given window.

The window parameter should specify any child window or sub-child window of the frame or window managed by
wxAuiManager.

The window parameter need not be managed by the manager itself, nor does it even need to be a child or sub-child
of a managed window. It must however be inside the window hierarchy underneath the managed window.

getPane(This, Name) -> wxAuiPaneInfo:wxAuiPaneInfo()
getPane(This, Window) -> wxAuiPaneInfo:wxAuiPaneInfo()
Types:

This = wxAuiManager()
Window = wxWindow:wxWindow()

getPane/2 is used to lookup a wxAuiPaneInfo object either by window pointer or by pane name, which acts
as a unique id for a window pane.

The returned wxAuiPaneInfo object may then be modified to change a pane's look, state or position. After one or
more modifications to wxAuiPaneInfo, update/1 should be called to commit the changes to the user interface.
If the lookup failed (meaning the pane could not be found in the manager), a call to the returned wxAuiPaneInfo's
IsOk() method will return false.

hideHint(This) -> ok
Types:

This = wxAuiManager()
hideHint/1 hides any docking hint that may be visible.

26 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManager

insertPane(This, Window, Insert_location) -> boolean()
Types:

This = wxAuiManager()
Window = wxWindow:wxWindow()
Insert_location = wxAuiPaneInfo:wxAuiPaneInfo()

insertPane(This, Window, Insert_location, Options :: [Option]) ->
 boolean()
Types:

This = wxAuiManager()
Window = wxWindow:wxWindow()
Insert_location = wxAuiPaneInfo:wxAuiPaneInfo()
Option = {insert_level, integer()}

This method is used to insert either a previously unmanaged pane window into the frame manager, or to insert a
currently managed pane somewhere else.

insertPane/4 will push all panes, rows, or docks aside and insert the window into the position specified by
insert_location.

Because insert_location can specify either a pane, dock row, or dock layer, the insert_level parameter
is used to disambiguate this. The parameter insert_level can take a value of wxAUI_INSERT_PANE,
wxAUI_INSERT_ROW or wxAUI_INSERT_DOCK.

loadPaneInfo(This, Pane_part, Pane) -> ok
Types:

This = wxAuiManager()
Pane_part = unicode:chardata()
Pane = wxAuiPaneInfo:wxAuiPaneInfo()

loadPaneInfo/3 is similar to LoadPerspective, with the exception that it only loads information about a single
pane.

This method writes the serialized data into the passed pane. Pointers to UI elements are not modified.

Note: This operation also changes the name in the pane information!

See: loadPerspective/3

See: savePaneInfo/2

See: savePerspective/1

loadPerspective(This, Perspective) -> boolean()
Types:

This = wxAuiManager()
Perspective = unicode:chardata()

loadPerspective(This, Perspective, Options :: [Option]) ->
 boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 27

wxAuiManager

This = wxAuiManager()
Perspective = unicode:chardata()
Option = {update, boolean()}

Loads a saved perspective.

A perspective is the layout state of an AUI managed window.

All currently existing panes that have an object in "perspective" with the same name ("equivalent") will receive the
layout parameters of the object in "perspective". Existing panes that do not have an equivalent in "perspective" remain
unchanged, objects in "perspective" having no equivalent in the manager are ignored.

See: loadPaneInfo/3

See: loadPerspective/3

See: savePerspective/1

savePaneInfo(This, Pane) -> unicode:charlist()
Types:

This = wxAuiManager()
Pane = wxAuiPaneInfo:wxAuiPaneInfo()

savePaneInfo/2 is similar to SavePerspective, with the exception that it only saves information about a single
pane.

Return: The serialized layout parameters of the pane are returned within the string. Information about the pointers to
UI elements stored in the pane are not serialized.

See: loadPaneInfo/3

See: loadPerspective/3

See: savePerspective/1

savePerspective(This) -> unicode:charlist()
Types:

This = wxAuiManager()
Saves the entire user interface layout into an encoded wxString (not implemented in wx), which can then be stored
by the application (probably using wxConfig).

See: loadPerspective/3

See: loadPaneInfo/3

See: savePaneInfo/2

setArtProvider(This, Art_provider) -> ok
Types:

This = wxAuiManager()
Art_provider = wxAuiDockArt:wxAuiDockArt()

Instructs wxAuiManager to use art provider specified by parameter art_provider for all drawing calls.

This allows pluggable look-and-feel features. The previous art provider object, if any, will be deleted by
wxAuiManager.

See: wxAuiDockArt

28 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManager

setDockSizeConstraint(This, Widthpct, Heightpct) -> ok
Types:

This = wxAuiManager()
Widthpct = Heightpct = number()

When a user creates a new dock by dragging a window into a docked position, often times the large size of the window
will create a dock that is unwieldy large.

wxAuiManager by default limits the size of any new dock to 1/3 of the window size. For horizontal docks, this
would be 1/3 of the window height. For vertical docks, 1/3 of the width.

Calling this function will adjust this constraint value. The numbers must be between 0.0 and 1.0. For instance, calling
SetDockSizeContraint with 0.5, 0.5 will cause new docks to be limited to half of the size of the entire managed window.

setFlags(This, Flags) -> ok
Types:

This = wxAuiManager()
Flags = integer()

This method is used to specify ?wxAuiManagerOption's flags.

flags specifies options which allow the frame management behaviour to be modified.

setManagedWindow(This, Managed_wnd) -> ok
Types:

This = wxAuiManager()
Managed_wnd = wxWindow:wxWindow()

Called to specify the frame or window which is to be managed by wxAuiManager.

Frame management is not restricted to just frames. Child windows or custom controls are also allowed.

showHint(This, Rect) -> ok
Types:

This = wxAuiManager()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

This function is used by controls to explicitly show a hint window at the specified rectangle.

It is rarely called, and is mostly used by controls implementing custom pane drag/drop behaviour. The specified
rectangle should be in screen coordinates.

unInit(This) -> ok
Types:

This = wxAuiManager()
Dissociate the managed window from the manager.

Ericsson AB. All Rights Reserved.: wxErlang | 29

wxAuiManager

This function may be called before the managed frame or window is destroyed, but, since wxWidgets 3.1.4, it's
unnecessary to call it explicitly, as it will be called automatically when this window is destroyed, as well as when
the manager itself is.

update(This) -> ok
Types:

This = wxAuiManager()
This method is called after any number of changes are made to any of the managed panes.

update/1 must be invoked after addPane/4 or insertPane/4 are called in order to "realize" or "commit"
the changes. In addition, any number of changes may be made to wxAuiPaneInfo structures (retrieved with
getPane/2), but to realize the changes, update/1 must be called. This construction allows pane flicker to be
avoided by updating the whole layout at one time.

30 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebookEvent

wxAuiNotebookEvent
Erlang module

This class is used by the events generated by wxAuiNotebook.

See: wxAuiNotebook, wxBookCtrlEvent

This class is derived (and can use functions) from: wxBookCtrlEvent wxNotifyEvent wxCommandEvent
wxEvent

wxWidgets docs: wxAuiNotebookEvent

Events
Use wxEvtHandler:connect/3 with wxAuiNotebookEventType to subscribe to events of this type.

Data Types
wxAuiNotebookEvent() = wx:wx_object()
wxAuiNotebook() =
 #wxAuiNotebook{type =
 wxAuiNotebookEvent:wxAuiNotebookEventType(),
 old_selection = integer(),
 selection = integer(),
 drag_source = wxAuiNotebook:wxAuiNotebook()}
wxAuiNotebookEventType() =
 command_auinotebook_page_close |
 command_auinotebook_page_changed |
 command_auinotebook_page_changing |
 command_auinotebook_button | command_auinotebook_begin_drag |
 command_auinotebook_end_drag |
 command_auinotebook_drag_motion |
 command_auinotebook_allow_dnd |
 command_auinotebook_tab_middle_down |
 command_auinotebook_tab_middle_up |
 command_auinotebook_tab_right_down |
 command_auinotebook_tab_right_up |
 command_auinotebook_page_closed |
 command_auinotebook_drag_done | command_auinotebook_bg_dclick

Exports

setSelection(This, Page) -> ok
Types:

This = wxAuiNotebookEvent()
Page = integer()

Sets the selection member variable.

getSelection(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 31

href

wxAuiNotebookEvent

This = wxAuiNotebookEvent()
Returns the currently selected page, or wxNOT_FOUND if none was selected.

Note: under Windows, getSelection/1 will return the same value as getOldSelection/1 when called from
the EVT_BOOKCTRL_PAGE_CHANGING handler and not the page which is going to be selected.

setOldSelection(This, Page) -> ok
Types:

This = wxAuiNotebookEvent()
Page = integer()

Sets the id of the page selected before the change.

getOldSelection(This) -> integer()
Types:

This = wxAuiNotebookEvent()
Returns the page that was selected before the change, wxNOT_FOUND if none was selected.

setDragSource(This, S) -> ok
Types:

This = wxAuiNotebookEvent()
S = wxAuiNotebook:wxAuiNotebook()

getDragSource(This) -> wxAuiNotebook:wxAuiNotebook()
Types:

This = wxAuiNotebookEvent()

32 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebook

wxAuiNotebook
Erlang module

wxAuiNotebook is part of the wxAUI class framework, which represents a notebook control, managing multiple
windows with associated tabs.

See also overview_aui.

wxAuiNotebook is a notebook control which implements many features common in applications with dockable
panes. Specifically, wxAuiNotebook implements functionality which allows the user to rearrange tab order via
drag-and-drop, split the tab window into many different splitter configurations, and toggle through different themes
to customize the control's look and feel.

The default theme that is used is wxAuiDefaultTabArt (not implemented in wx), which provides a modern, glossy
look and feel. The theme can be changed by calling setArtProvider/2.

Styles

This class supports the following styles:

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxAuiNotebook

Events
Event types emitted from this class: command_auinotebook_page_close,
command_auinotebook_page_closed, command_auinotebook_page_changed,
command_auinotebook_page_changing, command_auinotebook_button,
command_auinotebook_begin_drag, command_auinotebook_end_drag,
command_auinotebook_drag_motion, command_auinotebook_allow_dnd,
command_auinotebook_drag_done, command_auinotebook_tab_middle_down,
command_auinotebook_tab_middle_up, command_auinotebook_tab_right_down,
command_auinotebook_tab_right_up, command_auinotebook_bg_dclick

Data Types
wxAuiNotebook() = wx:wx_object()

Exports

new() -> wxAuiNotebook()
Default ctor.

new(Parent) -> wxAuiNotebook()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxAuiNotebook()
Types:

Parent = wxWindow:wxWindow()
Option =

Ericsson AB. All Rights Reserved.: wxErlang | 33

href

wxAuiNotebook

 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor.

Creates a wxAuiNotebok control.

addPage(This, Page, Caption) -> boolean()
Types:

This = wxAuiNotebook()
Page = wxWindow:wxWindow()
Caption = unicode:chardata()

addPage(This, Page, Caption, Options :: [Option]) -> boolean()
Types:

This = wxAuiNotebook()
Page = wxWindow:wxWindow()
Caption = unicode:chardata()
Option = {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}

Adds a page.

If the select parameter is true, calling this will generate a page change event.

addPage(This, Page, Text, Select, ImageId) -> boolean()
Types:

This = wxAuiNotebook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Select = boolean()
ImageId = integer()

Adds a new page.

The page must have the book control itself as the parent and must not have been added to this control previously.

The call to this function may generate the page changing events.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: insertPage/6

Since: 2.9.3

create(This, Parent) -> boolean()
Types:

34 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebook

This = wxAuiNotebook()
Parent = wxWindow:wxWindow()

create(This, Parent, Winid) -> boolean()
create(This, Parent, Winid :: [Option]) -> boolean()
Types:

This = wxAuiNotebook()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creates the notebook window.

create(This, Parent, Winid, Options :: [Option]) -> boolean()
Types:

This = wxAuiNotebook()
Parent = wxWindow:wxWindow()
Winid = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructs the book control with the given parameters.

deletePage(This, Page) -> boolean()
Types:

This = wxAuiNotebook()
Page = integer()

Deletes a page at the given index.

Calling this method will generate a page change event.

getArtProvider(This) -> wxAuiTabArt:wxAuiTabArt()
Types:

This = wxAuiNotebook()
Returns the associated art provider.

getPage(This, Page_idx) -> wxWindow:wxWindow()
Types:

This = wxAuiNotebook()
Page_idx = integer()

Returns the page specified by the given index.

Ericsson AB. All Rights Reserved.: wxErlang | 35

wxAuiNotebook

getPageBitmap(This, Page) -> wxBitmap:wxBitmap()
Types:

This = wxAuiNotebook()
Page = integer()

Returns the tab bitmap for the page.

getPageCount(This) -> integer()
Types:

This = wxAuiNotebook()
Returns the number of pages in the notebook.

getPageIndex(This, Page_wnd) -> integer()
Types:

This = wxAuiNotebook()
Page_wnd = wxWindow:wxWindow()

Returns the page index for the specified window.

If the window is not found in the notebook, wxNOT_FOUND is returned.

getPageText(This, Page) -> unicode:charlist()
Types:

This = wxAuiNotebook()
Page = integer()

Returns the tab label for the page.

getSelection(This) -> integer()
Types:

This = wxAuiNotebook()
Returns the currently selected page.

insertPage(This, Page_idx, Page, Caption) -> boolean()
Types:

This = wxAuiNotebook()
Page_idx = integer()
Page = wxWindow:wxWindow()
Caption = unicode:chardata()

insertPage(This, Page_idx, Page, Caption, Options :: [Option]) ->
 boolean()
Types:

36 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebook

This = wxAuiNotebook()
Page_idx = integer()
Page = wxWindow:wxWindow()
Caption = unicode:chardata()
Option = {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}

insertPage/6 is similar to AddPage, but allows the ability to specify the insert location.

If the select parameter is true, calling this will generate a page change event.

insertPage(This, Index, Page, Text, Select, ImageId) -> boolean()
Types:

This = wxAuiNotebook()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Select = boolean()
ImageId = integer()

Inserts a new page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: addPage/5

Since: 2.9.3

removePage(This, Page) -> boolean()
Types:

This = wxAuiNotebook()
Page = integer()

Removes a page, without deleting the window pointer.

setArtProvider(This, Art) -> ok
Types:

This = wxAuiNotebook()
Art = wxAuiTabArt:wxAuiTabArt()

Sets the art provider to be used by the notebook.

setFont(This, Font) -> boolean()
Types:

This = wxAuiNotebook()
Font = wxFont:wxFont()

Sets the font for drawing the tab labels, using a bold version of the font for selected tab labels.

setPageBitmap(This, Page, Bitmap) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 37

wxAuiNotebook

This = wxAuiNotebook()
Page = integer()
Bitmap = wxBitmap:wxBitmap()

Sets the bitmap for the page.

To remove a bitmap from the tab caption, pass wxNullBitmap.

setPageText(This, Page, Text) -> boolean()
Types:

This = wxAuiNotebook()
Page = integer()
Text = unicode:chardata()

Sets the tab label for the page.

setSelection(This, New_page) -> integer()
Types:

This = wxAuiNotebook()
New_page = integer()

Sets the page selection.

Calling this method will generate a page change event.

setTabCtrlHeight(This, Height) -> ok
Types:

This = wxAuiNotebook()
Height = integer()

Sets the tab height.

By default, the tab control height is calculated by measuring the text height and bitmap sizes on the tab captions.
Calling this method will override that calculation and set the tab control to the specified height parameter. A call to
this method will override any call to setUniformBitmapSize/2.

Specifying -1 as the height will return the control to its default auto-sizing behaviour.

setUniformBitmapSize(This, Size) -> ok
Types:

This = wxAuiNotebook()
Size = {W :: integer(), H :: integer()}

Ensure that all tabs have the same height, even if some of them don't have bitmaps.

Passing ?wxDefaultSize as size undoes the effect of a previous call to this function and instructs the control to use
dynamic tab height.

destroy(This :: wxAuiNotebook()) -> ok
Destroys the object.

38 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPaneInfo

wxAuiPaneInfo
Erlang module

wxAuiPaneInfo is part of the wxAUI class framework. See also overview_aui.

wxAuiPaneInfo specifies all the parameters for a pane. These parameters specify where the pane is on the screen,
whether it is docked or floating, or hidden. In addition, these parameters specify the pane's docked position, floating
position, preferred size, minimum size, caption text among many other parameters.

See: wxAuiManager, wxAuiDockArt

wxWidgets docs: wxAuiPaneInfo

Data Types
wxAuiPaneInfo() = wx:wx_object()

Exports

new() -> wxAuiPaneInfo()

new(C) -> wxAuiPaneInfo()
Types:

C = wxAuiPaneInfo()
Copy constructor.

bestSize(This, Size) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Size = {W :: integer(), H :: integer()}

bestSize/3 sets the ideal size for the pane.

The docking manager will attempt to use this size as much as possible when docking or floating the pane.

bestSize(This, X, Y) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
X = Y = integer()

bottom(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
bottom/1 sets the pane dock position to the bottom side of the frame.

This is the same thing as calling Direction(wxAUI_DOCK_BOTTOM).

bottomDockable(This) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 39

href

wxAuiPaneInfo

This = wxAuiPaneInfo()

bottomDockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

bottomDockable/2 indicates whether a pane can be docked at the bottom of the frame.

caption(This, C) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
C = unicode:chardata()

caption/2 sets the caption of the pane.

captionVisible(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

captionVisible(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {visible, boolean()}

CaptionVisible indicates that a pane caption should be visible.

If false, no pane caption is drawn.

centre(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Center() (not implemented in wx) sets the pane dock position to the left side of the frame.

The centre pane is the space in the middle after all border panes (left, top, right, bottom) are subtracted from the layout.
This is the same thing as calling Direction(wxAUI_DOCK_CENTRE).

centrePane(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
centrePane/1 specifies that the pane should adopt the default center pane settings.

Centre panes usually do not have caption bars. This function provides an easy way of preparing a pane to be displayed
in the center dock position.

closeButton(This) -> wxAuiPaneInfo()
Types:

40 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPaneInfo

This = wxAuiPaneInfo()

closeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {visible, boolean()}

closeButton/2 indicates that a close button should be drawn for the pane.

defaultPane(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
defaultPane/1 specifies that the pane should adopt the default pane settings.

destroyOnClose(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

destroyOnClose(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

destroyOnClose/2 indicates whether a pane should be destroyed when it is closed.

Normally a pane is simply hidden when the close button is clicked. Setting DestroyOnClose to true will cause the
window to be destroyed when the user clicks the pane's close button.

direction(This, Direction) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Direction = integer()

direction/2 determines the direction of the docked pane.

It is functionally the same as calling left/1, right/1, top/1 or bottom/1, except that docking direction may
be specified programmatically via the parameter.

dock(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
dock/1 indicates that a pane should be docked.

It is the opposite of float/1.

dockable(This) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 41

wxAuiPaneInfo

This = wxAuiPaneInfo()

dockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

dockable/2 specifies whether a frame can be docked or not.

It is the same as specifying TopDockable(b).BottomDockable(b).LeftDockable(b).RightDockable(b).

fixed(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
fixed/1 forces a pane to be fixed size so that it cannot be resized.

After calling fixed/1, isFixed/1 will return true.

float(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
float/1 indicates that a pane should be floated.

It is the opposite of dock/1.

floatable(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

floatable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

floatable/2 sets whether the user will be able to undock a pane and turn it into a floating window.

floatingPosition(This, Pos) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Pos = {X :: integer(), Y :: integer()}

floatingPosition/3 sets the position of the floating pane.

floatingPosition(This, X, Y) -> wxAuiPaneInfo()
Types:

42 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPaneInfo

This = wxAuiPaneInfo()
X = Y = integer()

floatingSize(This, Size) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Size = {W :: integer(), H :: integer()}

floatingSize/3 sets the size of the floating pane.

floatingSize(This, X, Y) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
X = Y = integer()

gripper(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

gripper(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {visible, boolean()}

gripper/2 indicates that a gripper should be drawn for the pane.

gripperTop(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

gripperTop(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {attop, boolean()}

gripperTop/2 indicates that a gripper should be drawn at the top of the pane.

hasBorder(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasBorder/1 returns true if the pane displays a border.

hasCaption(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasCaption/1 returns true if the pane displays a caption.

Ericsson AB. All Rights Reserved.: wxErlang | 43

wxAuiPaneInfo

hasCloseButton(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasCloseButton/1 returns true if the pane displays a button to close the pane.

hasFlag(This, Flag) -> boolean()
Types:

This = wxAuiPaneInfo()
Flag = integer()

hasFlag/2 returns true if the property specified by flag is active for the pane.

hasGripper(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasGripper/1 returns true if the pane displays a gripper.

hasGripperTop(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasGripper/1 returns true if the pane displays a gripper at the top.

hasMaximizeButton(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasMaximizeButton/1 returns true if the pane displays a button to maximize the pane.

hasMinimizeButton(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasMinimizeButton/1 returns true if the pane displays a button to minimize the pane.

hasPinButton(This) -> boolean()
Types:

This = wxAuiPaneInfo()
hasPinButton/1 returns true if the pane displays a button to float the pane.

hide(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
hide/1 indicates that a pane should be hidden.

isBottomDockable(This) -> boolean()
Types:

44 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPaneInfo

This = wxAuiPaneInfo()
isBottomDockable/1 returns true if the pane can be docked at the bottom of the managed frame.

See: IsDockable() (not implemented in wx)

isDocked(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isDocked/1 returns true if the pane is currently docked.

isFixed(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isFixed/1 returns true if the pane cannot be resized.

isFloatable(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isFloatable/1 returns true if the pane can be undocked and displayed as a floating window.

isFloating(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isFloating/1 returns true if the pane is floating.

isLeftDockable(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isLeftDockable/1 returns true if the pane can be docked on the left of the managed frame.

See: IsDockable() (not implemented in wx)

isMovable(This) -> boolean()
Types:

This = wxAuiPaneInfo()
IsMoveable() returns true if the docked frame can be undocked or moved to another dock position.

isOk(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isOk/1 returns true if the wxAuiPaneInfo structure is valid.

A pane structure is valid if it has an associated window.

Ericsson AB. All Rights Reserved.: wxErlang | 45

wxAuiPaneInfo

isResizable(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isResizable/1 returns true if the pane can be resized.

isRightDockable(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isRightDockable/1 returns true if the pane can be docked on the right of the managed frame.

See: IsDockable() (not implemented in wx)

isShown(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isShown/1 returns true if the pane is currently shown.

isToolbar(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isToolbar/1 returns true if the pane contains a toolbar.

isTopDockable(This) -> boolean()
Types:

This = wxAuiPaneInfo()
isTopDockable/1 returns true if the pane can be docked at the top of the managed frame.

See: IsDockable() (not implemented in wx)

layer(This, Layer) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Layer = integer()

layer/2 determines the layer of the docked pane.

The dock layer is similar to an onion, the inner-most layer being layer 0. Each shell moving in the outward direction
has a higher layer number. This allows for more complex docking layout formation.

left(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
left/1 sets the pane dock position to the left side of the frame.

This is the same thing as calling Direction(wxAUI_DOCK_LEFT).

46 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPaneInfo

leftDockable(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

leftDockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

leftDockable/2 indicates whether a pane can be docked on the left of the frame.

maxSize(This, Size) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Size = {W :: integer(), H :: integer()}

maxSize/3 sets the maximum size of the pane.

maxSize(This, X, Y) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
X = Y = integer()

maximizeButton(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

maximizeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {visible, boolean()}

maximizeButton/2 indicates that a maximize button should be drawn for the pane.

minSize(This, Size) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Size = {W :: integer(), H :: integer()}

minSize/3 sets the minimum size of the pane.

Please note that this is only partially supported as of this writing.

minSize(This, X, Y) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 47

wxAuiPaneInfo

This = wxAuiPaneInfo()
X = Y = integer()

minimizeButton(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

minimizeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {visible, boolean()}

minimizeButton/2 indicates that a minimize button should be drawn for the pane.

movable(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

movable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

Movable indicates whether a frame can be moved.

name(This, N) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
N = unicode:chardata()

name/2 sets the name of the pane so it can be referenced in lookup functions.

If a name is not specified by the user, a random name is assigned to the pane when it is added to the manager.

paneBorder(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

paneBorder(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {visible, boolean()}

PaneBorder indicates that a border should be drawn for the pane.

pinButton(This) -> wxAuiPaneInfo()
Types:

48 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPaneInfo

This = wxAuiPaneInfo()

pinButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {visible, boolean()}

pinButton/2 indicates that a pin button should be drawn for the pane.

position(This, Pos) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Pos = integer()

position/2 determines the position of the docked pane.

resizable(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

resizable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {resizable, boolean()}

resizable/2 allows a pane to be resized if the parameter is true, and forces it to be a fixed size if the parameter
is false.

This is simply an antonym for fixed/1.

right(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
right/1 sets the pane dock position to the right side of the frame.

This is the same thing as calling Direction(wxAUI_DOCK_RIGHT).

rightDockable(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

rightDockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

rightDockable/2 indicates whether a pane can be docked on the right of the frame.

Ericsson AB. All Rights Reserved.: wxErlang | 49

wxAuiPaneInfo

row(This, Row) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Row = integer()

row/2 determines the row of the docked pane.

safeSet(This, Source) -> ok
Types:

This = Source = wxAuiPaneInfo()

Write the safe parts of a PaneInfo object "source" into "this".

"Safe parts" are all non-UI elements (e.g. all layout determining parameters like the size, position etc.). "Unsafe
parts" (pointers to button, frame and window) are not modified by this write operation.

Remark: This method is used when loading perspectives.

setFlag(This, Flag, Option_state) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Flag = integer()
Option_state = boolean()

setFlag/3 turns the property given by flag on or off with the option_state parameter.

show(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

show(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {show, boolean()}

show/2 indicates that a pane should be shown.

toolbarPane(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
toolbarPane/1 specifies that the pane should adopt the default toolbar pane settings.

top(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
top/1 sets the pane dock position to the top of the frame.

This is the same thing as calling Direction(wxAUI_DOCK_TOP).

50 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPaneInfo

topDockable(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

topDockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
Option = {b, boolean()}

topDockable/2 indicates whether a pane can be docked at the top of the frame.

window(This, W) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()
W = wxWindow:wxWindow()

window/2 assigns the window pointer that the wxAuiPaneInfo should use.

This normally does not need to be specified, as the window pointer is automatically assigned to the wxAuiPaneInfo
structure as soon as it is added to the manager.

getWindow(This) -> wxWindow:wxWindow()
Types:

This = wxAuiPaneInfo()

getFrame(This) -> wxFrame:wxFrame()
Types:

This = wxAuiPaneInfo()

getDirection(This) -> integer()
Types:

This = wxAuiPaneInfo()

getLayer(This) -> integer()
Types:

This = wxAuiPaneInfo()

getRow(This) -> integer()
Types:

This = wxAuiPaneInfo()

getPosition(This) -> integer()
Types:

This = wxAuiPaneInfo()

getFloatingPosition(This) -> {X :: integer(), Y :: integer()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 51

wxAuiPaneInfo

This = wxAuiPaneInfo()

getFloatingSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxAuiPaneInfo()

destroy(This :: wxAuiPaneInfo()) -> ok
Destroys the object.

52 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiSimpleTabArt

wxAuiSimpleTabArt
Erlang module

Another standard tab art provider for wxAuiNotebook.

wxAuiSimpleTabArt is derived from wxAuiTabArt demonstrating how to write a completely new tab art class.
It can also be used as alternative to wxAuiDefaultTabArt (not implemented in wx).

This class is derived (and can use functions) from: wxAuiTabArt

wxWidgets docs: wxAuiSimpleTabArt

Data Types
wxAuiSimpleTabArt() = wx:wx_object()

Exports

new() -> wxAuiSimpleTabArt()

destroy(This :: wxAuiSimpleTabArt()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 53

href

wxAuiTabArt

wxAuiTabArt
Erlang module

Tab art provider defines all the drawing functions used by wxAuiNotebook.

This allows the wxAuiNotebook to have a pluggable look-and-feel.

By default, a wxAuiNotebook uses an instance of this class called wxAuiDefaultTabArt (not implemented in
wx) which provides bitmap art and a colour scheme that is adapted to the major platforms' look. You can either derive
from that class to alter its behaviour or write a completely new tab art class.

Another example of creating a new wxAuiNotebook tab bar is wxAuiSimpleTabArt.

Call wxAuiNotebook:setArtProvider/2 to make use of this new tab art.

wxWidgets docs: wxAuiTabArt

Data Types
wxAuiTabArt() = wx:wx_object()

Exports

setFlags(This, Flags) -> ok
Types:

This = wxAuiTabArt()
Flags = integer()

Sets flags.

setMeasuringFont(This, Font) -> ok
Types:

This = wxAuiTabArt()
Font = wxFont:wxFont()

Sets the font used for calculating measurements.

setNormalFont(This, Font) -> ok
Types:

This = wxAuiTabArt()
Font = wxFont:wxFont()

Sets the normal font for drawing labels.

setSelectedFont(This, Font) -> ok
Types:

This = wxAuiTabArt()
Font = wxFont:wxFont()

Sets the font for drawing text for selected UI elements.

54 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiTabArt

setColour(This, Colour) -> ok
Types:

This = wxAuiTabArt()
Colour = wx:wx_colour()

Sets the colour of the inactive tabs.

Since: 2.9.2

setActiveColour(This, Colour) -> ok
Types:

This = wxAuiTabArt()
Colour = wx:wx_colour()

Sets the colour of the selected tab.

Since: 2.9.2

Ericsson AB. All Rights Reserved.: wxErlang | 55

wxBitmapButton

wxBitmapButton
Erlang module

A bitmap button is a control that contains a bitmap.

Notice that since wxWidgets 2.9.1 bitmap display is supported by the base wxButton class itself and the only tiny
advantage of using this class is that it allows specifying the bitmap in its constructor, unlike wxButton. Please see
the base class documentation for more information about images support in wxButton.

Styles

This class supports the following styles:

See: wxButton

This class is derived (and can use functions) from: wxButton wxControl wxWindow wxEvtHandler

wxWidgets docs: wxBitmapButton

Events
Event types emitted from this class: command_button_clicked

Data Types
wxBitmapButton() = wx:wx_object()

Exports

new() -> wxBitmapButton()
Default ctor.

new(Parent, Id, Bitmap) -> wxBitmapButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Bitmap = wxBitmap:wxBitmap()

new(Parent, Id, Bitmap, Options :: [Option]) -> wxBitmapButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Bitmap = wxBitmap:wxBitmap()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a button.

56 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxBitmapButton

Remark: The bitmap parameter is normally the only bitmap you need to provide, and wxWidgets will draw the button
correctly in its different states. If you want more control, call any of the functions SetBitmapPressed() (not
implemented in wx), wxButton:setBitmapFocus/2, wxButton:setBitmapDisabled/2.

See: create/5, wxValidator (not implemented in wx)

create(This, Parent, Id, Bitmap) -> boolean()
Types:

This = wxBitmapButton()
Parent = wxWindow:wxWindow()
Id = integer()
Bitmap = wxBitmap:wxBitmap()

create(This, Parent, Id, Bitmap, Options :: [Option]) -> boolean()
Types:

This = wxBitmapButton()
Parent = wxWindow:wxWindow()
Id = integer()
Bitmap = wxBitmap:wxBitmap()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Button creation function for two-step creation.

For more details, see new/4.

newCloseButton(Parent, Winid) -> wxBitmapButton()
Types:

Parent = wxWindow:wxWindow()
Winid = integer()

Helper function creating a standard-looking "Close" button.

To get the best results, platform-specific code may need to be used to create a small, title bar-like "Close" button.
This function is provided to avoid the need to test for the current platform and creates the button with as native look
as possible.

Return: The new button.

Since: 2.9.5

destroy(This :: wxBitmapButton()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 57

wxBitmapDataObject

wxBitmapDataObject
Erlang module

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used without change to
paste data into the wxClipboard or a wxDropSource (not implemented in wx). A user may wish to derive a new
class from this class for providing a bitmap on-demand in order to minimize memory consumption when offering data
in several formats, such as a bitmap and GIF.

This class may be used as is, but getBitmap/1 may be overridden to increase efficiency.

See: Overview dnd, wxDataObject, wxDataObjectSimple (not implemented in wx), wxFileDataObject,
wxTextDataObject, wxDataObject

This class is derived (and can use functions) from: wxDataObject

wxWidgets docs: wxBitmapDataObject

Data Types
wxBitmapDataObject() = wx:wx_object()

Exports

new() -> wxBitmapDataObject()

new(Options :: [Option]) -> wxBitmapDataObject()
new(Bitmap) -> wxBitmapDataObject()
Types:

Bitmap = wxBitmap:wxBitmap()
Constructor, optionally passing a bitmap (otherwise use setBitmap/2 later).

getBitmap(This) -> wxBitmap:wxBitmap()
Types:

This = wxBitmapDataObject()
Returns the bitmap associated with the data object.

You may wish to override this method when offering data on-demand, but this is not required by wxWidgets' internals.
Use this method to get data in bitmap form from the wxClipboard.

setBitmap(This, Bitmap) -> ok
Types:

This = wxBitmapDataObject()
Bitmap = wxBitmap:wxBitmap()

Sets the bitmap associated with the data object.

This method is called when the data object receives data. Usually there will be no reason to override this function.

destroy(This :: wxBitmapDataObject()) -> ok
Destroys the object.

58 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxBitmap

wxBitmap
Erlang module

This class encapsulates the concept of a platform-dependent bitmap, either monochrome or colour or colour with alpha
channel support.

If you need direct access the bitmap data instead going through drawing to it using wxMemoryDC you need to use the
wxPixelData (not implemented in wx) class (either wxNativePixelData for RGB bitmaps or wxAlphaPixelData
for bitmaps with an additionally alpha channel).

Note that many wxBitmap functions take a type parameter, which is a value of the ?wxBitmapType enumeration.
The validity of those values depends however on the platform where your program is running and from the wxWidgets
configuration. If all possible wxWidgets settings are used:

In addition, wxBitmap can load and save all formats that wxImage can; see wxImage for more info. Of course,
you must have loaded the wxImage handlers (see ?wxInitAllImageHandlers() and wxImage::AddHandler (not
implemented in wx)). Note that all available wxBitmapHandlers for a given wxWidgets port are automatically loaded
at startup so you won't need to use wxBitmap::AddHandler (not implemented in wx).

More on the difference between wxImage and wxBitmap: wxImage is just a buffer of RGB bytes with an optional
buffer for the alpha bytes. It is all generic, platform independent and image file format independent code. It includes
generic code for scaling, resizing, clipping, and other manipulations of the image data. OTOH, wxBitmap is intended
to be a wrapper of whatever is the native image format that is quickest/easiest to draw to a DC or to be the target of the
drawing operations performed on a wxMemoryDC. By splitting the responsibilities between wxImage/wxBitmap like
this then it's easier to use generic code shared by all platforms and image types for generic operations and platform
specific code where performance or compatibility is needed.

Predefined objects (include wx.hrl): ?wxNullBitmap

See: Overview bitmap, Overview bitmap, wxDC:blit/6, wxIcon, wxCursor, wxMemoryDC, wxImage,
wxPixelData (not implemented in wx)

wxWidgets docs: wxBitmap

Data Types
wxBitmap() = wx:wx_object()

Exports

new() -> wxBitmap()
Default constructor.

Constructs a bitmap object with no data; an assignment or another member function such as create/4 or
loadFile/3 must be called subsequently.

new(Name) -> wxBitmap()
new(Sz) -> wxBitmap()
new(Img) -> wxBitmap()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 59

href
href
href

wxBitmap

Img = wxImage:wxImage() | wxBitmap:wxBitmap()

new(Width, Height) -> wxBitmap()
new(Name, Height :: [Option]) -> wxBitmap()
new(Sz, Height :: [Option]) -> wxBitmap()
new(Img, Height :: [Option]) -> wxBitmap()
Types:

Img = wxImage:wxImage()
Option = {depth, integer()}

Creates this bitmap object from the given image.

This has to be done to actually display an image as you cannot draw an image directly on a window.

The resulting bitmap will use the provided colour depth (or that of the current system if depth is ?
wxBITMAP_SCREEN_DEPTH) which entails that a colour reduction may take place.

On Windows, if there is a palette present (set with SetPalette), it will be used when creating the wxBitmap (most
useful in 8-bit display mode). On other platforms, the palette is currently ignored.

new(Bits, Width, Height) -> wxBitmap()
new(Width, Height, Height :: [Option]) -> wxBitmap()
Types:

Width = Height = integer()
Option = {depth, integer()}

Creates a new bitmap.

A depth of ?wxBITMAP_SCREEN_DEPTH indicates the depth of the current screen or visual.

Some platforms only support 1 for monochrome and ?wxBITMAP_SCREEN_DEPTH for the current colour setting.

A depth of 32 including an alpha channel is supported under MSW, Mac and GTK+.

new(Bits, Width, Height, Options :: [Option]) -> wxBitmap()
Types:

Bits = binary()
Width = Height = integer()
Option = {depth, integer()}

Creates a bitmap from the given array bits.

You should only use this function for monochrome bitmaps (depth 1) in portable programs: in this case the bits
parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is passed without any changes
to the underlying CreateBitmap() API. Under other platforms, only monochrome bitmaps may be created using this
constructor and wxImage should be used for creating colour bitmaps from static data.

destroy(This :: wxBitmap()) -> ok
Creates bitmap corresponding to the given cursor.

This can be useful to display a cursor as it cannot be drawn directly on a window.

This constructor only exists in wxMSW and wxGTK (where it is implemented for GTK+ 2.8 or later) only.

60 | Ericsson AB. All Rights Reserved.: wxErlang

wxBitmap

Since: 3.1.0 Destructor. See overview_refcount_destruct for more info.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed automatically by wxWidgets when
the application exits.

Warning: Do not delete a bitmap that is selected into a memory device context.

convertToImage(This) -> wxImage:wxImage()
Types:

This = wxBitmap()
Creates an image from a platform-dependent bitmap.

This preserves mask information so that bitmaps and images can be converted back and forth without loss in that
respect.

copyFromIcon(This, Icon) -> boolean()
Types:

This = wxBitmap()
Icon = wxIcon:wxIcon()

Creates the bitmap from an icon.

create(This, Sz) -> boolean()
Types:

This = wxBitmap()
Sz = {W :: integer(), H :: integer()}

create(This, Width, Height) -> boolean()
create(This, Sz, Height :: [Option]) -> boolean()
Types:

This = wxBitmap()
Sz = {W :: integer(), H :: integer()}
Option = {depth, integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

create(This, Width, Height, Options :: [Option]) -> boolean()
create(This, Width, Height, Dc) -> boolean()
Types:

This = wxBitmap()
Width = Height = integer()
Dc = wxDC:wxDC()

Create a bitmap compatible with the given DC, inheriting its magnification factor.

Return: true if the creation was successful.

Since: 3.1.0

Ericsson AB. All Rights Reserved.: wxErlang | 61

wxBitmap

getDepth(This) -> integer()
Types:

This = wxBitmap()
Gets the colour depth of the bitmap.

A value of 1 indicates a monochrome bitmap.

getHeight(This) -> integer()
Types:

This = wxBitmap()
Gets the height of the bitmap in pixels.

See: getWidth/1, GetSize() (not implemented in wx)

getPalette(This) -> wxPalette:wxPalette()
Types:

This = wxBitmap()
Gets the associated palette (if any) which may have been loaded from a file or set for the bitmap.

See: wxPalette

getMask(This) -> wxMask:wxMask()
Types:

This = wxBitmap()
Gets the associated mask (if any) which may have been loaded from a file or set for the bitmap.

See: setMask/2, wxMask

getWidth(This) -> integer()
Types:

This = wxBitmap()
Gets the width of the bitmap in pixels.

See: getHeight/1, GetSize() (not implemented in wx)

getSubBitmap(This, Rect) -> wxBitmap()
Types:

This = wxBitmap()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

Returns a sub bitmap of the current one as long as the rect belongs entirely to the bitmap.

This function preserves bit depth and mask information.

loadFile(This, Name) -> boolean()
Types:

62 | Ericsson AB. All Rights Reserved.: wxErlang

wxBitmap

This = wxBitmap()
Name = unicode:chardata()

loadFile(This, Name, Options :: [Option]) -> boolean()
Types:

This = wxBitmap()
Name = unicode:chardata()
Option = {type, wx:wx_enum()}

Loads a bitmap from a file or resource.

Return: true if the operation succeeded, false otherwise.

Remark: A palette may be associated with the bitmap if one exists (especially for colour Windows bitmaps), and if
the code supports it. You can check if one has been created by using the getPalette/1 member.

See: saveFile/4

ok(This) -> boolean()
Types:

This = wxBitmap()
See: isOk/1.

isOk(This) -> boolean()
Types:

This = wxBitmap()
Returns true if bitmap data is present.

saveFile(This, Name, Type) -> boolean()
Types:

This = wxBitmap()
Name = unicode:chardata()
Type = wx:wx_enum()

saveFile(This, Name, Type, Options :: [Option]) -> boolean()
Types:

This = wxBitmap()
Name = unicode:chardata()
Type = wx:wx_enum()
Option = {palette, wxPalette:wxPalette()}

Saves a bitmap in the named file.

Return: true if the operation succeeded, false otherwise.

Remark: Depending on how wxWidgets has been configured, not all formats may be available.

See: loadFile/3

Ericsson AB. All Rights Reserved.: wxErlang | 63

wxBitmap

setDepth(This, Depth) -> ok
Types:

This = wxBitmap()
Depth = integer()

Deprecated: This function is deprecated since version 3.1.2, dimensions and depth can only be set at construction time.

Sets the depth member (does not affect the bitmap data).

setHeight(This, Height) -> ok
Types:

This = wxBitmap()
Height = integer()

Deprecated: This function is deprecated since version 3.1.2, dimensions and depth can only be set at construction time.

Sets the height member (does not affect the bitmap data).

setMask(This, Mask) -> ok
Types:

This = wxBitmap()
Mask = wxMask:wxMask()

Sets the mask for this bitmap.

Remark: The bitmap object owns the mask once this has been called.

Note: A mask can be set also for bitmap with an alpha channel but doing so under wxMSW is not recommended
because performance of drawing such bitmap is not very good.

See: getMask/1, wxMask

setPalette(This, Palette) -> ok
Types:

This = wxBitmap()
Palette = wxPalette:wxPalette()

Sets the associated palette.

(Not implemented under GTK+).

See: wxPalette

setWidth(This, Width) -> ok
Types:

This = wxBitmap()
Width = integer()

Deprecated: This function is deprecated since version 3.1.2, dimensions and depth can only be set at construction time.

Sets the width member (does not affect the bitmap data).

64 | Ericsson AB. All Rights Reserved.: wxErlang

wxBookCtrlBase

wxBookCtrlBase
Erlang module

A book control is a convenient way of displaying multiple pages of information, displayed one page at a time.
wxWidgets has five variants of this control:

This abstract class is the parent of all these book controls, and provides their basic interface. This is a pure virtual
class so you cannot allocate it directly.

See: Overview bookctrl

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxBookCtrlBase

Data Types
wxBookCtrlBase() = wx:wx_object()

Exports

addPage(This, Page, Text) -> boolean()
Types:

This = wxBookCtrlBase()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

addPage(This, Page, Text, Options :: [Option]) -> boolean()
Types:

This = wxBookCtrlBase()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Adds a new page.

The page must have the book control itself as the parent and must not have been added to this control previously.

The call to this function will generate the page changing and page changed events if select is true, but not when
inserting the very first page (as there is no previous page selection to switch from in this case and so it wouldn't make
sense to e.g. veto such event).

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: insertPage/5

insertPage(This, Index, Page, Text) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 65

href
href

wxBookCtrlBase

This = wxBookCtrlBase()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

insertPage(This, Index, Page, Text, Options :: [Option]) ->
 boolean()
Types:

This = wxBookCtrlBase()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Inserts a new page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: addPage/4

deletePage(This, Page) -> boolean()
Types:

This = wxBookCtrlBase()
Page = integer()

Deletes the specified page, and the associated window.

The call to this function generates the page changing events when deleting the currently selected page or a page
preceding it in the index order, but it does not send any events when deleting the last page: while in this case the
selection also changes, it becomes invalid and for compatibility reasons the control never generates events with the
invalid selection index.

removePage(This, Page) -> boolean()
Types:

This = wxBookCtrlBase()
Page = integer()

Deletes the specified page, without deleting the associated window.

See deletePage/2 for a note about the events generated by this function.

deleteAllPages(This) -> boolean()
Types:

This = wxBookCtrlBase()
Deletes all pages.

getPage(This, Page) -> wxWindow:wxWindow()
Types:

66 | Ericsson AB. All Rights Reserved.: wxErlang

wxBookCtrlBase

This = wxBookCtrlBase()
Page = integer()

Returns the window at the given page position.

getPageCount(This) -> integer()
Types:

This = wxBookCtrlBase()
Returns the number of pages in the control.

getCurrentPage(This) -> wxWindow:wxWindow()
Types:

This = wxBookCtrlBase()
Returns the currently selected page or NULL.

advanceSelection(This) -> ok
Types:

This = wxBookCtrlBase()

advanceSelection(This, Options :: [Option]) -> ok
Types:

This = wxBookCtrlBase()
Option = {forward, boolean()}

Cycles through the tabs.

The call to this function generates the page changing events.

setSelection(This, Page) -> integer()
Types:

This = wxBookCtrlBase()
Page = integer()

Sets the selection to the given page, returning the previous selection.

Notice that the call to this function generates the page changing events, use the changeSelection/2 function if
you don't want these events to be generated.

See: getSelection/1

getSelection(This) -> integer()
Types:

This = wxBookCtrlBase()
Returns the currently selected page, or wxNOT_FOUND if none was selected.

Note that this method may return either the previously or newly selected page when
called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so
wxBookCtrlEvent:getSelection/1 should be used instead in this case.

Ericsson AB. All Rights Reserved.: wxErlang | 67

wxBookCtrlBase

changeSelection(This, Page) -> integer()
Types:

This = wxBookCtrlBase()
Page = integer()

Changes the selection to the given page, returning the previous selection.

This function behaves as setSelection/2 but does not generate the page changing events.

See overview_events_prog for more information.

hitTest(This, Pt) -> Result
Types:

Result = {Res :: integer(), Flags :: integer()}
This = wxBookCtrlBase()
Pt = {X :: integer(), Y :: integer()}

Returns the index of the tab at the specified position or wxNOT_FOUND if none.

If flags parameter is non-NULL, the position of the point inside the tab is returned as well.

Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the specified position.

getPageText(This, NPage) -> unicode:charlist()
Types:

This = wxBookCtrlBase()
NPage = integer()

Returns the string for the given page.

setPageText(This, Page, Text) -> boolean()
Types:

This = wxBookCtrlBase()
Page = integer()
Text = unicode:chardata()

Sets the text for the given page.

68 | Ericsson AB. All Rights Reserved.: wxErlang

wxBookCtrlEvent

wxBookCtrlEvent
Erlang module

This class represents the events generated by book controls (wxNotebook, wxListbook, wxChoicebook,
wxTreebook, wxAuiNotebook).

The PAGE_CHANGING events are sent before the current page is changed. It allows the program to examine
the current page (which can be retrieved with getOldSelection/1) and to veto the page change by calling
wxNotifyEvent:veto/1 if, for example, the current values in the controls of the old page are invalid.

The PAGE_CHANGED events are sent after the page has been changed and the program cannot veto it any more, it
just informs it about the page change.

To summarize, if the program is interested in validating the page values before allowing the user to change it, it should
process the PAGE_CHANGING event, otherwise PAGE_CHANGED is probably enough. In any case, it is probably
unnecessary to process both events at once.

See: wxNotebook, wxListbook, wxChoicebook, wxTreebook, wxToolbook, wxAuiNotebook

This class is derived (and can use functions) from: wxNotifyEvent wxCommandEvent wxEvent

wxWidgets docs: wxBookCtrlEvent

Data Types
wxBookCtrlEvent() = wx:wx_object()
wxBookCtrl() =
 #wxBookCtrl{type = wxBookCtrlEvent:wxBookCtrlEventType(),
 nSel = integer(),
 nOldSel = integer()}
wxBookCtrlEventType() =
 command_notebook_page_changed |
 command_notebook_page_changing | choicebook_page_changed |
 choicebook_page_changing | treebook_page_changed |
 treebook_page_changing | toolbook_page_changed |
 toolbook_page_changing | listbook_page_changed |
 listbook_page_changing

Exports

getOldSelection(This) -> integer()
Types:

This = wxBookCtrlEvent()
Returns the page that was selected before the change, wxNOT_FOUND if none was selected.

getSelection(This) -> integer()
Types:

This = wxBookCtrlEvent()
Returns the currently selected page, or wxNOT_FOUND if none was selected.

Note: under Windows, getSelection/1 will return the same value as getOldSelection/1 when called from
the EVT_BOOKCTRL_PAGE_CHANGING handler and not the page which is going to be selected.

Ericsson AB. All Rights Reserved.: wxErlang | 69

href

wxBookCtrlEvent

setOldSelection(This, Page) -> ok
Types:

This = wxBookCtrlEvent()
Page = integer()

Sets the id of the page selected before the change.

setSelection(This, Page) -> ok
Types:

This = wxBookCtrlEvent()
Page = integer()

Sets the selection member variable.

70 | Ericsson AB. All Rights Reserved.: wxErlang

wxBoxSizer

wxBoxSizer
Erlang module

The basic idea behind a box sizer is that windows will most often be laid out in rather simple basic geometry, typically
in a row or a column or several hierarchies of either.

For more information, please see overview_sizer_box.

See: wxSizer, Overview sizer

This class is derived (and can use functions) from: wxSizer

wxWidgets docs: wxBoxSizer

Data Types
wxBoxSizer() = wx:wx_object()

Exports

new(Orient) -> wxBoxSizer()
Types:

Orient = integer()
Constructor for a wxBoxSizer.

orient may be either of wxVERTICAL or wxHORIZONTAL for creating either a column sizer or a row sizer.

getOrientation(This) -> integer()
Types:

This = wxBoxSizer()
Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

destroy(This :: wxBoxSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 71

href
href

wxBrush

wxBrush
Erlang module

A brush is a drawing tool for filling in areas. It is used for painting the background of rectangles, ellipses, etc. It has
a colour and a style.

On a monochrome display, wxWidgets shows all brushes as white unless the colour is really black.

Do not initialize objects on the stack before the program commences, since other required structures may not have
been set up yet. Instead, define global pointers to objects and create them in wxApp::OnInit (not implemented
in wx) or when required.

An application may wish to create brushes with different characteristics dynamically, and there is the consequent
danger that a large number of duplicate brushes will be created. Therefore an application may wish to get
a pointer to a brush by using the global list of brushes ?wxTheBrushList, and calling the member function
wxBrushList::FindOrCreateBrush() (not implemented in wx).

This class uses reference counting and copy-on-write internally so that assignments between two instances of this class
are very cheap. You can therefore use actual objects instead of pointers without efficiency problems. If an instance
of this class is changed it will create its own data internally so that other instances, which previously shared the data
using the reference counting, are not affected.

Predefined objects (include wx.hrl):

See: wxBrushList (not implemented in wx), wxDC, wxDC:setBrush/2

wxWidgets docs: wxBrush

Data Types
wxBrush() = wx:wx_object()

Exports

new() -> wxBrush()
Default constructor.

The brush will be uninitialised, and wxBrush:isOk/1 will return false.

new(Colour) -> wxBrush()
new(Brush) -> wxBrush()
Types:

Brush = wxBrush:wxBrush() | wxBitmap:wxBitmap()
Copy constructor, uses reference counting.

new(Colour, Options :: [Option]) -> wxBrush()
Types:

Colour = wx:wx_colour()
Option = {style, wx:wx_enum()}

Constructs a brush from a colour object and style.

72 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxBrush

destroy(This :: wxBrush()) -> ok
Destructor.

See overview_refcount_destruct for more info.

Remark: Although all remaining brushes are deleted when the application exits, the application should try to clean up
all brushes itself. This is because wxWidgets cannot know if a pointer to the brush object is stored in an application
data structure, and there is a risk of double deletion.

getColour(This) -> wx:wx_colour4()
Types:

This = wxBrush()
Returns a reference to the brush colour.

See: setColour/4

getStipple(This) -> wxBitmap:wxBitmap()
Types:

This = wxBrush()
Gets a pointer to the stipple bitmap.

If the brush does not have a wxBRUSHSTYLE_STIPPLE style, this bitmap may be non-NULL but uninitialised (i.e.
wxBitmap:isOk/1 returns false).

See: setStipple/2

getStyle(This) -> wx:wx_enum()
Types:

This = wxBrush()
Returns the brush style, one of the ?wxBrushStyle values.

See: setStyle/2, setColour/4, setStipple/2

isHatch(This) -> boolean()
Types:

This = wxBrush()
Returns true if the style of the brush is any of hatched fills.

See: getStyle/1

isOk(This) -> boolean()
Types:

This = wxBrush()
Returns true if the brush is initialised.

Notice that an uninitialized brush object can't be queried for any brush properties and all calls to the accessor methods
on it will result in an assert failure.

setColour(This, Colour) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 73

wxBrush

This = wxBrush()
Colour = wx:wx_colour()

Sets the brush colour using red, green and blue values.

See: getColour/1

setColour(This, Red, Green, Blue) -> ok
Types:

This = wxBrush()
Red = Green = Blue = integer()

setStipple(This, Bitmap) -> ok
Types:

This = wxBrush()
Bitmap = wxBitmap:wxBitmap()

Sets the stipple bitmap.

Remark: The style will be set to wxBRUSHSTYLE_STIPPLE, unless the bitmap has a mask associated to it, in which
case the style will be set to wxBRUSHSTYLE_STIPPLE_MASK_OPAQUE.

See: wxBitmap

setStyle(This, Style) -> ok
Types:

This = wxBrush()
Style = wx:wx_enum()

Sets the brush style.

See: getStyle/1

74 | Ericsson AB. All Rights Reserved.: wxErlang

wxBufferedDC

wxBufferedDC
Erlang module

This class provides a simple way to avoid flicker: when drawing on it, everything is in fact first drawn on an in-
memory buffer (a wxBitmap) and then copied to the screen, using the associated wxDC, only once, when this
object is destroyed. wxBufferedDC itself is typically associated with wxClientDC, if you want to use it in your
EVT_PAINT handler, you should look at wxBufferedPaintDC instead.

When used like this, a valid DC must be specified in the constructor while the buffer bitmap doesn't have to be
explicitly provided, by default this class will allocate the bitmap of required size itself. However using a dedicated
bitmap can speed up the redrawing process by eliminating the repeated creation and destruction of a possibly big
bitmap. Otherwise, wxBufferedDC can be used in the same way as any other device context.

Another possible use for wxBufferedDC is to use it to maintain a backing store for the window contents. In this
case, the associated DC may be NULL but a valid backing store bitmap should be specified.

Finally, please note that GTK+ 2.0 as well as macOS provide double buffering themselves natively. You can
either use wxWindow:isDoubleBuffered/1 to determine whether you need to use buffering or not, or use
wxAutoBufferedPaintDC (not implemented in wx) to avoid needless double buffering on the systems which
already do it automatically.

See: wxDC, wxMemoryDC, wxBufferedPaintDC, wxAutoBufferedPaintDC (not implemented in wx)

This class is derived (and can use functions) from: wxMemoryDC wxDC

wxWidgets docs: wxBufferedDC

Data Types
wxBufferedDC() = wx:wx_object()

Exports

new() -> wxBufferedDC()
Default constructor.

You must call one of the init/4 methods later in order to use the device context.

new(Dc) -> wxBufferedDC()
Types:

Dc = wxDC:wxDC()

new(Dc, Area) -> wxBufferedDC()
new(Dc, Area :: [Option]) -> wxBufferedDC()
Types:

Dc = wxDC:wxDC()
Option = {buffer, wxBitmap:wxBitmap()} | {style, integer()}

Creates a buffer for the provided dc.

init/4 must not be called when using this constructor.

Ericsson AB. All Rights Reserved.: wxErlang | 75

href

wxBufferedDC

new(Dc, Area, Options :: [Option]) -> wxBufferedDC()
Types:

Dc = wxDC:wxDC()
Area = {W :: integer(), H :: integer()}
Option = {style, integer()}

Creates a buffer for the provided dc.

init/4 must not be called when using this constructor.

destroy(This :: wxBufferedDC()) -> ok
Copies everything drawn on the DC so far to the underlying DC associated with this object, if any.

init(This, Dc) -> ok
Types:

This = wxBufferedDC()
Dc = wxDC:wxDC()

init(This, Dc, Area) -> ok
init(This, Dc, Area :: [Option]) -> ok
Types:

This = wxBufferedDC()
Dc = wxDC:wxDC()
Option = {buffer, wxBitmap:wxBitmap()} | {style, integer()}

init(This, Dc, Area, Options :: [Option]) -> ok
Types:

This = wxBufferedDC()
Dc = wxDC:wxDC()
Area = {W :: integer(), H :: integer()}
Option = {style, integer()}

Initializes the object created using the default constructor.

Please see the constructors for parameter details.

76 | Ericsson AB. All Rights Reserved.: wxErlang

wxBufferedPaintDC

wxBufferedPaintDC
Erlang module

This is a subclass of wxBufferedDC which can be used inside of an EVT_PAINT() event
handler to achieve double-buffered drawing. Just use this class instead of wxPaintDC and make sure
wxWindow:setBackgroundStyle/2 is called with wxBG_STYLE_PAINT somewhere in the class
initialization code, and that's all you have to do to (mostly) avoid flicker. The only thing to watch out for is that if
you are using this class together with wxScrolled (not implemented in wx), you probably do not want to call
wxScrolledWindow:prepareDC/2 on it as it already does this internally for the real underlying wxPaintDC.

See: wxDC, wxBufferedDC, wxAutoBufferedPaintDC (not implemented in wx), wxPaintDC

This class is derived (and can use functions) from: wxBufferedDC wxMemoryDC wxDC

wxWidgets docs: wxBufferedPaintDC

Data Types
wxBufferedPaintDC() = wx:wx_object()

Exports

new(Window) -> wxBufferedPaintDC()
Types:

Window = wxWindow:wxWindow()

new(Window, Buffer) -> wxBufferedPaintDC()
new(Window, Buffer :: [Option]) -> wxBufferedPaintDC()
Types:

Window = wxWindow:wxWindow()
Option = {style, integer()}

new(Window, Buffer, Options :: [Option]) -> wxBufferedPaintDC()
Types:

Window = wxWindow:wxWindow()
Buffer = wxBitmap:wxBitmap()
Option = {style, integer()}

As with wxBufferedDC, you may either provide the bitmap to be used for buffering or let this object create one
internally (in the latter case, the size of the client part of the window is used).

Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the client area of the window is
buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer bitmap covers the virtual area.

destroy(This :: wxBufferedPaintDC()) -> ok
Copies everything drawn on the DC so far to the window associated with this object, using a wxPaintDC.

Ericsson AB. All Rights Reserved.: wxErlang | 77

href

wxButton

wxButton
Erlang module

A button is a control that contains a text string, and is one of the most common elements of a GUI.

It may be placed on a wxDialog or on a wxPanel panel, or indeed on almost any other window.

By default, i.e. if none of the alignment styles are specified, the label is centered both horizontally and vertically. If the
button has both a label and a bitmap, the alignment styles above specify the location of the rectangle combining both
the label and the bitmap and the bitmap position set with wxButton::SetBitmapPosition() (not implemented
in wx) defines the relative position of the bitmap with respect to the label (however currently non-default alignment
combinations are not implemented on all platforms).

Since version 2.9.1 wxButton supports showing both text and an image (currently only when using wxMSW,
wxGTK or wxOSX/Cocoa ports), see SetBitmap() (not implemented in wx) and setBitmapLabel/2,
setBitmapDisabled/2 &c methods. In the previous wxWidgets versions this functionality was only available in
(the now trivial) wxBitmapButton class which was only capable of showing an image without text.

A button may have either a single image for all states or different images for the following states (different images are
not currently supported under macOS where the normal image is used for all states):

All of the bitmaps must be of the same size and the normal bitmap must be set first (to a valid bitmap), before setting
any other ones. Also, if the size of the bitmaps is changed later, you need to change the size of the normal bitmap
before setting any other bitmaps with the new size (and you do need to reset all of them as their original values can
be lost when the normal bitmap size changes).

The position of the image inside the button be configured using SetBitmapPosition() (not implemented in wx).
By default the image is on the left of the text.

Please also notice that GTK+ uses a global setting called gtk-button-images to determine if the images should
be shown in the buttons at all. If it is off (which is the case in e.g. Gnome 2.28 by default), no images will be shown,
consistently with the native behaviour.

Styles

This class supports the following styles:

See: wxBitmapButton

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxButton

Events
Event types emitted from this class: command_button_clicked

Data Types
wxButton() = wx:wx_object()

Exports

new() -> wxButton()
Default ctor.

78 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxButton

new(Parent, Id) -> wxButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {label, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a button.

The preferred way to create standard buttons is to use default value of label. If no label is supplied and id is one of
standard IDs from this list, a standard label will be used. In other words, if you use a predefined wxID_XXX constant,
just omit the label completely rather than specifying it. In particular, help buttons (the ones with id of wxID_HELP)
under macOS can't display any label at all and while wxButton will detect if the standard "Help" label is used and
ignore it, using any other label will prevent the button from correctly appearing as a help button and so should be
avoided.

In addition to that, the button will be decorated with stock icons under GTK+ 2.

See: create/4, wxValidator (not implemented in wx)

create(This, Parent, Id) -> boolean()
Types:

This = wxButton()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxButton()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {label, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Button creation function for two-step creation.

For more details, see new/3.

Ericsson AB. All Rights Reserved.: wxErlang | 79

wxButton

getDefaultSize() -> {W :: integer(), H :: integer()}
Returns the default size for the buttons.

It is advised to make all the dialog buttons of the same size and this function allows retrieving the (platform, and
current font dependent) size which should be the best suited for this.

The optional win argument is new since wxWidgets 3.1.3 and allows to get a per-monitor DPI specific size.

getDefaultSize(Win) -> {W :: integer(), H :: integer()}
Types:

Win = wxWindow:wxWindow()

setDefault(This) -> wxWindow:wxWindow()
Types:

This = wxButton()
This sets the button to be the default item in its top-level window (e.g.

the panel or the dialog box containing it).

As normal, pressing return causes the default button to be depressed when the return key is pressed.

See also wxWindow:setFocus/1 which sets the keyboard focus for windows and text panel items, and
wxTopLevelWindow::SetDefaultItem() (not implemented in wx).

Remark: Under Windows, only dialog box buttons respond to this function.

Return: the old default item (possibly NULL)

setLabel(This, Label) -> ok
Types:

This = wxButton()
Label = unicode:chardata()

Sets the string label for the button.

getBitmapDisabled(This) -> wxBitmap:wxBitmap()
Types:

This = wxButton()
Returns the bitmap for the disabled state, which may be invalid.

See: setBitmapDisabled/2

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

getBitmapFocus(This) -> wxBitmap:wxBitmap()
Types:

This = wxButton()
Returns the bitmap for the focused state, which may be invalid.

See: setBitmapFocus/2

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

80 | Ericsson AB. All Rights Reserved.: wxErlang

wxButton

getBitmapLabel(This) -> wxBitmap:wxBitmap()
Types:

This = wxButton()
Returns the bitmap for the normal state.

This is exactly the same as GetBitmap() (not implemented in wx) but uses a name backwards-compatible with
wxBitmapButton.

See: SetBitmap() (not implemented in wx), setBitmapLabel/2

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

setBitmapDisabled(This, Bitmap) -> ok
Types:

This = wxButton()
Bitmap = wxBitmap:wxBitmap()

Sets the bitmap for the disabled button appearance.

If bitmap is invalid, the disabled bitmap is set to the automatically generated greyed out version of the normal bitmap,
i.e. the same bitmap as is used by default if this method is not called at all. Use SetBitmap() (not implemented in
wx) with an invalid bitmap to remove the bitmap completely (for all states).

See: getBitmapDisabled/1, setBitmapLabel/2, SetBitmapPressed() (not implemented in wx),
setBitmapFocus/2

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

setBitmapFocus(This, Bitmap) -> ok
Types:

This = wxButton()
Bitmap = wxBitmap:wxBitmap()

Sets the bitmap for the button appearance when it has the keyboard focus.

If bitmap is invalid, the normal bitmap will be used in the focused state.

See: getBitmapFocus/1, setBitmapLabel/2, SetBitmapPressed() (not implemented in wx),
setBitmapDisabled/2

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

setBitmapLabel(This, Bitmap) -> ok
Types:

This = wxButton()
Bitmap = wxBitmap:wxBitmap()

Sets the bitmap label for the button.

Remark: This is the bitmap used for the unselected state, and for all other states if no other bitmaps are provided.

See: SetBitmap() (not implemented in wx), getBitmapLabel/1

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

destroy(This :: wxButton()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 81

wxCalendarCtrl

wxCalendarCtrl
Erlang module

The calendar control allows the user to pick a date. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Return> or double clicking it.

Generic calendar has advanced possibilities for the customization of its display, described below. If you want to use
these possibilities on every platform, use wxGenericCalendarCtrl instead of wxCalendarCtrl.

All global settings (such as colours and fonts used) can, of course, be changed. But also, the display style for each day
in the month can be set independently using wxCalendarDateAttr class.

An item without custom attributes is drawn with the default colours and font and without border, but setting custom
attributes with setAttr/3 allows modifying its appearance. Just create a custom attribute object and set it for the
day you want to be displayed specially (note that the control will take ownership of the pointer, i.e. it will delete it
itself). A day may be marked as being a holiday, even if it is not recognized as one by wx_datetime() using the
wxCalendarDateAttr:setHoliday/2 method.

As the attributes are specified for each day, they may change when the month is changed, so you will often want to
update them in EVT_CALENDAR_PAGE_CHANGED event handler.

If neither the wxCAL_SUNDAY_FIRST or wxCAL_MONDAY_FIRST style is given, the first day of the week is
determined from operating system's settings, if possible. The native wxGTK calendar chooses the first weekday based
on locale, and these styles have no effect on it.

Styles

This class supports the following styles:

Note: Changing the selected date will trigger an EVT_CALENDAR_DAY, MONTH or YEAR event as well as an
EVT_CALENDAR_SEL_CHANGED event.

See: Examples, wxCalendarDateAttr, wxCalendarEvent, wxDatePickerCtrl

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxCalendarCtrl

Events
Event types emitted from this class: calendar_sel_changed, calendar_weekday_clicked

Data Types
wxCalendarCtrl() = wx:wx_object()

Exports

new() -> wxCalendarCtrl()
Default constructor.

new(Parent, Id) -> wxCalendarCtrl()
Types:

82 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxCalendarCtrl

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxCalendarCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Does the same as create/4 method.

create(This, Parent, Id) -> boolean()
Types:

This = wxCalendarCtrl()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxCalendarCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creates the control.

See wxWindow:new/3 for the meaning of the parameters and the control overview for the possible styles.

destroy(This :: wxCalendarCtrl()) -> ok
Destroys the control.

setDate(This, Date) -> boolean()
Types:

This = wxCalendarCtrl()
Date = wx:wx_datetime()

Sets the current date.

The date parameter must be valid and in the currently valid range as set by SetDateRange() (not implemented
in wx), otherwise the current date is not changed and the function returns false and, additionally, triggers an assertion
failure if the date is invalid.

Ericsson AB. All Rights Reserved.: wxErlang | 83

wxCalendarCtrl

getDate(This) -> wx:wx_datetime()
Types:

This = wxCalendarCtrl()
Gets the currently selected date.

enableYearChange(This) -> ok
Types:

This = wxCalendarCtrl()

enableYearChange(This, Options :: [Option]) -> ok
Types:

This = wxCalendarCtrl()
Option = {enable, boolean()}

Deprecated:

This function should be used instead of changing wxCAL_NO_YEAR_CHANGE style bit directly. It allows or disallows
the user to change the year interactively. Only in generic wxCalendarCtrl.

enableMonthChange(This) -> boolean()
Types:

This = wxCalendarCtrl()

enableMonthChange(This, Options :: [Option]) -> boolean()
Types:

This = wxCalendarCtrl()
Option = {enable, boolean()}

This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style bit.

It allows or disallows the user to change the month interactively. Note that if the month cannot be changed, the year
cannot be changed neither.

Return: true if the value of this option really changed or false if it was already set to the requested value.

enableHolidayDisplay(This) -> ok
Types:

This = wxCalendarCtrl()

enableHolidayDisplay(This, Options :: [Option]) -> ok
Types:

This = wxCalendarCtrl()
Option = {display, boolean()}

This function should be used instead of changing wxCAL_SHOW_HOLIDAYS style bit directly.

It enables or disables the special highlighting of the holidays.

setHeaderColours(This, ColFg, ColBg) -> ok
Types:

84 | Ericsson AB. All Rights Reserved.: wxErlang

wxCalendarCtrl

This = wxCalendarCtrl()
ColFg = ColBg = wx:wx_colour()

Set the colours used for painting the weekdays at the top of the control.

This method is currently only implemented in generic wxCalendarCtrl and does nothing in the native versions.

getHeaderColourFg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Gets the foreground colour of the header part of the calendar window.

This method is currently only implemented in generic wxCalendarCtrl and always returns wxNullColour in
the native versions.

See: setHeaderColours/3

getHeaderColourBg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Gets the background colour of the header part of the calendar window.

This method is currently only implemented in generic wxCalendarCtrl and always returns wxNullColour in
the native versions.

See: setHeaderColours/3

setHighlightColours(This, ColFg, ColBg) -> ok
Types:

This = wxCalendarCtrl()
ColFg = ColBg = wx:wx_colour()

Set the colours to be used for highlighting the currently selected date.

This method is currently only implemented in generic wxCalendarCtrl and does nothing in the native versions.

getHighlightColourFg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Gets the foreground highlight colour.

Only in generic wxCalendarCtrl.

This method is currently only implemented in generic wxCalendarCtrl and always returns wxNullColour in
the native versions.

See: setHighlightColours/3

getHighlightColourBg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Gets the background highlight colour.

Ericsson AB. All Rights Reserved.: wxErlang | 85

wxCalendarCtrl

Only in generic wxCalendarCtrl.

This method is currently only implemented in generic wxCalendarCtrl and always returns wxNullColour in
the native versions.

See: setHighlightColours/3

setHolidayColours(This, ColFg, ColBg) -> ok
Types:

This = wxCalendarCtrl()
ColFg = ColBg = wx:wx_colour()

Sets the colours to be used for the holidays highlighting.

This method is only implemented in the generic version of the control and does nothing in the native ones. It should
also only be called if the window style includes wxCAL_SHOW_HOLIDAYS flag or enableHolidayDisplay/2
had been called.

getHolidayColourFg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Return the foreground colour currently used for holiday highlighting.

Only useful with generic wxCalendarCtrl as native versions currently don't support holidays display at all and
always return wxNullColour.

See: setHolidayColours/3

getHolidayColourBg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Return the background colour currently used for holiday highlighting.

Only useful with generic wxCalendarCtrl as native versions currently don't support holidays display at all and
always return wxNullColour.

See: setHolidayColours/3

getAttr(This, Day) -> wxCalendarDateAttr:wxCalendarDateAttr()
Types:

This = wxCalendarCtrl()
Day = integer()

Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL. Only in generic wxCalendarCtrl.

setAttr(This, Day, Attr) -> ok
Types:

86 | Ericsson AB. All Rights Reserved.: wxErlang

wxCalendarCtrl

This = wxCalendarCtrl()
Day = integer()
Attr = wxCalendarDateAttr:wxCalendarDateAttr()

Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared. Only in generic wxCalendarCtrl.

setHoliday(This, Day) -> ok
Types:

This = wxCalendarCtrl()
Day = integer()

Marks the specified day as being a holiday in the current month.

This method is only implemented in the generic version of the control and does nothing in the native ones.

resetAttr(This, Day) -> ok
Types:

This = wxCalendarCtrl()
Day = integer()

Clears any attributes associated with the given day (in the range 1...31).

Only in generic wxCalendarCtrl.

hitTest(This, Pos) -> Result
Types:

Result =
 {Res :: wx:wx_enum(),
 Date :: wx:wx_datetime(),
 Wd :: wx:wx_enum()}
This = wxCalendarCtrl()
Pos = {X :: integer(), Y :: integer()}

Returns one of wxCalendarHitTestResult constants and fills either date or wd pointer with the corresponding value
depending on the hit test code.

Not implemented in wxGTK currently.

Ericsson AB. All Rights Reserved.: wxErlang | 87

wxCalendarDateAttr

wxCalendarDateAttr
Erlang module

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class are used with
wxCalendarCtrl.

See: wxCalendarCtrl

wxWidgets docs: wxCalendarDateAttr

Data Types
wxCalendarDateAttr() = wx:wx_object()

Exports

new() -> wxCalendarDateAttr()

new(Border) -> wxCalendarDateAttr()
new(Border :: [Option]) -> wxCalendarDateAttr()
Types:

Option =
 {colText, wx:wx_colour()} |
 {colBack, wx:wx_colour()} |
 {colBorder, wx:wx_colour()} |
 {font, wxFont:wxFont()} |
 {border, wx:wx_enum()}

Constructor for specifying all wxCalendarDateAttr properties.

new(Border, Options :: [Option]) -> wxCalendarDateAttr()
Types:

Border = wx:wx_enum()
Option = {colBorder, wx:wx_colour()}

Constructor using default properties except the given border.

setTextColour(This, ColText) -> ok
Types:

This = wxCalendarDateAttr()
ColText = wx:wx_colour()

Sets the text (foreground) colour to use.

setBackgroundColour(This, ColBack) -> ok
Types:

This = wxCalendarDateAttr()
ColBack = wx:wx_colour()

Sets the text background colour to use.

88 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCalendarDateAttr

setBorderColour(This, Col) -> ok
Types:

This = wxCalendarDateAttr()
Col = wx:wx_colour()

Sets the border colour to use.

setFont(This, Font) -> ok
Types:

This = wxCalendarDateAttr()
Font = wxFont:wxFont()

Sets the font to use.

setBorder(This, Border) -> ok
Types:

This = wxCalendarDateAttr()
Border = wx:wx_enum()

Sets the border to use.

setHoliday(This, Holiday) -> ok
Types:

This = wxCalendarDateAttr()
Holiday = boolean()

If holiday is true, this calendar day will be displayed as a holiday.

hasTextColour(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returns true if a non-default text foreground colour is set.

hasBackgroundColour(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returns true if a non-default text background colour is set.

hasBorderColour(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returns true if a non-default border colour is set.

hasFont(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returns true if a non-default font is set.

Ericsson AB. All Rights Reserved.: wxErlang | 89

wxCalendarDateAttr

hasBorder(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returns true if a non-default (i.e. any) border is set.

isHoliday(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returns true if this calendar day is displayed as a holiday.

getTextColour(This) -> wx:wx_colour4()
Types:

This = wxCalendarDateAttr()
Returns the text colour set for the calendar date.

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxCalendarDateAttr()
Returns the background colour set for the calendar date.

getBorderColour(This) -> wx:wx_colour4()
Types:

This = wxCalendarDateAttr()
Returns the border colour set for the calendar date.

getFont(This) -> wxFont:wxFont()
Types:

This = wxCalendarDateAttr()
Returns the font set for the calendar date.

getBorder(This) -> wx:wx_enum()
Types:

This = wxCalendarDateAttr()
Returns the border set for the calendar date.

destroy(This :: wxCalendarDateAttr()) -> ok
Destroys the object.

90 | Ericsson AB. All Rights Reserved.: wxErlang

wxCalendarEvent

wxCalendarEvent
Erlang module

The wxCalendarEvent class is used together with wxCalendarCtrl.

See: wxCalendarCtrl

This class is derived (and can use functions) from: wxDateEvent wxCommandEvent wxEvent

wxWidgets docs: wxCalendarEvent

Data Types
wxCalendarEvent() = wx:wx_object()
wxCalendar() =
 #wxCalendar{type = wxCalendarEvent:wxCalendarEventType(),
 wday = wx:wx_enum(),
 date = wx:wx_datetime()}
wxCalendarEventType() =
 calendar_sel_changed | calendar_day_changed |
 calendar_month_changed | calendar_year_changed |
 calendar_doubleclicked | calendar_weekday_clicked

Exports

getWeekDay(This) -> wx:wx_enum()
Types:

This = wxCalendarEvent()
Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED handler.

It doesn't make sense to call this function in other handlers.

getDate(This) -> wx:wx_datetime()
Types:

This = wxCalendarEvent()
Returns the date.

Ericsson AB. All Rights Reserved.: wxErlang | 91

href

wxCaret

wxCaret
Erlang module

A caret is a blinking cursor showing the position where the typed text will appear. Text controls usually have their
own caret but wxCaret provides a way to use a caret in other windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be possible to specify a bitmap to
be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using wxWindow:getCaret/1.
The same caret can't be reused in two different windows.

wxWidgets docs: wxCaret

Data Types
wxCaret() = wx:wx_object()

Exports

new(Window, Size) -> wxCaret()
Types:

Window = wxWindow:wxWindow()
Size = {W :: integer(), H :: integer()}

new(Window, Width, Height) -> wxCaret()
Types:

Window = wxWindow:wxWindow()
Width = Height = integer()

Creates a caret with the given size (in pixels) and associates it with the window.

create(This, Window, Size) -> boolean()
Types:

This = wxCaret()
Window = wxWindow:wxWindow()
Size = {W :: integer(), H :: integer()}

create(This, Window, Width, Height) -> boolean()
Types:

This = wxCaret()
Window = wxWindow:wxWindow()
Width = Height = integer()

Creates a caret with the given size (in pixels) and associates it with the window (same as the equivalent constructors).

92 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCaret

getBlinkTime() -> integer()
Returns the blink time which is measured in milliseconds and is the time elapsed between 2 inversions of the caret
(blink time of the caret is the same for all carets, so this functions is static).

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxCaret()

getSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxCaret()

getWindow(This) -> wxWindow:wxWindow()
Types:

This = wxCaret()
Get the window the caret is associated with.

hide(This) -> ok
Types:

This = wxCaret()
Hides the caret, same as Show(false).

isOk(This) -> boolean()
Types:

This = wxCaret()
Returns true if the caret was created successfully.

isVisible(This) -> boolean()
Types:

This = wxCaret()
Returns true if the caret is visible and false if it is permanently hidden (if it is blinking and not shown currently but
will be after the next blink, this method still returns true).

move(This, Pt) -> ok
Types:

This = wxCaret()
Pt = {X :: integer(), Y :: integer()}

move(This, X, Y) -> ok
Types:

This = wxCaret()
X = Y = integer()

Move the caret to given position (in logical coordinates).

Ericsson AB. All Rights Reserved.: wxErlang | 93

wxCaret

setBlinkTime(Milliseconds) -> ok
Types:

Milliseconds = integer()
Sets the blink time for all the carets.

Warning: Under Windows, this function will change the blink time for all carets permanently (until the next time it
is called), even for carets in other applications.

See: getBlinkTime/0

setSize(This, Size) -> ok
Types:

This = wxCaret()
Size = {W :: integer(), H :: integer()}

setSize(This, Width, Height) -> ok
Types:

This = wxCaret()
Width = Height = integer()

Changes the size of the caret.

show(This) -> ok
Types:

This = wxCaret()

show(This, Options :: [Option]) -> ok
Types:

This = wxCaret()
Option = {show, boolean()}

Shows or hides the caret.

Notice that if the caret was hidden N times, it must be shown N times as well to reappear on the screen.

destroy(This :: wxCaret()) -> ok
Destroys the object.

94 | Ericsson AB. All Rights Reserved.: wxErlang

wxCheckBox

wxCheckBox
Erlang module

A checkbox is a labelled box which by default is either on (checkmark is visible) or off (no checkmark). Optionally
(when the wxCHK_3STATE style flag is set) it can have a third state, called the mixed or undetermined state. Often
this is used as a "Does Not Apply" state.

Styles

This class supports the following styles:

See: wxRadioButton, wxCommandEvent

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxCheckBox

Events
Event types emitted from this class: command_checkbox_clicked

Data Types
wxCheckBox() = wx:wx_object()

Exports

new() -> wxCheckBox()
Default constructor.

See: create/5, wxValidator (not implemented in wx)

new(Parent, Id, Label) -> wxCheckBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

new(Parent, Id, Label, Options :: [Option]) -> wxCheckBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a checkbox.

See: create/5, wxValidator (not implemented in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 95

href

wxCheckBox

destroy(This :: wxCheckBox()) -> ok
Destructor, destroying the checkbox.

create(This, Parent, Id, Label) -> boolean()
Types:

This = wxCheckBox()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

create(This, Parent, Id, Label, Options :: [Option]) -> boolean()
Types:

This = wxCheckBox()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates the checkbox for two-step construction.

See new/4 for details.

getValue(This) -> boolean()
Types:

This = wxCheckBox()
Gets the state of a 2-state checkbox.

Return: Returns true if it is checked, false otherwise.

get3StateValue(This) -> wx:wx_enum()
Types:

This = wxCheckBox()
Gets the state of a 3-state checkbox.

Asserts when the function is used with a 2-state checkbox.

is3rdStateAllowedForUser(This) -> boolean()
Types:

This = wxCheckBox()
Returns whether or not the user can set the checkbox to the third state.

Return: true if the user can set the third state of this checkbox, false if it can only be set programmatically or if it's
a 2-state checkbox.

96 | Ericsson AB. All Rights Reserved.: wxErlang

wxCheckBox

is3State(This) -> boolean()
Types:

This = wxCheckBox()
Returns whether or not the checkbox is a 3-state checkbox.

Return: true if this checkbox is a 3-state checkbox, false if it's a 2-state checkbox.

isChecked(This) -> boolean()
Types:

This = wxCheckBox()
This is just a maybe more readable synonym for getValue/1: just as the latter, it returns true if the checkbox is
checked and false otherwise.

setValue(This, State) -> ok
Types:

This = wxCheckBox()
State = boolean()

Sets the checkbox to the given state.

This does not cause a wxEVT_CHECKBOX event to get emitted.

set3StateValue(This, State) -> ok
Types:

This = wxCheckBox()
State = wx:wx_enum()

Sets the checkbox to the given state.

This does not cause a wxEVT_CHECKBOX event to get emitted.

Asserts when the checkbox is a 2-state checkbox and setting the state to wxCHK_UNDETERMINED.

Ericsson AB. All Rights Reserved.: wxErlang | 97

wxCheckListBox

wxCheckListBox
Erlang module

A wxCheckListBox is like a wxListBox, but allows items to be checked or unchecked.

When using this class under Windows wxWidgets must be compiled with wxUSE_OWNER_DRAWN set to 1.

See: wxListBox, wxChoice, wxComboBox, wxListCtrl, wxCommandEvent

This class is derived (and can use functions) from: wxListBox wxControlWithItems wxControl wxWindow
wxEvtHandler

wxWidgets docs: wxCheckListBox

Events
Event types emitted from this class: command_checklistbox_toggled

Data Types
wxCheckListBox() = wx:wx_object()

Exports

new() -> wxCheckListBox()
Default constructor.

new(Parent, Id) -> wxCheckListBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxCheckListBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a list box.

destroy(This :: wxCheckListBox()) -> ok
Destructor, destroying the list box.

check(This, Item) -> ok
Types:

98 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCheckListBox

This = wxCheckListBox()
Item = integer()

check(This, Item, Options :: [Option]) -> ok
Types:

This = wxCheckListBox()
Item = integer()
Option = {check, boolean()}

Checks the given item.

Note that calling this method does not result in a wxEVT_CHECKLISTBOX event being emitted.

isChecked(This, Item) -> boolean()
Types:

This = wxCheckListBox()
Item = integer()

Returns true if the given item is checked, false otherwise.

Ericsson AB. All Rights Reserved.: wxErlang | 99

wxChildFocusEvent

wxChildFocusEvent
Erlang module

A child focus event is sent to a (parent-)window when one of its child windows gains focus, so that the window could
restore the focus back to its corresponding child if it loses it now and regains later.

Notice that child window is the direct child of the window receiving event. Use wxWindow:findFocus/0 to
retrieve the window which is actually getting focus.

See: Overview events

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxChildFocusEvent

Events
Use wxEvtHandler:connect/3 with wxChildFocusEventType to subscribe to events of this type.

Data Types
wxChildFocusEvent() = wx:wx_object()
wxChildFocus() =
 #wxChildFocus{type =
 wxChildFocusEvent:wxChildFocusEventType()}
wxChildFocusEventType() = child_focus

Exports

getWindow(This) -> wxWindow:wxWindow()
Types:

This = wxChildFocusEvent()
Returns the direct child which receives the focus, or a (grand-)parent of the control receiving the focus.

To get the actually focused control use wxWindow:findFocus/0.

100 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxChoicebook

wxChoicebook
Erlang module

wxChoicebook is a class similar to wxNotebook, but uses a wxChoice control to show the labels instead of
the tabs.

For usage documentation of this class, please refer to the base abstract class wxBookCtrl. You can also use the
page_samples_notebook to see wxChoicebook in action.

wxChoicebook allows the use of wxBookCtrlBase::GetControlSizer(), allowing a program to add other controls
next to the choice control. This is particularly useful when screen space is restricted, as it often is when
wxChoicebook is being employed.

Styles

This class supports the following styles:

See: Overview bookctrl, wxNotebook, Examples

This class is derived (and can use functions) from: wxBookCtrlBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxChoicebook

Events
Event types emitted from this class: choicebook_page_changed, choicebook_page_changing

Data Types
wxChoicebook() = wx:wx_object()

Exports

new() -> wxChoicebook()
Constructs a choicebook control.

new(Parent, Id) -> wxChoicebook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxChoicebook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

addPage(This, Page, Text) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 101

href
href
href

wxChoicebook

This = wxChoicebook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

addPage(This, Page, Text, Options :: [Option]) -> boolean()
Types:

This = wxChoicebook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Adds a new page.

The page must have the book control itself as the parent and must not have been added to this control previously.

The call to this function will generate the page changing and page changed events if select is true, but not when
inserting the very first page (as there is no previous page selection to switch from in this case and so it wouldn't make
sense to e.g. veto such event).

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: insertPage/5

advanceSelection(This) -> ok
Types:

This = wxChoicebook()

advanceSelection(This, Options :: [Option]) -> ok
Types:

This = wxChoicebook()
Option = {forward, boolean()}

Cycles through the tabs.

The call to this function generates the page changing events.

assignImageList(This, ImageList) -> ok
Types:

This = wxChoicebook()
ImageList = wxImageList:wxImageList()

Sets the image list for the page control and takes ownership of the list.

See: wxImageList, setImageList/2

create(This, Parent, Id) -> boolean()
Types:

102 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoicebook

This = wxChoicebook()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxChoicebook()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Create the choicebook control that has already been constructed with the default constructor.

deleteAllPages(This) -> boolean()
Types:

This = wxChoicebook()
Deletes all pages.

getCurrentPage(This) -> wxWindow:wxWindow()
Types:

This = wxChoicebook()
Returns the currently selected page or NULL.

getImageList(This) -> wxImageList:wxImageList()
Types:

This = wxChoicebook()
Returns the associated image list, may be NULL.

See: wxImageList, setImageList/2

getPage(This, Page) -> wxWindow:wxWindow()
Types:

This = wxChoicebook()
Page = integer()

Returns the window at the given page position.

getPageCount(This) -> integer()
Types:

This = wxChoicebook()
Returns the number of pages in the control.

Ericsson AB. All Rights Reserved.: wxErlang | 103

wxChoicebook

getPageImage(This, NPage) -> integer()
Types:

This = wxChoicebook()
NPage = integer()

Returns the image index for the given page.

getPageText(This, NPage) -> unicode:charlist()
Types:

This = wxChoicebook()
NPage = integer()

Returns the string for the given page.

getSelection(This) -> integer()
Types:

This = wxChoicebook()
Returns the currently selected page, or wxNOT_FOUND if none was selected.

Note that this method may return either the previously or newly selected page when
called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so
wxBookCtrlEvent:getSelection/1 should be used instead in this case.

hitTest(This, Pt) -> Result
Types:

Result = {Res :: integer(), Flags :: integer()}
This = wxChoicebook()
Pt = {X :: integer(), Y :: integer()}

Returns the index of the tab at the specified position or wxNOT_FOUND if none.

If flags parameter is non-NULL, the position of the point inside the tab is returned as well.

Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the specified position.

insertPage(This, Index, Page, Text) -> boolean()
Types:

This = wxChoicebook()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

insertPage(This, Index, Page, Text, Options :: [Option]) ->
 boolean()
Types:

104 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoicebook

This = wxChoicebook()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Inserts a new page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: addPage/4

setImageList(This, ImageList) -> ok
Types:

This = wxChoicebook()
ImageList = wxImageList:wxImageList()

Sets the image list to use.

It does not take ownership of the image list, you must delete it yourself.

See: wxImageList, assignImageList/2

setPageSize(This, Size) -> ok
Types:

This = wxChoicebook()
Size = {W :: integer(), H :: integer()}

Sets the width and height of the pages.

Note: This method is currently not implemented for wxGTK.

setPageImage(This, Page, Image) -> boolean()
Types:

This = wxChoicebook()
Page = Image = integer()

Sets the image index for the given page.

image is an index into the image list which was set with setImageList/2.

setPageText(This, Page, Text) -> boolean()
Types:

This = wxChoicebook()
Page = integer()
Text = unicode:chardata()

Sets the text for the given page.

setSelection(This, Page) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 105

wxChoicebook

This = wxChoicebook()
Page = integer()

Sets the selection to the given page, returning the previous selection.

Notice that the call to this function generates the page changing events, use the changeSelection/2 function if
you don't want these events to be generated.

See: getSelection/1

changeSelection(This, Page) -> integer()
Types:

This = wxChoicebook()
Page = integer()

Changes the selection to the given page, returning the previous selection.

This function behaves as setSelection/2 but does not generate the page changing events.

See overview_events_prog for more information.

destroy(This :: wxChoicebook()) -> ok
Destroys the object.

106 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoice

wxChoice
Erlang module

A choice item is used to select one of a list of strings. Unlike a wxListBox, only the selection is visible until the
user pulls down the menu of choices.

Styles

This class supports the following styles:

See: wxListBox, wxComboBox, wxCommandEvent

This class is derived (and can use functions) from: wxControlWithItems wxControl wxWindow
wxEvtHandler

wxWidgets docs: wxChoice

Events
Event types emitted from this class: command_choice_selected

Data Types
wxChoice() = wx:wx_object()

Exports

new() -> wxChoice()
Default constructor.

See: create/7, wxValidator (not implemented in wx)

new(Parent, Id) -> wxChoice()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxChoice()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a choice.

See: create/7, wxValidator (not implemented in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 107

href

wxChoice

destroy(This :: wxChoice()) -> ok
Destructor, destroying the choice item.

create(This, Parent, Id, Pos, Size, Choices) -> boolean()
Types:

This = wxChoice()
Parent = wxWindow:wxWindow()
Id = integer()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]

create(This, Parent, Id, Pos, Size, Choices, Options :: [Option]) ->
 boolean()
Types:

This = wxChoice()
Parent = wxWindow:wxWindow()
Id = integer()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]
Option = {style, integer()} | {validator, wx:wx_object()}

delete(This, N) -> ok
Types:

This = wxChoice()
N = integer()

Deletes an item from the control.

The client data associated with the item will be also deleted if it is owned by the control. Note that it is an error
(signalled by an assert failure in debug builds) to remove an item with the index negative or greater or equal than the
number of items in the control.

If there is a currently selected item below the item being deleted, i.e. if
wxControlWithItems:getSelection/1 returns a valid index greater than or equal to n, the selection is
invalidated when this function is called. However if the selected item appears before the item being deleted, the
selection is preserved unchanged.

See: wxControlWithItems:clear/1

getColumns(This) -> integer()
Types:

This = wxChoice()
Gets the number of columns in this choice item.

Remark: This is implemented for GTK and Motif only and always returns 1 for the other platforms.

108 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoice

setColumns(This) -> ok
Types:

This = wxChoice()

setColumns(This, Options :: [Option]) -> ok
Types:

This = wxChoice()
Option = {n, integer()}

Sets the number of columns in this choice item.

Remark: This is implemented for GTK and Motif only and doesn’t do anything under other platforms.

Ericsson AB. All Rights Reserved.: wxErlang | 109

wxClientDC

wxClientDC
Erlang module

wxClientDC is primarily useful for obtaining information about the window from outside EVT_PAINT() handler.

Typical use of this class is to obtain the extent of some text string in order to allocate enough size for a window, e.g.

Note: While wxClientDC may also be used for drawing on the client area of a window from outside an
EVT_PAINT() handler in some ports, this does not work on all platforms (neither wxOSX nor wxGTK
with GTK 3 Wayland backend support this, so drawing using wxClientDC simply doesn't have any effect
there) and the only portable way of drawing is via wxPaintDC. To redraw a small part of the window, use
wxWindow:refreshRect/3 to invalidate just this part and check wxWindow:getUpdateRegion/1 in the
paint event handler to redraw this part only.

wxClientDC objects should normally be constructed as temporary stack objects, i.e. don't store a wxClientDC
object.

A wxClientDC object is initialized to use the same font and colours as the window it is associated with.

See: wxDC, wxMemoryDC, wxPaintDC, wxWindowDC, wxScreenDC

This class is derived (and can use functions) from: wxWindowDC wxDC

wxWidgets docs: wxClientDC

Data Types
wxClientDC() = wx:wx_object()

Exports

new(Window) -> wxClientDC()
Types:

Window = wxWindow:wxWindow()
Constructor.

Pass a pointer to the window on which you wish to paint.

destroy(This :: wxClientDC()) -> ok
Destroys the object.

110 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxClipboardTextEvent

wxClipboardTextEvent
Erlang module

This class represents the events generated by a control (typically a wxTextCtrl but other windows can generate
these events as well) when its content gets copied or cut to, or pasted from the clipboard.

There are three types of corresponding events wxEVT_TEXT_COPY, wxEVT_TEXT_CUT and
wxEVT_TEXT_PASTE.

If any of these events is processed (without being skipped) by an event handler, the corresponding operation doesn't
take place which allows preventing the text from being copied from or pasted to a control. It is also possible to examine
the clipboard contents in the PASTE event handler and transform it in some way before inserting in a control - for
example, changing its case or removing invalid characters.

Finally notice that a CUT event is always preceded by the COPY event which makes it possible to only process the
latter if it doesn't matter if the text was copied or cut.

Note: These events are currently only generated by wxTextCtrl in wxGTK and wxOSX but are also generated by
wxComboBox without wxCB_READONLY style in wxMSW.

See: wxClipboard

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxClipboardTextEvent

Events
Use wxEvtHandler:connect/3 with wxClipboardTextEventType to subscribe to events of this type.

Data Types
wxClipboardTextEvent() = wx:wx_object()
wxClipboardText() =
 #wxClipboardText{type =
 wxClipboardTextEvent:wxClipboardTextEventType()}
wxClipboardTextEventType() =
 command_text_copy | command_text_cut | command_text_paste

Ericsson AB. All Rights Reserved.: wxErlang | 111

href

wxClipboard

wxClipboard
Erlang module

A class for manipulating the clipboard.

To use the clipboard, you call member functions of the global ?wxTheClipboard object.

See the overview_dataobject for further information.

Call open/1 to get ownership of the clipboard. If this operation returns true, you now own the clipboard. Call
setData/2 to put data on the clipboard, or getData/2 to retrieve data from the clipboard. Call close/1 to close
the clipboard and relinquish ownership. You should keep the clipboard open only momentarily.

For example:

Note: On GTK, the clipboard behavior can vary depending on the configuration of the end-user's machine. In order for
the clipboard data to persist after the window closes, a clipboard manager must be installed. Some clipboard managers
will automatically flush the clipboard after each new piece of data is added, while others will not. The @Flush()
function will force the clipboard manager to flush the data.

See: Overview dnd, Overview dataobject, wxDataObject

wxWidgets docs: wxClipboard

Data Types
wxClipboard() = wx:wx_object()

Exports

new() -> wxClipboard()
Default constructor.

destroy(This :: wxClipboard()) -> ok
Destructor.

addData(This, Data) -> boolean()
Types:

This = wxClipboard()
Data = wxDataObject:wxDataObject()

Call this function to add the data object to the clipboard.

This is an obsolete synonym for setData/2.

clear(This) -> ok
Types:

This = wxClipboard()
Clears the global clipboard object and the system's clipboard if possible.

close(This) -> ok
Types:

112 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxClipboard

This = wxClipboard()
Call this function to close the clipboard, having opened it with open/1.

flush(This) -> boolean()
Types:

This = wxClipboard()
Flushes the clipboard: this means that the data which is currently on clipboard will stay available even after the
application exits (possibly eating memory), otherwise the clipboard will be emptied on exit.

Currently this method is implemented in MSW and GTK and always returns false otherwise.

Note: On GTK, only the non-primary selection can be flushed. Calling this function when the clipboard is using the
primary selection will return false and not make any data available after the program exits.

Return: false if the operation is unsuccessful for any reason.

getData(This, Data) -> boolean()
Types:

This = wxClipboard()
Data = wxDataObject:wxDataObject()

Call this function to fill data with data on the clipboard, if available in the required format.

Returns true on success.

isOpened(This) -> boolean()
Types:

This = wxClipboard()
Returns true if the clipboard has been opened.

open(This) -> boolean()
Types:

This = wxClipboard()
Call this function to open the clipboard before calling setData/2 and getData/2.

Call close/1 when you have finished with the clipboard. You should keep the clipboard open for only a very short
time.

Return: true on success. This should be tested (as in the sample shown above).

setData(This, Data) -> boolean()
Types:

This = wxClipboard()
Data = wxDataObject:wxDataObject()

Call this function to set the data object to the clipboard.

The new data object replaces any previously set one, so if the application wants to provide clipboard data in several
different formats, it must use a composite data object supporting all of the formats instead of calling this function
several times with different data objects as this would only leave data from the last one in the clipboard.

After this function has been called, the clipboard owns the data, so do not delete the data explicitly.

Ericsson AB. All Rights Reserved.: wxErlang | 113

wxClipboard

usePrimarySelection(This) -> ok
Types:

This = wxClipboard()

usePrimarySelection(This, Options :: [Option]) -> ok
Types:

This = wxClipboard()
Option = {primary, boolean()}

On platforms supporting it (all X11-based ports), wxClipboard uses the CLIPBOARD X11 selection by default.

When this function is called with true, all subsequent clipboard operations will use PRIMARY selection until this
function is called again with false.

On the other platforms, there is no PRIMARY selection and so all clipboard operations will fail. This allows
implementing the standard X11 handling of the clipboard which consists in copying data to the CLIPBOARD selection
only when the user explicitly requests it (i.e. by selecting the "Copy" menu command) but putting the currently selected
text into the PRIMARY selection automatically, without overwriting the normal clipboard contents with the currently
selected text on the other platforms.

isSupported(This, Format) -> boolean()
Types:

This = wxClipboard()
Format = wx:wx_enum()

Returns true if there is data which matches the data format of the given data object currently available on the
clipboard.

get() -> wxClipboard()
Returns the global instance (wxTheClipboard) of the clipboard object.

114 | Ericsson AB. All Rights Reserved.: wxErlang

wxCloseEvent

wxCloseEvent
Erlang module

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a frame or dialog box using the
window manager (X) or system menu (Windows). It can also be invoked by the application itself programmatically,
for example by calling the wxWindow:close/2 function.

You should check whether the application is forcing the deletion of the window using canVeto/1. If this is false,
you must destroy the window using wxWindow:'Destroy'/1.

If the return value is true, it is up to you whether you respond by destroying the window.

If you don't destroy the window, you should call veto/2 to let the calling code know that you did not destroy
the window. This allows the wxWindow:close/2 function to return true or false depending on whether the close
instruction was honoured or not.

Example of a wxCloseEvent handler:

The EVT_END_SESSION event is slightly different as it is sent by the system when the user session is ending (e.g.
because of log out or shutdown) and so all windows are being forcefully closed. At least under MSW, after the handler
for this event is executed the program is simply killed by the system. Because of this, the default handler for this event
provided by wxWidgets calls all the usual cleanup code (including wxApp::OnExit() (not implemented in wx))
so that it could still be executed and exit()s the process itself, without waiting for being killed. If this behaviour is for
some reason undesirable, make sure that you define a handler for this event in your wxApp-derived class and do not
call event.Skip() in it (but be aware that the system will still kill your application).

See: wxWindow:close/2, Overview windowdeletion

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxCloseEvent

Events
Use wxEvtHandler:connect/3 with wxCloseEventType to subscribe to events of this type.

Data Types
wxCloseEvent() = wx:wx_object()
wxClose() = #wxClose{type = wxCloseEvent:wxCloseEventType()}
wxCloseEventType() =
 close_window | end_session | query_end_session

Exports

canVeto(This) -> boolean()
Types:

This = wxCloseEvent()
Returns true if you can veto a system shutdown or a window close event.

Vetoing a window close event is not possible if the calling code wishes to force the application to exit, and so this
function must be called to check this.

Ericsson AB. All Rights Reserved.: wxErlang | 115

href
href

wxCloseEvent

getLoggingOff(This) -> boolean()
Types:

This = wxCloseEvent()
Returns true if the user is just logging off or false if the system is shutting down.

This method can only be called for end session and query end session events, it doesn't make sense for close window
event.

setCanVeto(This, CanVeto) -> ok
Types:

This = wxCloseEvent()
CanVeto = boolean()

Sets the 'can veto' flag.

setLoggingOff(This, LoggingOff) -> ok
Types:

This = wxCloseEvent()
LoggingOff = boolean()

Sets the 'logging off' flag.

veto(This) -> ok
Types:

This = wxCloseEvent()

veto(This, Options :: [Option]) -> ok
Types:

This = wxCloseEvent()
Option = {veto, boolean()}

Call this from your event handler to veto a system shutdown or to signal to the calling application that a window close
did not happen.

You can only veto a shutdown if canVeto/1 returns true.

116 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourData

wxColourData
Erlang module

This class holds a variety of information related to colour dialogs.

See: wx_color(), wxColourDialog, Overview cmndlg

wxWidgets docs: wxColourData

Data Types
wxColourData() = wx:wx_object()

Exports

new() -> wxColourData()
Constructor.

Initializes the custom colours to wxNullColour, the data colour setting to black, and the choose full setting
to true.

destroy(This :: wxColourData()) -> ok
Destructor.

getChooseFull(This) -> boolean()
Types:

This = wxColourData()
Under Windows, determines whether the Windows colour dialog will display the full dialog with custom colour
selection controls.

Has no meaning under other platforms.

The default value is true.

getColour(This) -> wx:wx_colour4()
Types:

This = wxColourData()
Gets the current colour associated with the colour dialog.

The default colour is black.

getCustomColour(This, I) -> wx:wx_colour4()
Types:

This = wxColourData()
I = integer()

Returns custom colours associated with the colour dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 117

href
href

wxColourData

setChooseFull(This, Flag) -> ok
Types:

This = wxColourData()
Flag = boolean()

Under Windows, tells the Windows colour dialog to display the full dialog with custom colour selection controls.

Under other platforms, has no effect.

The default value is true.

setColour(This, Colour) -> ok
Types:

This = wxColourData()
Colour = wx:wx_colour()

Sets the default colour for the colour dialog.

The default colour is black.

setCustomColour(This, I, Colour) -> ok
Types:

This = wxColourData()
I = integer()
Colour = wx:wx_colour()

Sets custom colours for the colour dialog.

118 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourDialog

wxColourDialog
Erlang module

This class represents the colour chooser dialog.

Starting from wxWidgets 3.1.3 and currently in the MSW port only, this dialog generates
wxEVT_COLOUR_CHANGED events while it is being shown, i.e. from inside its wxDialog:showModal/1
method, that notify the program about the change of the currently selected colour and allow it to e.g. preview the effect
of selecting this colour. Note that if you react to this event, you should also correctly revert to the previously selected
colour if the dialog is cancelled by the user.

Example of using this class with dynamic feedback for the selected colour:

See: Overview cmndlg, wx_color(), wxColourData, wxColourDialogEvent (not implemented in wx), ?
wxGetColourFromUser()

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxColourDialog

Data Types
wxColourDialog() = wx:wx_object()

Exports

new() -> wxColourDialog()

new(Parent) -> wxColourDialog()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxColourDialog()
Types:

Parent = wxWindow:wxWindow()
Option = {data, wxColourData:wxColourData()}

Constructor.

Pass a parent window, and optionally a pointer to a block of colour data, which will be copied to the colour dialog's
colour data.

Custom colours from colour data object will be used in the dialog's colour palette. Invalid entries in custom colours
list will be ignored on some platforms(GTK) or replaced with white colour on platforms where custom colours palette
has fixed size (MSW).

See: wxColourData

destroy(This :: wxColourDialog()) -> ok
Destructor.

Ericsson AB. All Rights Reserved.: wxErlang | 119

href
href

wxColourDialog

create(This, Parent) -> boolean()
Types:

This = wxColourDialog()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxColourDialog()
Parent = wxWindow:wxWindow()
Option = {data, wxColourData:wxColourData()}

Same as new/2.

getColourData(This) -> wxColourData:wxColourData()
Types:

This = wxColourDialog()
Returns the colour data associated with the colour dialog.

120 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourPickerCtrl

wxColourPickerCtrl
Erlang module

This control allows the user to select a colour. The generic implementation is a button which brings up a
wxColourDialog when clicked. Native implementation may differ but this is usually a (small) widget which give
access to the colour-chooser dialog. It is only available if wxUSE_COLOURPICKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxColourDialog, wxColourPickerEvent

This class is derived (and can use functions) from: wxPickerBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxColourPickerCtrl

Events
Event types emitted from this class: command_colourpicker_changed

Data Types
wxColourPickerCtrl() = wx:wx_object()

Exports

new() -> wxColourPickerCtrl()

new(Parent, Id) -> wxColourPickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxColourPickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {col, wx:wx_colour()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Initializes the object and calls create/4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 121

href

wxColourPickerCtrl

This = wxColourPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxColourPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {col, wx:wx_colour()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates a colour picker with the given arguments.

Return: true if the control was successfully created or false if creation failed.

getColour(This) -> wx:wx_colour4()
Types:

This = wxColourPickerCtrl()
Returns the currently selected colour.

setColour(This, Colname) -> ok
setColour(This, Col) -> ok
Types:

This = wxColourPickerCtrl()
Col = wx:wx_colour()

Sets the currently selected colour.

See wxColour::Set() (not implemented in wx).

destroy(This :: wxColourPickerCtrl()) -> ok
Destroys the object.

122 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourPickerEvent

wxColourPickerEvent
Erlang module

This event class is used for the events generated by wxColourPickerCtrl.

See: wxColourPickerCtrl

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxColourPickerEvent

Events
Use wxEvtHandler:connect/3 with wxColourPickerEventType to subscribe to events of this type.

Data Types
wxColourPickerEvent() = wx:wx_object()
wxColourPicker() =
 #wxColourPicker{type =
 wxColourPickerEvent:wxColourPickerEventType(),
 colour = wx:wx_colour()}
wxColourPickerEventType() = command_colourpicker_changed

Exports

getColour(This) -> wx:wx_colour4()
Types:

This = wxColourPickerEvent()
Retrieve the colour the user has just selected.

Ericsson AB. All Rights Reserved.: wxErlang | 123

href

wxComboBox

wxComboBox
Erlang module

A combobox is like a combination of an edit control and a listbox.

It can be displayed as static list with editable or read-only text field; or a drop-down list with text field; or a drop-down
list without a text field depending on the platform and presence of wxCB_READONLY style.

A combobox permits a single selection only. Combobox items are numbered from zero.

If you need a customized combobox, have a look at wxComboCtrl (not implemented in wx),
wxOwnerDrawnComboBox (not implemented in wx), wxComboPopup (not implemented in wx) and the ready-to-
use wxBitmapComboBox (not implemented in wx).

Please refer to wxTextEntry (not implemented in wx) documentation for the description of methods operating with
the text entry part of the combobox and to wxItemContainer (not implemented in wx) for the methods operating
with the list of strings. Notice that at least under MSW wxComboBox doesn't behave correctly if it contains strings
differing in case only so portable programs should avoid adding such strings to this control.

Styles

This class supports the following styles:

See: wxListBox, wxTextCtrl, wxChoice, wxCommandEvent

This class is derived (and can use functions) from: wxControlWithItems wxControl wxWindow
wxEvtHandler

wxWidgets docs: wxComboBox

Events
Event types emitted from this class: command_combobox_selected, command_text_updated,
command_text_enter, combobox_dropdown, combobox_closeup

Data Types
wxComboBox() = wx:wx_object()

Exports

new() -> wxComboBox()
Default constructor.

new(Parent, Id) -> wxComboBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxComboBox()
Types:

124 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxComboBox

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a combobox.

See: create/8, wxValidator (not implemented in wx)

destroy(This :: wxComboBox()) -> ok
Destructor, destroying the combobox.

create(This, Parent, Id, Value, Pos, Size, Choices) -> boolean()
Types:

This = wxComboBox()
Parent = wxWindow:wxWindow()
Id = integer()
Value = unicode:chardata()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]

create(This, Parent, Id, Value, Pos, Size, Choices,
 Options :: [Option]) ->
 boolean()
Types:

This = wxComboBox()
Parent = wxWindow:wxWindow()
Id = integer()
Value = unicode:chardata()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]
Option = {style, integer()} | {validator, wx:wx_object()}

canCopy(This) -> boolean()
Types:

This = wxComboBox()
Returns true if the selection can be copied to the clipboard.

Ericsson AB. All Rights Reserved.: wxErlang | 125

wxComboBox

canCut(This) -> boolean()
Types:

This = wxComboBox()
Returns true if the selection can be cut to the clipboard.

canPaste(This) -> boolean()
Types:

This = wxComboBox()
Returns true if the contents of the clipboard can be pasted into the text control.

On some platforms (Motif, GTK) this is an approximation and returns true if the control is editable, false otherwise.

canRedo(This) -> boolean()
Types:

This = wxComboBox()
Returns true if there is a redo facility available and the last operation can be redone.

canUndo(This) -> boolean()
Types:

This = wxComboBox()
Returns true if there is an undo facility available and the last operation can be undone.

copy(This) -> ok
Types:

This = wxComboBox()
Copies the selected text to the clipboard.

cut(This) -> ok
Types:

This = wxComboBox()
Copies the selected text to the clipboard and removes it from the control.

getInsertionPoint(This) -> integer()
Types:

This = wxComboBox()
Same as wxTextCtrl:getInsertionPoint/1.

Note: Under wxMSW, this function always returns 0 if the combobox doesn't have the focus.

getLastPosition(This) -> integer()
Types:

This = wxComboBox()
Returns the zero based index of the last position in the text control, which is equal to the number of characters in
the control.

126 | Ericsson AB. All Rights Reserved.: wxErlang

wxComboBox

getValue(This) -> unicode:charlist()
Types:

This = wxComboBox()
Gets the contents of the control.

Notice that for a multiline text control, the lines will be separated by (Unix-style) \n characters, even under Windows
where they are separated by a \r\n sequence in the native control.

paste(This) -> ok
Types:

This = wxComboBox()
Pastes text from the clipboard to the text item.

redo(This) -> ok
Types:

This = wxComboBox()
If there is a redo facility and the last operation can be redone, redoes the last operation.

Does nothing if there is no redo facility.

replace(This, From, To, Value) -> ok
Types:

This = wxComboBox()
From = To = integer()
Value = unicode:chardata()

Replaces the text starting at the first position up to (but not including) the character at the last position with the given
text.

This function puts the current insertion point position at to as a side effect.

remove(This, From, To) -> ok
Types:

This = wxComboBox()
From = To = integer()

Removes the text starting at the first given position up to (but not including) the character at the last position.

This function puts the current insertion point position at to as a side effect.

setInsertionPoint(This, Pos) -> ok
Types:

This = wxComboBox()
Pos = integer()

Sets the insertion point at the given position.

setInsertionPointEnd(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 127

wxComboBox

This = wxComboBox()
Sets the insertion point at the end of the text control.

This is equivalent to calling setInsertionPoint/2 with getLastPosition/1 argument.

setSelection(This, N) -> ok
Types:

This = wxComboBox()
N = integer()

Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.

Note that this does not cause any command events to be emitted nor does it deselect any other items in the controls
which support multiple selections.

See: wxControlWithItems:setString/3, wxControlWithItems:setStringSelection/2

setSelection(This, From, To) -> ok
Types:

This = wxComboBox()
From = To = integer()

Same as wxTextCtrl:setSelection/3.

setValue(This, Text) -> ok
Types:

This = wxComboBox()
Text = unicode:chardata()

Sets the text for the combobox text field.

For normal, editable comboboxes with a text entry field calling this method will generate a wxEVT_TEXT
event, consistently with wxTextCtrl:setValue/2 behaviour, use wxTextCtrl:changeValue/2 if this is
undesirable.

For controls with wxCB_READONLY style the method behaves somewhat differently: the string must be in the
combobox choices list (the check for this is case-insensitive) and wxEVT_TEXT is not generated in this case.

undo(This) -> ok
Types:

This = wxComboBox()
If there is an undo facility and the last operation can be undone, undoes the last operation.

Does nothing if there is no undo facility.

128 | Ericsson AB. All Rights Reserved.: wxErlang

wxCommandEvent

wxCommandEvent
Erlang module

This event class contains information about command events, which originate from a variety of simple controls.

Note that wxCommandEvents and wxCommandEvent-derived event classes by default and unlike other wxEvent-
derived classes propagate upward from the source window (the window which emits the event) up to the first parent
which processes the event. Be sure to read overview_events_propagation.

More complex controls, such as wxTreeCtrl, have separate command event classes.

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxCommandEvent

Events
Use wxEvtHandler:connect/3 with wxCommandEventType to subscribe to events of this type.

Data Types
wxCommandEvent() = wx:wx_object()
wxCommand() =
 #wxCommand{type = wxCommandEvent:wxCommandEventType(),
 cmdString = unicode:chardata(),
 commandInt = integer(),
 extraLong = integer()}
wxCommandEventType() =
 command_button_clicked | command_checkbox_clicked |
 command_choice_selected | command_listbox_selected |
 command_listbox_doubleclicked | command_text_updated |
 command_text_enter | text_maxlen | command_menu_selected |
 command_slider_updated | command_radiobox_selected |
 command_radiobutton_selected | command_scrollbar_updated |
 command_vlbox_selected | command_combobox_selected |
 combobox_dropdown | combobox_closeup | command_tool_rclicked |
 command_tool_enter | tool_dropdown |
 command_checklistbox_toggled | command_togglebutton_clicked |
 command_left_click | command_left_dclick |
 command_right_click | command_set_focus | command_kill_focus |
 command_enter | notification_message_click |
 notification_message_dismissed | notification_message_action

Exports

getClientData(This) -> term()
Types:

This = wxCommandEvent()
Returns client object pointer for a listbox or choice selection event (not valid for a deselection).

Ericsson AB. All Rights Reserved.: wxErlang | 129

href

wxCommandEvent

getExtraLong(This) -> integer()
Types:

This = wxCommandEvent()
Returns extra information dependent on the event objects type.

If the event comes from a listbox selection, it is a boolean determining whether the event was a selection (true) or a
deselection (false). A listbox deselection only occurs for multiple-selection boxes, and in this case the index and string
values are indeterminate and the listbox must be examined by the application.

getInt(This) -> integer()
Types:

This = wxCommandEvent()
Returns the integer identifier corresponding to a listbox, choice or radiobox selection (only if the event was a selection,
not a deselection), or a boolean value representing the value of a checkbox.

For a menu item, this method returns -1 if the item is not checkable or a boolean value (true or false) for checkable
items indicating the new state of the item.

getSelection(This) -> integer()
Types:

This = wxCommandEvent()
Returns item index for a listbox or choice selection event (not valid for a deselection).

getString(This) -> unicode:charlist()
Types:

This = wxCommandEvent()
Returns item string for a listbox or choice selection event.

If one or several items have been deselected, returns the index of the first deselected item. If some items have been
selected and others deselected at the same time, it will return the index of the first selected item.

isChecked(This) -> boolean()
Types:

This = wxCommandEvent()
This method can be used with checkbox and menu events: for the checkboxes, the method returns true for a selection
event and false for a deselection one.

For the menu events, this method indicates if the menu item just has become checked or unchecked (and thus only
makes sense for checkable menu items).

Notice that this method cannot be used with wxCheckListBox currently.

isSelection(This) -> boolean()
Types:

This = wxCommandEvent()
For a listbox or similar event, returns true if it is a selection, false if it is a deselection.

If some items have been selected and others deselected at the same time, it will return true.

130 | Ericsson AB. All Rights Reserved.: wxErlang

wxCommandEvent

setInt(This, IntCommand) -> ok
Types:

This = wxCommandEvent()
IntCommand = integer()

Sets the m_commandInt member.

setString(This, String) -> ok
Types:

This = wxCommandEvent()
String = unicode:chardata()

Sets the m_commandString member.

Ericsson AB. All Rights Reserved.: wxErlang | 131

wxContextMenuEvent

wxContextMenuEvent
Erlang module

This class is used for context menu events, sent to give the application a chance to show a context (popup) menu for
a wxWindow.

Note that if getPosition/1 returns wxDefaultPosition, this means that the event originated from a
keyboard context button event, and you should compute a suitable position yourself, for example by calling
wx_misc:getMousePosition/0.

Notice that the exact sequence of mouse events is different across the platforms. For example, under MSW the context
menu event is generated after EVT_RIGHT_UP event and only if it was not handled but under GTK the context
menu event is generated after EVT_RIGHT_DOWN event. This is correct in the sense that it ensures that the context
menu is shown according to the current platform UI conventions and also means that you must not handle (or call
wxEvent:skip/2 in your handler if you do have one) neither right mouse down nor right mouse up event if you
plan on handling EVT_CONTEXT_MENU event.

See: wxCommandEvent, Overview events

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxContextMenuEvent

Events
Use wxEvtHandler:connect/3 with wxContextMenuEventType to subscribe to events of this type.

Data Types
wxContextMenuEvent() = wx:wx_object()
wxContextMenu() =
 #wxContextMenu{type =
 wxContextMenuEvent:wxContextMenuEventType(),
 pos = {X :: integer(), Y :: integer()}}
wxContextMenuEventType() = context_menu

Exports

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxContextMenuEvent()
Returns the position in screen coordinates at which the menu should be shown.

Use wxWindow:screenToClient/2 to convert to client coordinates.

You can also omit a position from wxWindow:popupMenu/4 in order to use the current mouse pointer position.

If the event originated from a keyboard event, the value returned from this function will be wxDefaultPosition.

setPosition(This, Point) -> ok
Types:

132 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxContextMenuEvent

This = wxContextMenuEvent()
Point = {X :: integer(), Y :: integer()}

Sets the position at which the menu should be shown.

Ericsson AB. All Rights Reserved.: wxErlang | 133

wxControlWithItems

wxControlWithItems
Erlang module

This is convenience class that derives from both wxControl and wxItemContainer (not implemented in wx).
It is used as basis for some wxWidgets controls (wxChoice and wxListBox).

See: wxItemContainer (not implemented in wx), wxItemContainerImmutable (not implemented in wx)

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxControlWithItems

Data Types
wxControlWithItems() = wx:wx_object()

Exports

append(This, Item) -> integer()
Types:

This = wxControlWithItems()
Item = unicode:chardata()

Appends item into the control.

Return: The return value is the index of the newly inserted item. Note that this may be different from the last one if
the control is sorted (e.g. has wxLB_SORT or wxCB_SORT style).

append(This, Item, ClientData) -> integer()
Types:

This = wxControlWithItems()
Item = unicode:chardata()
ClientData = term()

Appends item into the control.

Return: The return value is the index of the newly inserted item. Note that this may be different from the last one if
the control is sorted (e.g. has wxLB_SORT or wxCB_SORT style).

appendStrings(This, Items) -> integer()
Types:

This = wxControlWithItems()
Items = [unicode:chardata()]

Appends several items at once into the control.

Notice that calling this method is usually much faster than appending them one by one if you need to add a lot of items.

appendStrings(This, Items, ClientsData) -> integer()
Types:

134 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxControlWithItems

This = wxControlWithItems()
Items = [unicode:chardata()]
ClientsData = [term()]

Appends several items at once into the control.

Notice that calling this method is usually much faster than appending them one by one if you need to add a lot of items.

clear(This) -> ok
Types:

This = wxControlWithItems()
Removes all items from the control.

clear/1 also deletes the client data of the existing items if it is owned by the control.

delete(This, N) -> ok
Types:

This = wxControlWithItems()
N = integer()

Deletes an item from the control.

The client data associated with the item will be also deleted if it is owned by the control. Note that it is an error
(signalled by an assert failure in debug builds) to remove an item with the index negative or greater or equal than the
number of items in the control.

If there is a currently selected item below the item being deleted, i.e. if getSelection/1 returns a valid index
greater than or equal to n, the selection is invalidated when this function is called. However if the selected item appears
before the item being deleted, the selection is preserved unchanged.

See: clear/1

findString(This, String) -> integer()
Types:

This = wxControlWithItems()
String = unicode:chardata()

findString(This, String, Options :: [Option]) -> integer()
Types:

This = wxControlWithItems()
String = unicode:chardata()
Option = {bCase, boolean()}

Finds an item whose label matches the given string.

Return: The zero-based position of the item, or wxNOT_FOUND if the string was not found.

getClientData(This, N) -> term()
Types:

This = wxControlWithItems()
N = integer()

Returns a pointer to the client data associated with the given item (if any).

Ericsson AB. All Rights Reserved.: wxErlang | 135

wxControlWithItems

It is an error to call this function for a control which doesn't have typed client data at all although it is OK to call it
even if the given item doesn't have any client data associated with it (but other items do).

Notice that the returned pointer is still owned by the control and will be deleted by it, use DetachClientObject()
(not implemented in wx) if you want to remove the pointer from the control.

Return: A pointer to the client data, or NULL if not present.

setClientData(This, N, Data) -> ok
Types:

This = wxControlWithItems()
N = integer()
Data = term()

Associates the given typed client data pointer with the given item: the data object will be deleted when the item is
deleted (either explicitly by using delete/2 or implicitly when the control itself is destroyed).

Note that it is an error to call this function if any untyped client data pointers had been associated with the control
items before.

getCount(This) -> integer()
Types:

This = wxControlWithItems()
Returns the number of items in the control.

See: isEmpty/1

getSelection(This) -> integer()
Types:

This = wxControlWithItems()
Returns the index of the selected item or wxNOT_FOUND if no item is selected.

Return: The position of the current selection.

Remark: This method can be used with single selection list boxes only, you should use
wxListBox:getSelections/1 for the list boxes with wxLB_MULTIPLE style.

See: setSelection/2, getStringSelection/1

getString(This, N) -> unicode:charlist()
Types:

This = wxControlWithItems()
N = integer()

Returns the label of the item with the given index.

Return: The label of the item or an empty string if the position was invalid.

getStringSelection(This) -> unicode:charlist()
Types:

This = wxControlWithItems()
Returns the label of the selected item or an empty string if no item is selected.

136 | Ericsson AB. All Rights Reserved.: wxErlang

wxControlWithItems

See: getSelection/1

insert(This, Item, Pos) -> integer()
Types:

This = wxControlWithItems()
Item = unicode:chardata()
Pos = integer()

Inserts item into the control.

Return: The return value is the index of the newly inserted item. If the insertion failed for some reason, -1 is returned.

insert(This, Item, Pos, ClientData) -> integer()
Types:

This = wxControlWithItems()
Item = unicode:chardata()
Pos = integer()
ClientData = term()

Inserts item into the control.

Return: The return value is the index of the newly inserted item. If the insertion failed for some reason, -1 is returned.

insertStrings(This, Items, Pos) -> integer()
Types:

This = wxControlWithItems()
Items = [unicode:chardata()]
Pos = integer()

Inserts several items at once into the control.

Notice that calling this method is usually much faster than inserting them one by one if you need to insert a lot of items.

Return: The return value is the index of the last inserted item. If the insertion failed for some reason, -1 is returned.

insertStrings(This, Items, Pos, ClientsData) -> integer()
Types:

This = wxControlWithItems()
Items = [unicode:chardata()]
Pos = integer()
ClientsData = [term()]

Inserts several items at once into the control.

Notice that calling this method is usually much faster than inserting them one by one if you need to insert a lot of items.

Return: The return value is the index of the last inserted item. If the insertion failed for some reason, -1 is returned.

isEmpty(This) -> boolean()
Types:

This = wxControlWithItems()
Returns true if the control is empty or false if it has some items.

Ericsson AB. All Rights Reserved.: wxErlang | 137

wxControlWithItems

See: getCount/1

select(This, N) -> ok
Types:

This = wxControlWithItems()
N = integer()

This is the same as setSelection/2 and exists only because it is slightly more natural for controls which support
multiple selection.

setSelection(This, N) -> ok
Types:

This = wxControlWithItems()
N = integer()

Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.

Note that this does not cause any command events to be emitted nor does it deselect any other items in the controls
which support multiple selections.

See: setString/3, setStringSelection/2

setString(This, N, String) -> ok
Types:

This = wxControlWithItems()
N = integer()
String = unicode:chardata()

Sets the label for the given item.

setStringSelection(This, String) -> boolean()
Types:

This = wxControlWithItems()
String = unicode:chardata()

Selects the item with the specified string in the control.

This method doesn't cause any command events to be emitted.

Notice that this method is case-insensitive, i.e. the string is compared with all the elements of the control case-
insensitively and the first matching entry is selected, even if it doesn't have exactly the same case as this string and
there is an exact match afterwards.

Return: true if the specified string has been selected, false if it wasn't found in the control.

138 | Ericsson AB. All Rights Reserved.: wxErlang

wxControl

wxControl
Erlang module

This is the base class for a control or "widget".

A control is generally a small window which processes user input and/or displays one or more item of data.

See: wxValidator (not implemented in wx)

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxControl

Events
Event types emitted from this class: command_text_copy, command_text_cut, command_text_paste

Data Types
wxControl() = wx:wx_object()

Exports

getLabel(This) -> unicode:charlist()
Types:

This = wxControl()
Returns the control's label, as it was passed to setLabel/2.

Note that the returned string may contains mnemonics ("&" characters) if they were passed to the setLabel/2
function; use GetLabelText() (not implemented in wx) if they are undesired.

Also note that the returned string is always the string which was passed to setLabel/2 but may be different from
the string passed to SetLabelText() (not implemented in wx) (since this last one escapes mnemonic characters).

setLabel(This, Label) -> ok
Types:

This = wxControl()
Label = unicode:chardata()

Sets the control's label.

All "&" characters in the label are special and indicate that the following character is a mnemonic for this control
and can be used to activate it from the keyboard (typically by using Alt key in combination with it). To insert a literal
ampersand character, you need to double it, i.e. use "&&". If this behaviour is undesirable, use SetLabelText()
(not implemented in wx) instead.

Ericsson AB. All Rights Reserved.: wxErlang | 139

href

wxCursor

wxCursor
Erlang module

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a picture that might indicate
the interpretation of a mouse click. As with icons, cursors in X and MS Windows are created in a different manner.
Therefore, separate cursors will be created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation will probably be required
(see wxIcon for an example).

A single cursor object may be used in many windows (any subwindow type). The wxWidgets convention is
to set the cursor for a window, as in X, rather than to set it globally as in MS Windows, although a global
wx_misc:setCursor/1 function is also available for MS Windows use.

Creating a Custom Cursor

The following is an example of creating a cursor from 32x32 bitmap data (down_bits) and a mask (down_mask) where
1 is black and 0 is white for the bits, and 1 is opaque and 0 is transparent for the mask. It works on Windows and GTK+.

Predefined objects (include wx.hrl):

See: wxBitmap, wxIcon, wxWindow:setCursor/2, wx_misc:setCursor/1, ?wxStockCursor

This class is derived (and can use functions) from: wxBitmap

wxWidgets docs: wxCursor

Data Types
wxCursor() = wx:wx_object()

Exports

new() -> wxCursor()
Default constructor.

new(CursorName) -> wxCursor()
new(Image) -> wxCursor()
new(CursorId) -> wxCursor()
Types:

CursorId = wx:wx_enum()
Constructs a cursor using a cursor identifier.

new(CursorName, Options :: [Option]) -> wxCursor()
Types:

CursorName = unicode:chardata()
Option =
 {type, wx:wx_enum()} |
 {hotSpotX, integer()} |
 {hotSpotY, integer()}

Constructs a cursor by passing a string resource name or filename.

140 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCursor

The arguments hotSpotX and hotSpotY are only used when there's no hotspot info in the resource/image-file to
load (e.g. when using wxBITMAP_TYPE_ICO under wxMSW or wxBITMAP_TYPE_XPM under wxGTK).

destroy(This :: wxCursor()) -> ok
Destroys the cursor.

See reference-counted object destruction for more info.

A cursor can be reused for more than one window, and does not get destroyed when the window is destroyed.
wxWidgets destroys all cursors on application exit, although it is best to clean them up explicitly.

ok(This) -> boolean()
Types:

This = wxCursor()
See: isOk/1.

isOk(This) -> boolean()
Types:

This = wxCursor()
Returns true if cursor data is present.

Ericsson AB. All Rights Reserved.: wxErlang | 141

wxDataObject

wxDataObject
Erlang module

A wxDataObject represents data that can be copied to or from the clipboard, or dragged and dropped. The important
thing about wxDataObject is that this is a 'smart' piece of data unlike 'dumb' data containers such as memory buffers
or files. Being 'smart' here means that the data object itself should know what data formats it supports and how to
render itself in each of its supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested from a data object or
from which the data object may be set. In the general case, an object may support different formats on 'input' and
'output', i.e. it may be able to render itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines the wxDataObject::Direction (not implemented in wx) enumeration type which
distinguishes between them.

See wxDataFormat (not implemented in wx) documentation for more about formats.

Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable for the situations when you
really need to support multiple formats, but may be annoying if you only want to do something simple like cut and
paste text.

To provide a solution for both cases, wxWidgets has two predefined classes which derive from wxDataObject:
wxDataObjectSimple (not implemented in wx) and wxDataObjectComposite (not implemented in wx).
wxDataObjectSimple (not implemented in wx) is the simplest wxDataObject possible and only holds data in
a single format (such as HTML or text) and wxDataObjectComposite (not implemented in wx) is the simplest
way to implement a wxDataObject that does support multiple formats because it achieves this by simply holding
several wxDataObjectSimple (not implemented in wx) objects.

So, you have several solutions when you need a wxDataObject class (and you need one as soon as you want to
transfer data via the clipboard or drag and drop):

Please note that the easiest way to use drag and drop and the clipboard with multiple formats is by
using wxDataObjectComposite (not implemented in wx), but it is not the most efficient one as each
wxDataObjectSimple (not implemented in wx) would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as Word, RTF, HTML, Unicode
and plain text to the clipboard and even today's computers are in trouble. For this case, you will have to derive from
wxDataObject directly and make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK+ data transfer mechanisms for clipboard and drag and drop, nor OLE data transfer, copies
any data until another application actually requests the data. This is in contrast to the 'feel' offered to the user of a
program who would normally think that the data resides in the clipboard after having pressed 'Copy' - in reality it is
only declared to be available.

You may also derive your own data object classes from wxCustomDataObject (not implemented in wx) for user-
defined types. The format of user-defined data is given as a mime-type string literal, such as "application/word" or
"image/png". These strings are used as they are under Unix (so far only GTK+) to identify a format and are translated
into their Windows equivalent under Win32 (using the OLE IDataObject for data exchange to and from the clipboard
and for drag and drop). Note that the format string translation under Windows is not yet finished.

Each class derived directly from wxDataObject must override and implement all of its functions which are pure
virtual in the base class. The data objects which only render their data or only set it (i.e. work in only one direction),
should return 0 from GetFormatCount() (not implemented in wx).

See: Overview dnd, Examples, wxFileDataObject, wxTextDataObject, wxBitmapDataObject,
wxCustomDataObject (not implemented in wx), wxDropTarget (not implemented in wx), wxDropSource
(not implemented in wx), wxTextDropTarget (not implemented in wx), wxFileDropTarget (not implemented
in wx)

142 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxDataObject

wxWidgets docs: wxDataObject

Data Types
wxDataObject() = wx:wx_object()

Ericsson AB. All Rights Reserved.: wxErlang | 143

href

wxDateEvent

wxDateEvent
Erlang module

This event class holds information about a date change and is used together with wxDatePickerCtrl. It also serves
as a base class for wxCalendarEvent.

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxDateEvent

Data Types
wxDateEvent() = wx:wx_object()
wxDate() =
 #wxDate{type = wxDateEvent:wxDateEventType(),
 date = wx:wx_datetime()}
wxDateEventType() = date_changed

Exports

getDate(This) -> wx:wx_datetime()
Types:

This = wxDateEvent()
Returns the date.

144 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxDatePickerCtrl

wxDatePickerCtrl
Erlang module

This control allows the user to select a date. Unlike wxCalendarCtrl, which is a relatively big control,
wxDatePickerCtrl is implemented as a small window showing the currently selected date. The control can be
edited using the keyboard, and can also display a popup window for more user-friendly date selection, depending on
the styles used and the platform.

It is only available if wxUSE_DATEPICKCTRL is set to 1.

Styles

This class supports the following styles:

See: wxTimePickerCtrl (not implemented in wx), wxCalendarCtrl, wxDateEvent

This class is derived (and can use functions) from: wxPickerBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxDatePickerCtrl

Events
Event types emitted from this class: date_changed

Data Types
wxDatePickerCtrl() = wx:wx_object()

Exports

new() -> wxDatePickerCtrl()
Default constructor.

new(Parent, Id) -> wxDatePickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxDatePickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Initializes the object and calls Create() (not implemented in wx) with all the parameters.

Ericsson AB. All Rights Reserved.: wxErlang | 145

href

wxDatePickerCtrl

getRange(This, Dt1, Dt2) -> boolean()
Types:

This = wxDatePickerCtrl()
Dt1 = Dt2 = wx:wx_datetime()

If the control had been previously limited to a range of dates using setRange/3, returns the lower and upper bounds
of this range.

If no range is set (or only one of the bounds is set), dt1 and/or dt2 are set to be invalid.

Notice that when using a native MSW implementation of this control the lower range is always set, even if
setRange/3 hadn't been called explicitly, as the native control only supports dates later than year 1601.

Return: false if no range limits are currently set, true if at least one bound is set.

getValue(This) -> wx:wx_datetime()
Types:

This = wxDatePickerCtrl()
Returns the currently entered date.

For a control with wxDP_ALLOWNONE style the returned value may be invalid if no date is entered, otherwise it is
always valid.

setRange(This, Dt1, Dt2) -> ok
Types:

This = wxDatePickerCtrl()
Dt1 = Dt2 = wx:wx_datetime()

Sets the valid range for the date selection.

If dt1 is valid, it becomes the earliest date (inclusive) accepted by the control. If dt2 is valid, it becomes the latest
possible date.

Notice that if the current value is not inside the new range, it will be adjusted to lie inside it, i.e. calling this method
can change the control value, however no events are generated by it.

Remark: If the current value of the control is outside of the newly set range bounds, the behaviour is undefined.

setValue(This, Dt) -> ok
Types:

This = wxDatePickerCtrl()
Dt = wx:wx_datetime()

Changes the current value of the control.

The date should be valid unless the control was created with wxDP_ALLOWNONE style and included in the currently
selected range, if any.

Calling this method does not result in a date change event.

destroy(This :: wxDatePickerCtrl()) -> ok
Destroys the object.

146 | Ericsson AB. All Rights Reserved.: wxErlang

wxDCOverlay

wxDCOverlay
Erlang module

Connects an overlay with a drawing DC.

See: wxOverlay, wxDC

wxWidgets docs: wxDCOverlay

Data Types
wxDCOverlay() = wx:wx_object()

Exports

new(Overlay, Dc) -> wxDCOverlay()
Types:

Overlay = wxOverlay:wxOverlay()
Dc = wxDC:wxDC()

Convenience wrapper that behaves the same using the entire area of the dc.

new(Overlay, Dc, X, Y, Width, Height) -> wxDCOverlay()
Types:

Overlay = wxOverlay:wxOverlay()
Dc = wxDC:wxDC()
X = Y = Width = Height = integer()

Connects this overlay to the corresponding drawing dc, if the overlay is not initialized yet this call will do so.

destroy(This :: wxDCOverlay()) -> ok
Removes the connection between the overlay and the dc.

clear(This) -> ok
Types:

This = wxDCOverlay()
Clears the layer, restoring the state at the last init.

Ericsson AB. All Rights Reserved.: wxErlang | 147

href

wxDC

wxDC
Erlang module

A wxDC is a "device context" onto which graphics and text can be drawn. It is intended to represent different
output devices and offers a common abstract API for drawing on any of them.

wxWidgets offers an alternative drawing API based on the modern drawing backends GDI+, CoreGraphics, Cairo
and Direct2D. See wxGraphicsContext, wxGraphicsRenderer and related classes. There is also a wxGCDC
linking the APIs by offering the wxDC API on top of a wxGraphicsContext.

wxDC is an abstract base class and cannot be created directly. Use wxPaintDC, wxClientDC, wxWindowDC,
wxScreenDC, wxMemoryDC or wxPrinterDC (not implemented in wx). Notice that device contexts which are
associated with windows (i.e. wxClientDC, wxWindowDC and wxPaintDC) use the window font and colours by
default (starting with wxWidgets 2.9.0) but the other device context classes use system-default values so you always
must set the appropriate fonts and colours before using them.

In addition to the versions of the methods documented below, there are also versions which accept single {X,Y}
parameter instead of the two wxCoord ones or {X,Y} and {Width,Height} instead of the four wxCoord parameters.

Beginning with wxWidgets 2.9.0 the entire wxDC code has been reorganized. All platform dependent code (actually
all drawing code) has been moved into backend classes which derive from a common wxDCImpl class. The user-
visible classes such as wxClientDC and wxPaintDC merely forward all calls to the backend implementation.

Device and logical units

In the wxDC context there is a distinction between logical units and device units.

Device units are the units native to the particular device; e.g. for a screen, a device unit is a pixel. For a printer,
the device unit is defined by the resolution of the printer (usually given in DPI: dot-per-inch).

All wxDC functions use instead logical units, unless where explicitly stated. Logical units are arbitrary units mapped
to device units using the current mapping mode (see setMapMode/2).

This mechanism allows reusing the same code which prints on e.g. a window on the screen to print on e.g. a paper.

Support for Transparency / Alpha Channel

In general wxDC methods don't support alpha transparency and the alpha component of wx_color() is simply
ignored and you need to use wxGraphicsContext for full transparency support. There are, however, a few
exceptions: first, under macOS and GTK+ 3 colours with alpha channel are supported in all the normal wxDC-derived
classes as they use wxGraphicsContext internally. Second, under all platforms wxSVGFileDC (not implemented
in wx) also fully supports alpha channel. In both of these cases the instances of wxPen or wxBrush that are built
from wx_color() use the colour's alpha values when stroking or filling.

Support for Transformation Matrix

On some platforms (currently under MSW, GTK+ 3, macOS) wxDC has support for applying an arbitrary affine
transformation matrix to its coordinate system (since 3.1.1 this feature is also supported by wxGCDC in all ports).
Call CanUseTransformMatrix() (not implemented in wx) to check if this support is available and then
call SetTransformMatrix() (not implemented in wx) if it is. If the transformation matrix is not supported,
SetTransformMatrix() (not implemented in wx) always simply returns false and doesn't do anything.

This feature is only available when wxUSE_DC_TRANSFORM_MATRIX build option is enabled.

See: Overview dc, wxGraphicsContext, wxDCFontChanger (not implemented in wx),
wxDCTextColourChanger (not implemented in wx), wxDCPenChanger (not implemented in wx),
wxDCBrushChanger (not implemented in wx), wxDCClipper (not implemented in wx)

wxWidgets docs: wxDC

148 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxDC

Data Types
wxDC() = wx:wx_object()

Exports

blit(This, Dest, Size, Source, Src) -> boolean()
Types:

This = wxDC()
Dest = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Source = wxDC()
Src = {X :: integer(), Y :: integer()}

blit(This, Dest, Size, Source, Src, Options :: [Option]) ->
 boolean()
Types:

This = wxDC()
Dest = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Source = wxDC()
Src = {X :: integer(), Y :: integer()}
Option =
 {rop, wx:wx_enum()} |
 {useMask, boolean()} |
 {srcPtMask, {X :: integer(), Y :: integer()}}

Copy from a source DC to this DC.

With this method you can specify the destination coordinates and the size of area to copy which will be the same for
both the source and target DCs. If you need to apply scaling while copying, use StretchBlit() (not implemented
in wx).

Notice that source DC coordinates xsrc and ysrc are interpreted using the current source DC coordinate system,
i.e. the scale, origin position and axis directions are taken into account when transforming them to physical (pixel)
coordinates.

Remark: There is partial support for blit/6 in wxPostScriptDC, under X.

See: StretchBlit() (not implemented in wx), wxMemoryDC, wxBitmap, wxMask

calcBoundingBox(This, X, Y) -> ok
Types:

This = wxDC()
X = Y = integer()

Adds the specified point to the bounding box which can be retrieved with minX/1, maxX/1 and minY/1, maxY/1
functions.

See: resetBoundingBox/1

Ericsson AB. All Rights Reserved.: wxErlang | 149

wxDC

clear(This) -> ok
Types:

This = wxDC()
Clears the device context using the current background brush.

Note that setBackground/2 method must be used to set the brush used by clear/1, the brush used for filling
the shapes set by setBrush/2 is ignored by it.

If no background brush was set, solid white brush is used to clear the device context.

crossHair(This, Pt) -> ok
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

destroyClippingRegion(This) -> ok
Types:

This = wxDC()
Destroys the current clipping region so that none of the DC is clipped.

See: setClippingRegion/3

deviceToLogicalX(This, X) -> integer()
Types:

This = wxDC()
X = integer()

Convert device X coordinate to logical coordinate, using the current mapping mode, user scale factor, device origin
and axis orientation.

deviceToLogicalXRel(This, X) -> integer()
Types:

This = wxDC()
X = integer()

Convert device X coordinate to relative logical coordinate, using the current mapping mode and user scale factor
but ignoring the axis orientation.

Use this for converting a width, for example.

deviceToLogicalY(This, Y) -> integer()
Types:

This = wxDC()
Y = integer()

Converts device Y coordinate to logical coordinate, using the current mapping mode, user scale factor, device origin
and axis orientation.

150 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

deviceToLogicalYRel(This, Y) -> integer()
Types:

This = wxDC()
Y = integer()

Convert device Y coordinate to relative logical coordinate, using the current mapping mode and user scale factor
but ignoring the axis orientation.

Use this for converting a height, for example.

drawArc(This, PtStart, PtEnd, Centre) -> ok
Types:

This = wxDC()
PtStart = PtEnd = Centre = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawBitmap(This, Bmp, Pt) -> ok
Types:

This = wxDC()
Bmp = wxBitmap:wxBitmap()
Pt = {X :: integer(), Y :: integer()}

drawBitmap(This, Bmp, Pt, Options :: [Option]) -> ok
Types:

This = wxDC()
Bmp = wxBitmap:wxBitmap()
Pt = {X :: integer(), Y :: integer()}
Option = {useMask, boolean()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawCheckMark(This, Rect) -> ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawCircle(This, Pt, Radius) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 151

wxDC

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Radius = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawEllipse(This, Rect) -> ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawEllipse(This, Pt, Size) -> ok
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawEllipticArc(This, Pt, Sz, Sa, Ea) -> ok
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Sz = {W :: integer(), H :: integer()}
Sa = Ea = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawIcon(This, Icon, Pt) -> ok
Types:

This = wxDC()
Icon = wxIcon:wxIcon()
Pt = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawLabel(This, Text, Rect) -> ok
Types:

152 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

This = wxDC()
Text = unicode:chardata()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

drawLabel(This, Text, Rect, Options :: [Option]) -> ok
Types:

This = wxDC()
Text = unicode:chardata()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Option = {alignment, integer()} | {indexAccel, integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawLine(This, Pt1, Pt2) -> ok
Types:

This = wxDC()
Pt1 = Pt2 = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawLines(This, Points) -> ok
Types:

This = wxDC()
Points = [{X :: integer(), Y :: integer()}]

drawLines(This, Points, Options :: [Option]) -> ok
Types:

This = wxDC()
Points = [{X :: integer(), Y :: integer()}]
Option = {xoffset, integer()} | {yoffset, integer()}

Draws lines using an array of points of size n adding the optional offset coordinate.

The current pen is used for drawing the lines.

drawPolygon(This, Points) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 153

wxDC

This = wxDC()
Points = [{X :: integer(), Y :: integer()}]

drawPolygon(This, Points, Options :: [Option]) -> ok
Types:

This = wxDC()
Points = [{X :: integer(), Y :: integer()}]
Option =
 {xoffset, integer()} |
 {yoffset, integer()} |
 {fillStyle, wx:wx_enum()}

Draws a filled polygon using an array of points of size n, adding the optional offset coordinate.

The first and last points are automatically closed.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or wxWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the shape. Using a transparent brush
suppresses filling.

drawPoint(This, Pt) -> ok
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRectangle(This, Rect) -> ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRectangle(This, Pt, Sz) -> ok
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Sz = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

154 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

drawRotatedText(This, Text, Point, Angle) -> ok
Types:

This = wxDC()
Text = unicode:chardata()
Point = {X :: integer(), Y :: integer()}
Angle = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRoundedRectangle(This, Rect, Radius) -> ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Radius = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRoundedRectangle(This, Pt, Sz, Radius) -> ok
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Sz = {W :: integer(), H :: integer()}
Radius = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawText(This, Text, Pt) -> ok
Types:

This = wxDC()
Text = unicode:chardata()
Pt = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

endDoc(This) -> ok
Types:

This = wxDC()
Ends a document (only relevant when outputting to a printer).

Ericsson AB. All Rights Reserved.: wxErlang | 155

wxDC

endPage(This) -> ok
Types:

This = wxDC()
Ends a document page (only relevant when outputting to a printer).

floodFill(This, Pt, Col) -> boolean()
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Col = wx:wx_colour()

floodFill(This, Pt, Col, Options :: [Option]) -> boolean()
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Col = wx:wx_colour()
Option = {style, wx:wx_enum()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

getBackground(This) -> wxBrush:wxBrush()
Types:

This = wxDC()
Gets the brush used for painting the background.

See: setBackground/2

getBackgroundMode(This) -> integer()
Types:

This = wxDC()
Returns the current background mode: wxPENSTYLE_SOLID or wxPENSTYLE_TRANSPARENT.

See: setBackgroundMode/2

getBrush(This) -> wxBrush:wxBrush()
Types:

This = wxDC()
Gets the current brush.

See: setBrush/2

getCharHeight(This) -> integer()
Types:

This = wxDC()
Gets the character height of the currently set font.

156 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

getCharWidth(This) -> integer()
Types:

This = wxDC()
Gets the average character width of the currently set font.

getClippingBox(This) -> Result
Types:

Result =
 {X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer()}
This = wxDC()

Gets the rectangle surrounding the current clipping region. If no clipping
region is set this function returns the extent of the device context. @remarks
Clipping region is given in logical coordinates. @param x If non-NULL, filled in with the logical horizontal coordinate
of the top left corner of the clipping region if the function returns true
or 0 otherwise. @param y If non-NULL, filled in
with the logical vertical coordinate of the top left corner of the clipping
region if the function returns true or 0 otherwise. @param width If non-NULL, filled in with the width of the clipping region if
the function returns true or the device context width otherwise. @param height If
non-NULL, filled in with the height of the clipping
region if the function returns true or the device context height otherwise.

Return: true if there is a clipping region or false if there is no active clipping region (note that this return value is
available only since wxWidgets 3.1.2, this function didn't return anything in the previous versions).

getFont(This) -> wxFont:wxFont()
Types:

This = wxDC()
Gets the current font.

Notice that even although each device context object has some default font after creation, this method would return
a ?wxNullFont initially and only after calling setFont/2 a valid font is returned.

getLayoutDirection(This) -> wx:wx_enum()
Types:

This = wxDC()
Gets the current layout direction of the device context.

On platforms where RTL layout is supported, the return value will either be wxLayout_LeftToRight or
wxLayout_RightToLeft. If RTL layout is not supported, the return value will be wxLayout_Default.

See: setLayoutDirection/2

getLogicalFunction(This) -> wx:wx_enum()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 157

wxDC

This = wxDC()
Gets the current logical function.

See: setLogicalFunction/2

getMapMode(This) -> wx:wx_enum()
Types:

This = wxDC()
Gets the current mapping mode for the device context.

See: setMapMode/2

getMultiLineTextExtent(This, String) ->
 {W :: integer(), H :: integer()}
Types:

This = wxDC()
String = unicode:chardata()

Gets the dimensions of the string using the currently selected font.

string is the text string to measure.

Return: The text extent as a {Width,Height} object.

Note: This function works with both single-line and multi-line strings.

See: wxFont, setFont/2, getPartialTextExtents/2, getTextExtent/3

getMultiLineTextExtent(This, String, Options :: [Option]) ->
 {W :: integer(),
 H :: integer(),
 HeightLine :: integer()}
Types:

This = wxDC()
String = unicode:chardata()
Option = {font, wxFont:wxFont()}

Gets the dimensions of the string using the currently selected font.

string is the text string to measure, heightLine, if non NULL, is where to store the height of a single line.

The text extent is set in the given w and h pointers.

If the optional parameter font is specified and valid, then it is used for the text extent calculation, otherwise the
currently selected font is used.

If string is empty, its horizontal extent is 0 but, for convenience when using this function for allocating enough
space for a possibly multi-line string, its vertical extent is the same as the height of an empty line of text. Please note
that this behaviour differs from that of getTextExtent/3.

Note: This function works with both single-line and multi-line strings.

See: wxFont, setFont/2, getPartialTextExtents/2, getTextExtent/3

getPartialTextExtents(This, Text) -> Result
Types:

158 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

Result = {Res :: boolean(), Widths :: [integer()]}
This = wxDC()
Text = unicode:chardata()

Fills the widths array with the widths from the beginning of text to the corresponding character of text.

The generic version simply builds a running total of the widths of each character using getTextExtent/3, however
if the various platforms have a native API function that is faster or more accurate than the generic implementation
then it should be used instead.

See: getMultiLineTextExtent/3, getTextExtent/3

getPen(This) -> wxPen:wxPen()
Types:

This = wxDC()
Gets the current pen.

See: setPen/2

getPixel(This, Pos) -> Result
Types:

Result = {Res :: boolean(), Colour :: wx:wx_colour4()}
This = wxDC()
Pos = {X :: integer(), Y :: integer()}

Gets in colour the colour at the specified location.

This method isn't available for wxPostScriptDC or wxMetafileDC (not implemented in wx) nor for any DC in
wxOSX port and simply returns false there.

Note: Setting a pixel can be done using drawPoint/2.

Note: This method shouldn't be used with wxPaintDC as accessing the DC while drawing can result in unexpected
results, notably in wxGTK.

getPPI(This) -> {W :: integer(), H :: integer()}
Types:

This = wxDC()
Returns the resolution of the device in pixels per inch.

getSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxDC()
This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

getSizeMM(This) -> {W :: integer(), H :: integer()}
Types:

This = wxDC()
This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

Ericsson AB. All Rights Reserved.: wxErlang | 159

wxDC

getTextBackground(This) -> wx:wx_colour4()
Types:

This = wxDC()
Gets the current text background colour.

See: setTextBackground/2

getTextExtent(This, String) -> {W :: integer(), H :: integer()}
Types:

This = wxDC()
String = unicode:chardata()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

getTextExtent(This, String, Options :: [Option]) -> Result
Types:

Result =
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()}
This = wxDC()
String = unicode:chardata()
Option = {theFont, wxFont:wxFont()}

Gets the dimensions of the string using the currently selected font.

string is the text string to measure, descent is the dimension from the baseline of the font to the bottom of the
descender, and externalLeading is any extra vertical space added to the font by the font designer (usually is zero).

The text extent is returned in w and h pointers or as a {Width,Height} object depending on which version of this
function is used.

If the optional parameter font is specified and valid, then it is used for the text extent calculation. Otherwise the
currently selected font is.

If string is empty, its extent is 0 in both directions, as expected.

Note: This function only works with single-line strings.

See: wxFont, setFont/2, getPartialTextExtents/2, getMultiLineTextExtent/3

getTextForeground(This) -> wx:wx_colour4()
Types:

This = wxDC()
Gets the current text foreground colour.

See: setTextForeground/2

getUserScale(This) -> {X :: number(), Y :: number()}
Types:

160 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

This = wxDC()
Gets the current user scale factor.

See: setUserScale/3

gradientFillConcentric(This, Rect, InitialColour, DestColour) ->
 ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
InitialColour = DestColour = wx:wx_colour()

Fill the area specified by rect with a radial gradient, starting from initialColour at the centre of the circle and
fading to destColour on the circle outside.

The circle is placed at the centre of rect.

Note: Currently this function is very slow, don't use it for real-time drawing.

gradientFillConcentric(This, Rect, InitialColour, DestColour,
 CircleCenter) ->
 ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
InitialColour = DestColour = wx:wx_colour()
CircleCenter = {X :: integer(), Y :: integer()}

Fill the area specified by rect with a radial gradient, starting from initialColour at the centre of the circle and
fading to destColour on the circle outside.

circleCenter are the relative coordinates of centre of the circle in the specified rect.

Note: Currently this function is very slow, don't use it for real-time drawing.

gradientFillLinear(This, Rect, InitialColour, DestColour) -> ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),

Ericsson AB. All Rights Reserved.: wxErlang | 161

wxDC

 H :: integer()}
InitialColour = DestColour = wx:wx_colour()

gradientFillLinear(This, Rect, InitialColour, DestColour,
 Options :: [Option]) ->
 ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
InitialColour = DestColour = wx:wx_colour()
Option = {nDirection, wx:wx_enum()}

Fill the area specified by rect with a linear gradient, starting from initialColour and eventually fading to
destColour.

The nDirection specifies the direction of the colour change, default is to use initialColour on the left part
of the rectangle and destColour on the right one.

logicalToDeviceX(This, X) -> integer()
Types:

This = wxDC()
X = integer()

Converts logical X coordinate to device coordinate, using the current mapping mode, user scale factor, device origin
and axis orientation.

logicalToDeviceXRel(This, X) -> integer()
Types:

This = wxDC()
X = integer()

Converts logical X coordinate to relative device coordinate, using the current mapping mode and user scale factor but
ignoring the axis orientation.

Use this for converting a width, for example.

logicalToDeviceY(This, Y) -> integer()
Types:

This = wxDC()
Y = integer()

Converts logical Y coordinate to device coordinate, using the current mapping mode, user scale factor, device origin
and axis orientation.

logicalToDeviceYRel(This, Y) -> integer()
Types:

162 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

This = wxDC()
Y = integer()

Converts logical Y coordinate to relative device coordinate, using the current mapping mode and user scale factor but
ignoring the axis orientation.

Use this for converting a height, for example.

maxX(This) -> integer()
Types:

This = wxDC()
Gets the maximum horizontal extent used in drawing commands so far.

maxY(This) -> integer()
Types:

This = wxDC()
Gets the maximum vertical extent used in drawing commands so far.

minX(This) -> integer()
Types:

This = wxDC()
Gets the minimum horizontal extent used in drawing commands so far.

minY(This) -> integer()
Types:

This = wxDC()
Gets the minimum vertical extent used in drawing commands so far.

isOk(This) -> boolean()
Types:

This = wxDC()
Returns true if the DC is ok to use.

resetBoundingBox(This) -> ok
Types:

This = wxDC()
Resets the bounding box: after a call to this function, the bounding box doesn't contain anything.

See: calcBoundingBox/3

setAxisOrientation(This, XLeftRight, YBottomUp) -> ok
Types:

This = wxDC()
XLeftRight = YBottomUp = boolean()

Sets the x and y axis orientation (i.e. the direction from lowest to highest values on the axis).

Ericsson AB. All Rights Reserved.: wxErlang | 163

wxDC

The default orientation is x axis from left to right and y axis from top down.

setBackground(This, Brush) -> ok
Types:

This = wxDC()
Brush = wxBrush:wxBrush()

Sets the current background brush for the DC.

setBackgroundMode(This, Mode) -> ok
Types:

This = wxDC()
Mode = integer()

mode may be one of wxPENSTYLE_SOLID and wxPENSTYLE_TRANSPARENT.

This setting determines whether text will be drawn with a background colour or not.

setBrush(This, Brush) -> ok
Types:

This = wxDC()
Brush = wxBrush:wxBrush()

Sets the current brush for the DC.

If the argument is ?wxNullBrush (or another invalid brush; see wxBrush:isOk/1), the current brush is selected out
of the device context (leaving wxDC without any valid brush), allowing the current brush to be destroyed safely.

See: wxBrush, wxMemoryDC, (for the interpretation of colours when drawing into a monochrome bitmap)

setClippingRegion(This, Rect) -> ok
Types:

This = wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setClippingRegion(This, Pt, Sz) -> ok
Types:

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Sz = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

164 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

setDeviceOrigin(This, X, Y) -> ok
Types:

This = wxDC()
X = Y = integer()

Sets the device origin (i.e. the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a page.

setFont(This, Font) -> ok
Types:

This = wxDC()
Font = wxFont:wxFont()

Sets the current font for the DC.

If the argument is ?wxNullFont (or another invalid font; see wxFont:isOk/1), the current font is selected out of
the device context (leaving wxDC without any valid font), allowing the current font to be destroyed safely.

See: wxFont

setLayoutDirection(This, Dir) -> ok
Types:

This = wxDC()
Dir = wx:wx_enum()

Sets the current layout direction for the device context.

See: getLayoutDirection/1

setLogicalFunction(This, Function) -> ok
Types:

This = wxDC()
Function = wx:wx_enum()

Sets the current logical function for the device context.

Note: This function is not fully supported in all ports, due to the limitations of the underlying drawing model. Notably,
wxINVERT which was commonly used for drawing rubber bands or other moving outlines in the past, is not, and will
not, be supported by wxGTK3 and wxMac. The suggested alternative is to draw temporarily objects normally and
refresh the (affected part of the) window to remove them later.

It determines how a source pixel (from a pen or brush colour, or source device context if using blit/6) combines
with a destination pixel in the current device context. Text drawing is not affected by this function.

See ?wxRasterOperationMode enumeration values for more info.

The default is wxCOPY, which simply draws with the current colour. The others combine the current colour and the
background using a logical operation.

setMapMode(This, Mode) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 165

wxDC

This = wxDC()
Mode = wx:wx_enum()

The mapping mode of the device context defines the unit of measurement used to convert logical units to device
units.

Note that in X, text drawing isn't handled consistently with the mapping mode; a font is always specified in point
size. However, setting the user scale (see setUserScale/3) scales the text appropriately. In Windows, scalable
TrueType fonts are always used; in X, results depend on availability of fonts, but usually a reasonable match is found.

The coordinate origin is always at the top left of the screen/printer.

Drawing to a Windows printer device context uses the current mapping mode, but mapping mode is currently ignored
for PostScript output.

setPalette(This, Palette) -> ok
Types:

This = wxDC()
Palette = wxPalette:wxPalette()

If this is a window DC or memory DC, assigns the given palette to the window or bitmap associated with the DC.

If the argument is ?wxNullPalette, the current palette is selected out of the device context, and the original palette
restored.

See: wxPalette

setPen(This, Pen) -> ok
Types:

This = wxDC()
Pen = wxPen:wxPen()

Sets the current pen for the DC.

If the argument is ?wxNullPen (or another invalid pen; see wxPen:isOk/1), the current pen is selected out of the
device context (leaving wxDC without any valid pen), allowing the current pen to be destroyed safely.

See: wxMemoryDC, for the interpretation of colours when drawing into a monochrome bitmap

setTextBackground(This, Colour) -> ok
Types:

This = wxDC()
Colour = wx:wx_colour()

Sets the current text background colour for the DC.

setTextForeground(This, Colour) -> ok
Types:

This = wxDC()
Colour = wx:wx_colour()

Sets the current text foreground colour for the DC.

See: wxMemoryDC, for the interpretation of colours when drawing into a monochrome bitmap

166 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

setUserScale(This, XScale, YScale) -> ok
Types:

This = wxDC()
XScale = YScale = number()

Sets the user scaling factor, useful for applications which require 'zooming'.

startDoc(This, Message) -> boolean()
Types:

This = wxDC()
Message = unicode:chardata()

Starts a document (only relevant when outputting to a printer).

message is a message to show while printing.

startPage(This) -> ok
Types:

This = wxDC()
Starts a document page (only relevant when outputting to a printer).

Ericsson AB. All Rights Reserved.: wxErlang | 167

wxDialog

wxDialog
Erlang module

A dialog box is a window with a title bar and sometimes a system menu, which can be moved around the screen. It can
contain controls and other windows and is often used to allow the user to make some choice or to answer a question.

Dialogs can be made scrollable, automatically, for computers with low resolution screens: please see
overview_dialog_autoscrolling for further details.

Dialogs usually contain either a single button allowing to close the dialog or two buttons, one accepting the changes
and the other one discarding them (such button, if present, is automatically activated if the user presses the "Esc" key).
By default, buttons with the standard wxID_OK and wxID_CANCEL identifiers behave as expected. Starting with
wxWidgets 2.7 it is also possible to use a button with a different identifier instead, see setAffirmativeId/2 and
SetEscapeId() (not implemented in wx).

Also notice that the createButtonSizer/2 should be used to create the buttons appropriate for the current
platform and positioned correctly (including their order which is platform-dependent).

Modal and Modeless

There are two kinds of dialog, modal and modeless. A modal dialog blocks program flow and user input on other
windows until it is dismissed, whereas a modeless dialog behaves more like a frame in that program flow continues,
and input in other windows is still possible. To show a modal dialog you should use the showModal/1 method while
to show a dialog modelessly you simply use show/2, just as with frames.

Note that the modal dialog is one of the very few examples of wxWindow-derived objects which may be created on
the stack and not on the heap. In other words, while most windows would be created like this:

You can achieve the same result with dialogs by using simpler code:

An application can define a wxCloseEvent handler for the dialog to respond to system close events.

Styles

This class supports the following styles:

See: Overview dialog, wxFrame, Overview validator

This class is derived (and can use functions) from: wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxDialog

Events
Event types emitted from this class: close_window, init_dialog

Data Types
wxDialog() = wx:wx_object()

Exports

new() -> wxDialog()
Default constructor.

new(Parent, Id, Title) -> wxDialog()
Types:

168 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxDialog

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

new(Parent, Id, Title, Options :: [Option]) -> wxDialog()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor.

See: create/5

destroy(This :: wxDialog()) -> ok
Destructor.

Deletes any child windows before deleting the physical window.

See overview_windowdeletion for more info.

create(This, Parent, Id, Title) -> boolean()
Types:

This = wxDialog()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

create(This, Parent, Id, Title, Options :: [Option]) -> boolean()
Types:

This = wxDialog()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Used for two-step dialog box construction.

See: new/4

createButtonSizer(This, Flags) -> wxSizer:wxSizer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 169

wxDialog

This = wxDialog()
Flags = integer()

Creates a sizer with standard buttons.

flags is a bit list of the following flags: wxOK, wxCANCEL, wxYES, wxNO, wxAPPLY, wxCLOSE, wxHELP,
wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

This function uses createStdDialogButtonSizer/2 internally for most platforms but doesn't create the sizer
at all for the platforms with hardware buttons (such as smartphones) for which it sets up the hardware buttons
appropriately and returns NULL, so don't forget to test that the return value is valid before using it.

createStdDialogButtonSizer(This, Flags) ->
 wxStdDialogButtonSizer:wxStdDialogButtonSizer()
Types:

This = wxDialog()
Flags = integer()

Creates a wxStdDialogButtonSizer with standard buttons.

flags is a bit list of the following flags: wxOK, wxCANCEL, wxYES, wxNO, wxAPPLY, wxCLOSE, wxHELP,
wxNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

endModal(This, RetCode) -> ok
Types:

This = wxDialog()
RetCode = integer()

Ends a modal dialog, passing a value to be returned from the showModal/1 invocation.

See: showModal/1, getReturnCode/1, setReturnCode/2

getAffirmativeId(This) -> integer()
Types:

This = wxDialog()
Gets the identifier of the button which works like standard OK button in this dialog.

See: setAffirmativeId/2

getReturnCode(This) -> integer()
Types:

This = wxDialog()
Gets the return code for this window.

Remark: A return code is normally associated with a modal dialog, where showModal/1 returns a code to the
application.

See: setReturnCode/2, showModal/1, endModal/2

170 | Ericsson AB. All Rights Reserved.: wxErlang

wxDialog

isModal(This) -> boolean()
Types:

This = wxDialog()
Returns true if the dialog box is modal, false otherwise.

setAffirmativeId(This, Id) -> ok
Types:

This = wxDialog()
Id = integer()

Sets the identifier to be used as OK button.

When the button with this identifier is pressed, the dialog calls wxWindow:validate/1 and
wxWindow:transferDataFromWindow/1 and, if they both return true, closes the dialog with the affirmative
id return code.

Also, when the user presses a hardware OK button on the devices having one or the special OK button in the PocketPC
title bar, an event with this id is generated.

By default, the affirmative id is wxID_OK.

See: getAffirmativeId/1, SetEscapeId() (not implemented in wx)

setReturnCode(This, RetCode) -> ok
Types:

This = wxDialog()
RetCode = integer()

Sets the return code for this window.

A return code is normally associated with a modal dialog, where showModal/1 returns a code to the application.
The function endModal/2 calls setReturnCode/2.

See: getReturnCode/1, showModal/1, endModal/2

show(This) -> boolean()
Types:

This = wxDialog()

show(This, Options :: [Option]) -> boolean()
Types:

This = wxDialog()
Option = {show, boolean()}

Hides or shows the dialog.

The preferred way of dismissing a modal dialog is to use endModal/2.

showModal(This) -> integer()
Types:

This = wxDialog()
Shows an application-modal dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 171

wxDialog

Program flow does not return until the dialog has been dismissed with endModal/2.

Notice that it is possible to call showModal/1 for a dialog which had been previously shown with show/2, this
allows making an existing modeless dialog modal. However showModal/1 can't be called twice without intervening
endModal/2 calls.

Note that this function creates a temporary event loop which takes precedence over the application's main event loop
(see wxEventLoopBase (not implemented in wx)) and which is destroyed when the dialog is dismissed. This also
results in a call to wxApp::ProcessPendingEvents() (not implemented in wx).

Return: The value set with setReturnCode/2.

See: ShowWindowModal() (not implemented in wx), ShowWindowModalThenDo() (not implemented in wx),
endModal/2, getReturnCode/1, setReturnCode/2

172 | Ericsson AB. All Rights Reserved.: wxErlang

wxDirDialog

wxDirDialog
Erlang module

This class represents the directory chooser dialog.

Styles

This class supports the following styles:

Note: This flag cannot be used with the wxDD_MULTIPLE style.

Remark: MacOS 10.11+ does not display a title bar on the dialog. Use setMessage/2 to change the string displayed
to the user at the top of the dialog after creation. The wxTopLevelWindow:setTitle/2 method is provided for
compatibility with pre-10.11 MacOS versions that do still support displaying the title bar.

See: Overview cmndlg, wxFileDialog

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxDirDialog

Data Types
wxDirDialog() = wx:wx_object()

Exports

new(Parent) -> wxDirDialog()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxDirDialog()
Types:

Parent = wxWindow:wxWindow()
Option =
 {title, unicode:chardata()} |
 {defaultPath, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {sz, {W :: integer(), H :: integer()}}

Constructor.

Use wxDialog:showModal/1 to show the dialog.

destroy(This :: wxDirDialog()) -> ok
Destructor.

getPath(This) -> unicode:charlist()
Types:

This = wxDirDialog()
Returns the default or user-selected path.

Ericsson AB. All Rights Reserved.: wxErlang | 173

href
href

wxDirDialog

Note: This function can't be used with dialogs which have the wxDD_MULTIPLE style, use GetPaths() (not
implemented in wx) instead.

getMessage(This) -> unicode:charlist()
Types:

This = wxDirDialog()
Returns the message that will be displayed on the dialog.

setMessage(This, Message) -> ok
Types:

This = wxDirDialog()
Message = unicode:chardata()

Sets the message that will be displayed on the dialog.

setPath(This, Path) -> ok
Types:

This = wxDirDialog()
Path = unicode:chardata()

Sets the default path.

174 | Ericsson AB. All Rights Reserved.: wxErlang

wxDirPickerCtrl

wxDirPickerCtrl
Erlang module

This control allows the user to select a directory. The generic implementation is a button which brings up a
wxDirDialog when clicked. Native implementation may differ but this is usually a (small) widget which give access
to the dir-chooser dialog. It is only available if wxUSE_DIRPICKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxDirDialog, wxFileDirPickerEvent

This class is derived (and can use functions) from: wxPickerBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxDirPickerCtrl

Events
Event types emitted from this class: command_dirpicker_changed

Data Types
wxDirPickerCtrl() = wx:wx_object()

Exports

new() -> wxDirPickerCtrl()

new(Parent, Id) -> wxDirPickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxDirPickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Initializes the object and calls create/4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 175

href

wxDirPickerCtrl

This = wxDirPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxDirPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates the widgets with the given parameters.

Return: true if the control was successfully created or false if creation failed.

getPath(This) -> unicode:charlist()
Types:

This = wxDirPickerCtrl()
Returns the absolute path of the currently selected directory.

setPath(This, Dirname) -> ok
Types:

This = wxDirPickerCtrl()
Dirname = unicode:chardata()

Sets the absolute path of the currently selected directory.

If the control uses wxDIRP_DIR_MUST_EXIST and does not use wxDIRP_USE_TEXTCTRL style, the dirname
must be a name of an existing directory and will be simply ignored by the native wxGTK implementation if this is
not the case.

destroy(This :: wxDirPickerCtrl()) -> ok
Destroys the object.

176 | Ericsson AB. All Rights Reserved.: wxErlang

wxDisplayChangedEvent

wxDisplayChangedEvent
Erlang module

A display changed event is sent to top-level windows when the display resolution has changed.

This event is currently emitted under Windows only.

Only for:wxmsw

See: wxDisplay

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxDisplayChangedEvent

Events
Use wxEvtHandler:connect/3 with wxDisplayChangedEventType to subscribe to events of this type.

Data Types
wxDisplayChangedEvent() = wx:wx_object()
wxDisplayChanged() =
 #wxDisplayChanged{type =
 wxDisplayChangedEvent:wxDisplayChangedEventType()}
wxDisplayChangedEventType() = display_changed

Ericsson AB. All Rights Reserved.: wxErlang | 177

href

wxDisplay

wxDisplay
Erlang module

Determines the sizes and locations of displays connected to the system.

wxWidgets docs: wxDisplay

Data Types
wxDisplay() = wx:wx_object()

Exports

new() -> wxDisplay()
Default constructor creating wxDisplay object representing the primary display.

new(Index) -> wxDisplay()
new(Window) -> wxDisplay()
Types:

Window = wxWindow:wxWindow()
Constructor creating the display object associated with the given window.

This is the most convenient way of finding the display on which the given window is shown while falling back to the
default display if it is not shown at all or positioned outside of any display.

See: getFromWindow/1

Since: 3.1.2

destroy(This :: wxDisplay()) -> ok
Destructor.

isOk(This) -> boolean()
Types:

This = wxDisplay()
Returns true if the object was initialized successfully.

getClientArea(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxDisplay()
Returns the client area of the display.

The client area is the part of the display available for the normal (non full screen) windows, usually it is the same as
getGeometry/1 but it could be less if there is a taskbar (or equivalent) on this display.

178 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxDisplay

getGeometry(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxDisplay()
Returns the bounding rectangle of the display whose index was passed to the constructor.

See: getClientArea/1, wx_misc:displaySize/0

getName(This) -> unicode:charlist()
Types:

This = wxDisplay()
Returns the display's name.

The returned value is currently an empty string under all platforms except MSW.

isPrimary(This) -> boolean()
Types:

This = wxDisplay()
Returns true if the display is the primary display.

The primary display is the one whose index is 0.

getCount() -> integer()
Returns the number of connected displays.

getFromPoint(Pt) -> integer()
Types:

Pt = {X :: integer(), Y :: integer()}
Returns the index of the display on which the given point lies, or wxNOT_FOUND if the point is not on any connected
display.

getFromWindow(Win) -> integer()
Types:

Win = wxWindow:wxWindow()
Returns the index of the display on which the given window lies.

If the window is on more than one display it gets the display that overlaps the window the most.

Returns wxNOT_FOUND if the window is not on any connected display.

getPPI(This) -> {W :: integer(), H :: integer()}
Types:

This = wxDisplay()
Returns display resolution in pixels per inch.

Horizontal and vertical resolution are returned in x and y components of the {Width,Height} object respectively.

Ericsson AB. All Rights Reserved.: wxErlang | 179

wxDisplay

If the resolution information is not available, returns.

Since: 3.1.2

180 | Ericsson AB. All Rights Reserved.: wxErlang

wxDropFilesEvent

wxDropFilesEvent
Erlang module

This class is used for drop files events, that is, when files have been dropped onto the window.

The window must have previously been enabled for dropping by calling wxWindow:dragAcceptFiles/2.

Important note: this is a separate implementation to the more general drag and drop implementation documented in
the overview_dnd. It uses the older, Windows message-based approach of dropping files.

Remark: Windows only until version 2.8.9, available on all platforms since 2.8.10.

See: Overview events, wxWindow:dragAcceptFiles/2

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxDropFilesEvent

Events
Use wxEvtHandler:connect/3 with wxDropFilesEventType to subscribe to events of this type.

Data Types
wxDropFilesEvent() = wx:wx_object()
wxDropFiles() =
 #wxDropFiles{type = wxDropFilesEvent:wxDropFilesEventType(),
 pos = {X :: integer(), Y :: integer()},
 files = [unicode:chardata()]}
wxDropFilesEventType() = drop_files

Exports

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxDropFilesEvent()
Returns the position at which the files were dropped.

Returns an array of filenames.

getNumberOfFiles(This) -> integer()
Types:

This = wxDropFilesEvent()
Returns the number of files dropped.

getFiles(This) -> [unicode:charlist()]
Types:

This = wxDropFilesEvent()
Returns an array of filenames.

Ericsson AB. All Rights Reserved.: wxErlang | 181

href
href

wxEraseEvent

wxEraseEvent
Erlang module

An erase event is sent when a window's background needs to be repainted.

On some platforms, such as GTK+, this event is simulated (simply generated just before the paint event) and may
cause flicker. It is therefore recommended that you set the text background colour explicitly in order to prevent flicker.
The default background colour under GTK+ is grey.

To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table definition.

You must use the device context returned by getDC/1 to draw on, don't create a wxPaintDC in the event handler.

See: Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxEraseEvent

Events
Use wxEvtHandler:connect/3 with wxEraseEventType to subscribe to events of this type.

Data Types
wxEraseEvent() = wx:wx_object()
wxErase() =
 #wxErase{type = wxEraseEvent:wxEraseEventType(),
 dc = wxDC:wxDC()}
wxEraseEventType() = erase_background

Exports

getDC(This) -> wxDC:wxDC()
Types:

This = wxEraseEvent()
Returns the device context associated with the erase event to draw on.

The returned pointer is never NULL.

182 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxEvent

wxEvent
Erlang module

An event is a structure holding information about an event passed to a callback or member function.

wxEvent used to be a multipurpose event object, and is an abstract base class for other event classes (see below).

For more information about events, see the overview_events overview.

See: wxCommandEvent, wxMouseEvent

wxWidgets docs: wxEvent

Data Types
wxEvent() = wx:wx_object()

Exports

getId(This) -> integer()
Types:

This = wxEvent()
Returns the identifier associated with this event, such as a button command id.

getSkipped(This) -> boolean()
Types:

This = wxEvent()
Returns true if the event handler should be skipped, false otherwise.

getTimestamp(This) -> integer()
Types:

This = wxEvent()
Gets the timestamp for the event.

The timestamp is the time in milliseconds since some fixed moment (not necessarily the standard Unix Epoch, so only
differences between the timestamps and not their absolute values usually make sense).

Warning: wxWidgets returns a non-NULL timestamp only for mouse and key events (see wxMouseEvent and
wxKeyEvent).

isCommandEvent(This) -> boolean()
Types:

This = wxEvent()
Returns true if the event is or is derived from wxCommandEvent else it returns false.

Note: exists only for optimization purposes.

resumePropagation(This, PropagationLevel) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 183

href

wxEvent

This = wxEvent()
PropagationLevel = integer()

Sets the propagation level to the given value (for example returned from an earlier call to stopPropagation/1).

shouldPropagate(This) -> boolean()
Types:

This = wxEvent()
Test if this event should be propagated or not, i.e. if the propagation level is currently greater than 0.

skip(This) -> ok
Types:

This = wxEvent()

skip(This, Options :: [Option]) -> ok
Types:

This = wxEvent()
Option = {skip, boolean()}

This method can be used inside an event handler to control whether further event handlers bound to this event will
be called after the current one returns.

Without skip/2 (or equivalently if Skip(false) is used), the event will not be processed any more. If Skip(true) is
called, the event processing system continues searching for a further handler function for this event, even though it
has been processed already in the current handler.

In general, it is recommended to skip all non-command events to allow the default handling to take place. The command
events are, however, normally not skipped as usually a single command such as a button click or menu item selection
must only be processed by one handler.

stopPropagation(This) -> integer()
Types:

This = wxEvent()
Stop the event from propagating to its parent window.

Returns the old propagation level value which may be later passed to resumePropagation/2 to allow propagating
the event again.

184 | Ericsson AB. All Rights Reserved.: wxErlang

wxEvtHandler

wxEvtHandler
Erlang module

A class that can handle events from the windowing system. wxWindow is (and therefore all window classes are)
derived from this class.

To get events from wxwidgets objects you subscribe to them by calling connect/3.

If the callback option is not supplied events are sent as messages.

These messages will be #wx{} where EventRecord is a record that depends on the wxEventType. The records
are defined in: wx/include/wx.hrl.

If a callback was supplied to connect, the callback will be invoked (in another process) to handle the event. The
callback should be of arity 2.

fun Callback (EventRecord::wx(), EventObject::wxObject()).

Note: The callback will be in executed in new process each time.

See: Overview events

wxWidgets docs: wxEvtHandler

Data Types
wxEvtHandler() = wx:wx_object()
wxEventType() =
 wxActivateEvent:wxActivateEventType() |
 wxAuiManagerEvent:wxAuiManagerEventType() |
 wxAuiNotebookEvent:wxAuiNotebookEventType() |
 wxBookCtrlEvent:wxBookCtrlEventType() |
 wxCalendarEvent:wxCalendarEventType() |
 wxChildFocusEvent:wxChildFocusEventType() |
 wxClipboardTextEvent:wxClipboardTextEventType() |
 wxCloseEvent:wxCloseEventType() |
 wxColourPickerEvent:wxColourPickerEventType() |
 wxCommandEvent:wxCommandEventType() |
 wxContextMenuEvent:wxContextMenuEventType() |
 wxDateEvent:wxDateEventType() |
 wxDisplayChangedEvent:wxDisplayChangedEventType() |
 wxDropFilesEvent:wxDropFilesEventType() |
 wxEraseEvent:wxEraseEventType() |
 wxFileDirPickerEvent:wxFileDirPickerEventType() |
 wxFocusEvent:wxFocusEventType() |
 wxFontPickerEvent:wxFontPickerEventType() |
 wxGridEvent:wxGridEventType() |
 wxHelpEvent:wxHelpEventType() |
 wxHtmlLinkEvent:wxHtmlLinkEventType() |
 wxIconizeEvent:wxIconizeEventType() |
 wxIdleEvent:wxIdleEventType() |
 wxInitDialogEvent:wxInitDialogEventType() |
 wxJoystickEvent:wxJoystickEventType() |
 wxKeyEvent:wxKeyEventType() |
 wxListEvent:wxListEventType() |

Ericsson AB. All Rights Reserved.: wxErlang | 185

href
href

wxEvtHandler

 wxMaximizeEvent:wxMaximizeEventType() |
 wxMenuEvent:wxMenuEventType() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChangedEventType() |
 wxMouseCaptureLostEvent:wxMouseCaptureLostEventType() |
 wxMouseEvent:wxMouseEventType() |
 wxMoveEvent:wxMoveEventType() |
 wxNavigationKeyEvent:wxNavigationKeyEventType() |
 wxPaintEvent:wxPaintEventType() |
 wxPaletteChangedEvent:wxPaletteChangedEventType() |
 wxQueryNewPaletteEvent:wxQueryNewPaletteEventType() |
 wxSashEvent:wxSashEventType() |
 wxScrollEvent:wxScrollEventType() |
 wxScrollWinEvent:wxScrollWinEventType() |
 wxSetCursorEvent:wxSetCursorEventType() |
 wxShowEvent:wxShowEventType() |
 wxSizeEvent:wxSizeEventType() |
 wxSpinEvent:wxSpinEventType() |
 wxSplitterEvent:wxSplitterEventType() |
 wxStyledTextEvent:wxStyledTextEventType() |
 wxSysColourChangedEvent:wxSysColourChangedEventType() |
 wxTaskBarIconEvent:wxTaskBarIconEventType() |
 wxTreeEvent:wxTreeEventType() |
 wxUpdateUIEvent:wxUpdateUIEventType() |
 wxWebViewEvent:wxWebViewEventType() |
 wxWindowCreateEvent:wxWindowCreateEventType() |
 wxWindowDestroyEvent:wxWindowDestroyEventType()
wx() =
 #wx{id = integer(),
 obj = wx:wx_object(),
 userData = term(),
 event = event()}
event() =
 wxActivateEvent:wxActivate() |
 wxAuiManagerEvent:wxAuiManager() |
 wxAuiNotebookEvent:wxAuiNotebook() |
 wxBookCtrlEvent:wxBookCtrl() |
 wxCalendarEvent:wxCalendar() |
 wxChildFocusEvent:wxChildFocus() |
 wxClipboardTextEvent:wxClipboardText() |
 wxCloseEvent:wxClose() |
 wxColourPickerEvent:wxColourPicker() |
 wxCommandEvent:wxCommand() |
 wxContextMenuEvent:wxContextMenu() |
 wxDateEvent:wxDate() |
 wxDisplayChangedEvent:wxDisplayChanged() |
 wxDropFilesEvent:wxDropFiles() |
 wxEraseEvent:wxErase() |
 wxFileDirPickerEvent:wxFileDirPicker() |
 wxFocusEvent:wxFocus() |
 wxFontPickerEvent:wxFontPicker() |
 wxGridEvent:wxGrid() |
 wxHelpEvent:wxHelp() |

186 | Ericsson AB. All Rights Reserved.: wxErlang

wxEvtHandler

 wxHtmlLinkEvent:wxHtmlLink() |
 wxIconizeEvent:wxIconize() |
 wxIdleEvent:wxIdle() |
 wxInitDialogEvent:wxInitDialog() |
 wxJoystickEvent:wxJoystick() |
 wxKeyEvent:wxKey() |
 wxListEvent:wxList() |
 wxMaximizeEvent:wxMaximize() |
 wxMenuEvent:wxMenu() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChanged() |
 wxMouseCaptureLostEvent:wxMouseCaptureLost() |
 wxMouseEvent:wxMouse() |
 wxMoveEvent:wxMove() |
 wxNavigationKeyEvent:wxNavigationKey() |
 wxPaintEvent:wxPaint() |
 wxPaletteChangedEvent:wxPaletteChanged() |
 wxQueryNewPaletteEvent:wxQueryNewPalette() |
 wxSashEvent:wxSash() |
 wxScrollEvent:wxScroll() |
 wxScrollWinEvent:wxScrollWin() |
 wxSetCursorEvent:wxSetCursor() |
 wxShowEvent:wxShow() |
 wxSizeEvent:wxSize() |
 wxSpinEvent:wxSpin() |
 wxSplitterEvent:wxSplitter() |
 wxStyledTextEvent:wxStyledText() |
 wxSysColourChangedEvent:wxSysColourChanged() |
 wxTaskBarIconEvent:wxTaskBarIcon() |
 wxTreeEvent:wxTree() |
 wxUpdateUIEvent:wxUpdateUI() |
 wxWebViewEvent:wxWebView() |
 wxWindowCreateEvent:wxWindowCreate() |
 wxWindowDestroyEvent:wxWindowDestroy()

Exports

connect(This :: wxEvtHandler(), EventType :: wxEventType()) -> ok

connect(This :: wxEvtHandler(),
 EventType :: wxEventType(),
 Options :: [Option]) ->
 ok
Types:

Option =
 {id, integer()} |
 {lastId, integer()} |
 {skip, boolean()} |
 callback |
 {callback, function()} |

Ericsson AB. All Rights Reserved.: wxErlang | 187

wxEvtHandler

 {userData, term()}
This function subscribes to events.

Subscribes to events of type EventType, in the range id, lastId.

The events will be received as messages if no callback is supplied.

Options

id:{id, integer()} The identifier (or first of the identifier range) to be associated with this event handler.
Default is ?wxID_ANY

lastid:{lastId,integer()} The second part of the identifier range. If used 'id' must be set as the starting
identifier range. Default is ?wxID_ANY

skip:{skip,boolean()} If skip is true further event_handlers will be called. This is not used if the 'callback'
option is used. Default is false.

callback:{callback,function()} Use a
callbackfun(EventRecord::wx(),EventObject::wxObject()) to process the event. Default not
specified i.e. a message will be delivered to the process calling this function.

userData:{userData,term()} An erlang term that will be sent with the event. Default: [].

disconnect(This :: wxEvtHandler()) -> boolean()

disconnect(This :: wxEvtHandler(), EventType :: wxEventType()) ->
 boolean()

disconnect(This :: wxEvtHandler(),
 EventType :: wxEventType(),
 Opts :: [Option]) ->
 boolean()
Types:

Option =
 {id, integer()} | {lastId, integer()} | {callback, function()}

This function unsubscribes the process or callback fun from the event handler.

EventType may be the atom 'null' to match any eventtype. Notice that the options skip and userdata is not used to
match the eventhandler.

188 | Ericsson AB. All Rights Reserved.: wxErlang

wxFileDataObject

wxFileDataObject
Erlang module

wxFileDataObject is a specialization of wxDataObject for file names. The program works with it just as if it
were a list of absolute file names, but internally it uses the same format as Explorer and other compatible programs
under Windows or GNOME/KDE file manager under Unix which makes it possible to receive files from them using
this class.

See: wxDataObject, wxDataObjectSimple (not implemented in wx), wxTextDataObject,
wxBitmapDataObject, wxDataObject

This class is derived (and can use functions) from: wxDataObject

wxWidgets docs: wxFileDataObject

Data Types
wxFileDataObject() = wx:wx_object()

Exports

new() -> wxFileDataObject()
Constructor.

addFile(This, File) -> ok
Types:

This = wxFileDataObject()
File = unicode:chardata()

Adds a file to the file list represented by this data object (Windows only).

getFilenames(This) -> [unicode:charlist()]
Types:

This = wxFileDataObject()
Returns the array of file names.

destroy(This :: wxFileDataObject()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 189

href

wxFileDialog

wxFileDialog
Erlang module

This class represents the file chooser dialog.

The path and filename are distinct elements of a full file pathname. If path is ?wxEmptyString, the current directory
will be used. If filename is ?wxEmptyString, no default filename will be supplied. The wildcard determines what files
are displayed in the file selector, and file extension supplies a type extension for the required filename.

The typical usage for the open file dialog is:

The typical usage for the save file dialog is instead somewhat simpler:

Remark: All implementations of the wxFileDialog provide a wildcard filter. Typing a filename containing
wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only those files matching the pattern being
displayed. The wildcard may be a specification for multiple types of file with a description for each, such as: It must
be noted that wildcard support in the native Motif file dialog is quite limited: only one file type is supported, and it
is displayed without the descriptive test; "BMP files (*.bmp)|*.bmp" is displayed as "*.bmp", and both "BMP files
(*.bmp)|*.bmp|GIF files (*.gif)|*.gif" and "Image files|*.bmp;*.gif" are errors. On Mac macOS in the open file dialog
the filter choice box is not shown by default. Instead all given wildcards are appplied at the same time: So in the above
example all bmp, gif and png files are displayed. To enforce the display of the filter choice set the corresponding
wxSystemOptions before calling the file open dialog: But in contrast to Windows and Unix, where the file type
choice filters only the selected files, on Mac macOS even in this case the dialog shows all files matching all file types.
The files which does not match the currently selected file type are greyed out and are not selectable.

Styles

This class supports the following styles:

See: Overview cmndlg, ?wxFileSelector()

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxFileDialog

Data Types
wxFileDialog() = wx:wx_object()

Exports

new(Parent) -> wxFileDialog()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxFileDialog()
Types:

Parent = wxWindow:wxWindow()
Option =
 {message, unicode:chardata()} |
 {defaultDir, unicode:chardata()} |
 {defaultFile, unicode:chardata()} |
 {wildCard, unicode:chardata()} |
 {style, integer()} |

190 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxFileDialog

 {pos, {X :: integer(), Y :: integer()}} |
 {sz, {W :: integer(), H :: integer()}}

Constructor.

Use wxDialog:showModal/1 to show the dialog.

destroy(This :: wxFileDialog()) -> ok
Destructor.

getDirectory(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the default directory.

getFilename(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the default filename.

Note: This function can't be used with dialogs which have the wxFD_MULTIPLE style, use getFilenames/1
instead.

getFilenames(This) -> [unicode:charlist()]
Types:

This = wxFileDialog()
Fills the array filenames with the names of the files chosen.

This function should only be used with the dialogs which have wxFD_MULTIPLE style, use getFilename/1 for
the others.

Note that under Windows, if the user selects shortcuts, the filenames include paths, since the application cannot
determine the full path of each referenced file by appending the directory containing the shortcuts to the filename.

getFilterIndex(This) -> integer()
Types:

This = wxFileDialog()
Returns the index into the list of filters supplied, optionally, in the wildcard parameter.

Before the dialog is shown, this is the index which will be used when the dialog is first displayed.

After the dialog is shown, this is the index selected by the user.

getMessage(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the message that will be displayed on the dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 191

wxFileDialog

getPath(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the full path (directory and filename) of the selected file.

Note: This function can't be used with dialogs which have the wxFD_MULTIPLE style, use getPaths/1 instead.

getPaths(This) -> [unicode:charlist()]
Types:

This = wxFileDialog()
Fills the array paths with the full paths of the files chosen.

This function should only be used with the dialogs which have wxFD_MULTIPLE style, use getPath/1 for the
others.

getWildcard(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the file dialog wildcard.

setDirectory(This, Directory) -> ok
Types:

This = wxFileDialog()
Directory = unicode:chardata()

Sets the default directory.

setFilename(This, Setfilename) -> ok
Types:

This = wxFileDialog()
Setfilename = unicode:chardata()

Sets the default filename.

In wxGTK this will have little effect unless a default directory has previously been set.

setFilterIndex(This, FilterIndex) -> ok
Types:

This = wxFileDialog()
FilterIndex = integer()

Sets the default filter index, starting from zero.

setMessage(This, Message) -> ok
Types:

This = wxFileDialog()
Message = unicode:chardata()

Sets the message that will be displayed on the dialog.

192 | Ericsson AB. All Rights Reserved.: wxErlang

wxFileDialog

setPath(This, Path) -> ok
Types:

This = wxFileDialog()
Path = unicode:chardata()

Sets the path (the combined directory and filename that will be returned when the dialog is dismissed).

setWildcard(This, WildCard) -> ok
Types:

This = wxFileDialog()
WildCard = unicode:chardata()

Sets the wildcard, which can contain multiple file types, for example: "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif".

Note that the native Motif dialog has some limitations with respect to wildcards; see the Remarks section above.

Ericsson AB. All Rights Reserved.: wxErlang | 193

wxFileDirPickerEvent

wxFileDirPickerEvent
Erlang module

This event class is used for the events generated by wxFilePickerCtrl and by wxDirPickerCtrl.

See: wxFilePickerCtrl, wxDirPickerCtrl

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxFileDirPickerEvent

Events
Use wxEvtHandler:connect/3 with wxFileDirPickerEventType to subscribe to events of this type.

Data Types
wxFileDirPickerEvent() = wx:wx_object()
wxFileDirPicker() =
 #wxFileDirPicker{type =
 wxFileDirPickerEvent:wxFileDirPickerEventType(),
 path = unicode:chardata()}
wxFileDirPickerEventType() =
 command_filepicker_changed | command_dirpicker_changed

Exports

getPath(This) -> unicode:charlist()
Types:

This = wxFileDirPickerEvent()
Retrieve the absolute path of the file/directory the user has just selected.

194 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFilePickerCtrl

wxFilePickerCtrl
Erlang module

This control allows the user to select a file. The generic implementation is a button which brings up a wxFileDialog
when clicked. Native implementation may differ but this is usually a (small) widget which give access to the file-
chooser dialog. It is only available if wxUSE_FILEPICKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxFileDialog, wxFileDirPickerEvent

This class is derived (and can use functions) from: wxPickerBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxFilePickerCtrl

Events
Event types emitted from this class: command_filepicker_changed

Data Types
wxFilePickerCtrl() = wx:wx_object()

Exports

new() -> wxFilePickerCtrl()

new(Parent, Id) -> wxFilePickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxFilePickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {wildcard, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Initializes the object and calls create/4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 195

href

wxFilePickerCtrl

This = wxFilePickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxFilePickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {wildcard, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates this widget with the given parameters.

Return: true if the control was successfully created or false if creation failed.

getPath(This) -> unicode:charlist()
Types:

This = wxFilePickerCtrl()
Returns the absolute path of the currently selected file.

setPath(This, Filename) -> ok
Types:

This = wxFilePickerCtrl()
Filename = unicode:chardata()

Sets the absolute path of the currently selected file.

If the control uses wxFLP_FILE_MUST_EXIST and does not use wxFLP_USE_TEXTCTRL style, the filename
must be a name of an existing file and will be simply ignored by the native wxGTK implementation if this is not the
case (the generic implementation used under the other platforms accepts even invalid file names currently, but this is
subject to change in the future, don't rely on being able to use non-existent paths with it).

destroy(This :: wxFilePickerCtrl()) -> ok
Destroys the object.

196 | Ericsson AB. All Rights Reserved.: wxErlang

wxFindReplaceData

wxFindReplaceData
Erlang module

wxFindReplaceData holds the data for wxFindReplaceDialog.

It is used to initialize the dialog with the default values and will keep the last values from the dialog when it is closed.
It is also updated each time a wxFindDialogEvent (not implemented in wx) is generated so instead of using the
wxFindDialogEvent (not implemented in wx) methods you can also directly query this object.

Note that all SetXXX() methods may only be called before showing the dialog and calling them has no effect later.

wxWidgets docs: wxFindReplaceData

Data Types
wxFindReplaceData() = wx:wx_object()

Exports

new() -> wxFindReplaceData()

new(Options :: [Option]) -> wxFindReplaceData()
Types:

Option = {flags, integer()}
Constructor initializes the flags to default value (0).

getFindString(This) -> unicode:charlist()
Types:

This = wxFindReplaceData()
Get the string to find.

getReplaceString(This) -> unicode:charlist()
Types:

This = wxFindReplaceData()
Get the replacement string.

getFlags(This) -> integer()
Types:

This = wxFindReplaceData()
Get the combination of wxFindReplaceFlags values.

setFlags(This, Flags) -> ok
Types:

This = wxFindReplaceData()
Flags = integer()

Set the flags to use to initialize the controls of the dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 197

href

wxFindReplaceData

setFindString(This, Str) -> ok
Types:

This = wxFindReplaceData()
Str = unicode:chardata()

Set the string to find (used as initial value by the dialog).

setReplaceString(This, Str) -> ok
Types:

This = wxFindReplaceData()
Str = unicode:chardata()

Set the replacement string (used as initial value by the dialog).

destroy(This :: wxFindReplaceData()) -> ok
Destroys the object.

198 | Ericsson AB. All Rights Reserved.: wxErlang

wxFindReplaceDialog

wxFindReplaceDialog
Erlang module

wxFindReplaceDialog is a standard modeless dialog which is used to allow the user to search for some text (and
possibly replace it with something else).

The actual searching is supposed to be done in the owner window which is the parent of this dialog. Note that it means
that unlike for the other standard dialogs this one must have a parent window. Also note that there is no way to use
this dialog in a modal way; it is always, by design and implementation, modeless.

Please see the page_samples_dialogs sample for an example of using it.

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxFindReplaceDialog

Data Types
wxFindReplaceDialog() = wx:wx_object()

Exports

new() -> wxFindReplaceDialog()

new(Parent, Data, Title) -> wxFindReplaceDialog()
Types:

Parent = wxWindow:wxWindow()
Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()

new(Parent, Data, Title, Options :: [Option]) ->
 wxFindReplaceDialog()
Types:

Parent = wxWindow:wxWindow()
Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()
Option = {style, integer()}

After using default constructor create/5 must be called.

The parent and data parameters must be non-NULL.

destroy(This :: wxFindReplaceDialog()) -> ok
Destructor.

create(This, Parent, Data, Title) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 199

href

wxFindReplaceDialog

This = wxFindReplaceDialog()
Parent = wxWindow:wxWindow()
Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()

create(This, Parent, Data, Title, Options :: [Option]) ->
 boolean()
Types:

This = wxFindReplaceDialog()
Parent = wxWindow:wxWindow()
Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()
Option = {style, integer()}

Creates the dialog; use wxWindow:show/2 to show it on screen.

The parent and data parameters must be non-NULL.

getData(This) -> wxFindReplaceData:wxFindReplaceData()
Types:

This = wxFindReplaceDialog()
Get the wxFindReplaceData object used by this dialog.

200 | Ericsson AB. All Rights Reserved.: wxErlang

wxFlexGridSizer

wxFlexGridSizer
Erlang module

A flex grid sizer is a sizer which lays out its children in a two-dimensional table with all table fields in one row having
the same height and all fields in one column having the same width, but all rows or all columns are not necessarily
the same height or width as in the wxGridSizer.

Since wxWidgets 2.5.0, wxFlexGridSizer can also size items equally in one direction but unequally ("flexibly")
in the other. If the sizer is only flexible in one direction (this can be changed using setFlexibleDirection/2),
it needs to be decided how the sizer should grow in the other ("non-flexible") direction in order to fill the available
space. The setNonFlexibleGrowMode/2 method serves this purpose.

See: wxSizer, Overview sizer

This class is derived (and can use functions) from: wxGridSizer wxSizer

wxWidgets docs: wxFlexGridSizer

Data Types
wxFlexGridSizer() = wx:wx_object()

Exports

new(Cols) -> wxFlexGridSizer()
Types:

Cols = integer()

new(Cols, Options :: [Option]) -> wxFlexGridSizer()
Types:

Cols = integer()
Option = {gap, {W :: integer(), H :: integer()}}

new(Cols, Vgap, Hgap) -> wxFlexGridSizer()
new(Rows, Cols, Gap) -> wxFlexGridSizer()
Types:

Rows = Cols = integer()
Gap = {W :: integer(), H :: integer()}

new(Rows, Cols, Vgap, Hgap) -> wxFlexGridSizer()
Types:

Rows = Cols = Vgap = Hgap = integer()

addGrowableCol(This, Idx) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 201

href
href

wxFlexGridSizer

This = wxFlexGridSizer()
Idx = integer()

addGrowableCol(This, Idx, Options :: [Option]) -> ok
Types:

This = wxFlexGridSizer()
Idx = integer()
Option = {proportion, integer()}

Specifies that column idx (starting from zero) should be grown if there is extra space available to the sizer.

The proportion parameter has the same meaning as the stretch factor for the sizers (see wxBoxSizer) except
that if all proportions are 0, then all columns are resized equally (instead of not being resized at all).

Notice that the column must not be already growable, if you need to change the proportion you must call
removeGrowableCol/2 first and then make it growable (with a different proportion) again. You can use
IsColGrowable() (not implemented in wx) to check whether a column is already growable.

addGrowableRow(This, Idx) -> ok
Types:

This = wxFlexGridSizer()
Idx = integer()

addGrowableRow(This, Idx, Options :: [Option]) -> ok
Types:

This = wxFlexGridSizer()
Idx = integer()
Option = {proportion, integer()}

Specifies that row idx (starting from zero) should be grown if there is extra space available to the sizer.

This is identical to addGrowableCol/3 except that it works with rows and not columns.

getFlexibleDirection(This) -> integer()
Types:

This = wxFlexGridSizer()
Returns a ?wxOrientation value that specifies whether the sizer flexibly resizes its columns, rows, or both (default).

Return: One of the following values:

See: setFlexibleDirection/2

getNonFlexibleGrowMode(This) -> wx:wx_enum()
Types:

This = wxFlexGridSizer()
Returns the value that specifies how the sizer grows in the "non-flexible" direction if there is one.

The behaviour of the elements in the flexible direction (i.e. both rows and columns by default, or rows only if
getFlexibleDirection/1 is wxVERTICAL or columns only if it is wxHORIZONTAL) is always governed by
their proportion as specified in the call to addGrowableRow/3 or addGrowableCol/3. What happens in the
other direction depends on the value of returned by this function as described below.

202 | Ericsson AB. All Rights Reserved.: wxErlang

wxFlexGridSizer

Return: One of the following values:

See: setFlexibleDirection/2, setNonFlexibleGrowMode/2

removeGrowableCol(This, Idx) -> ok
Types:

This = wxFlexGridSizer()
Idx = integer()

Specifies that the idx column index is no longer growable.

removeGrowableRow(This, Idx) -> ok
Types:

This = wxFlexGridSizer()
Idx = integer()

Specifies that the idx row index is no longer growable.

setFlexibleDirection(This, Direction) -> ok
Types:

This = wxFlexGridSizer()
Direction = integer()

Specifies whether the sizer should flexibly resize its columns, rows, or both.

Argument direction can be wxVERTICAL, wxHORIZONTAL or wxBOTH (which is the default value). Any other
value is ignored.

See getFlexibleDirection/1 for the explanation of these values. Note that this method does not trigger
relayout.

setNonFlexibleGrowMode(This, Mode) -> ok
Types:

This = wxFlexGridSizer()
Mode = wx:wx_enum()

Specifies how the sizer should grow in the non-flexible direction if there is one (so setFlexibleDirection/2
must have been called previously).

Argument mode can be one of those documented in getNonFlexibleGrowMode/1, please see there for their
explanation. Note that this method does not trigger relayout.

destroy(This :: wxFlexGridSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 203

wxFocusEvent

wxFocusEvent
Erlang module

A focus event is sent when a window's focus changes. The window losing focus receives a "kill focus" event while
the window gaining it gets a "set focus" one.

Notice that the set focus event happens both when the user gives focus to the window (whether using the mouse or
keyboard) and when it is done from the program itself using wxWindow:setFocus/1.

The focus event handlers should almost invariably call wxEvent:skip/2 on their event argument to allow the
default handling to take place. Failure to do this may result in incorrect behaviour of the native controls. Also note
that wxEVT_KILL_FOCUS handler must not call wxWindow:setFocus/1 as this, again, is not supported by all
native controls. If you need to do this, consider using the Delayed Action Mechanism (not implemented in
wx) described in wxIdleEvent documentation.

See: Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxFocusEvent

Events
Use wxEvtHandler:connect/3 with wxFocusEventType to subscribe to events of this type.

Data Types
wxFocusEvent() = wx:wx_object()
wxFocus() =
 #wxFocus{type = wxFocusEvent:wxFocusEventType(),
 win = wxWindow:wxWindow()}
wxFocusEventType() = set_focus | kill_focus

Exports

getWindow(This) -> wxWindow:wxWindow()
Types:

This = wxFocusEvent()
Returns the window associated with this event, that is the window which had the focus before for the
wxEVT_SET_FOCUS event and the window which is going to receive focus for the wxEVT_KILL_FOCUS one.

Warning: the window pointer may be NULL!

204 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxFontData

wxFontData
Erlang module

This class holds a variety of information related to font dialogs.

See: Overview cmndlg, wxFont, wxFontDialog

wxWidgets docs: wxFontData

Data Types
wxFontData() = wx:wx_object()

Exports

new() -> wxFontData()
Constructor.

Initializes fontColour to black, showHelp to false, allowSymbols to true, enableEffects to true,
minSize to 0 and maxSize to 0.

new(Data) -> wxFontData()
Types:

Data = wxFontData()
Copy Constructor.

enableEffects(This, Enable) -> ok
Types:

This = wxFontData()
Enable = boolean()

Enables or disables "effects" under Windows or generic only.

This refers to the controls for manipulating colour, strikeout and underline properties.

The default value is true.

getAllowSymbols(This) -> boolean()
Types:

This = wxFontData()
Under Windows, returns a flag determining whether symbol fonts can be selected.

Has no effect on other platforms.

The default value is true.

getColour(This) -> wx:wx_colour4()
Types:

This = wxFontData()
Gets the colour associated with the font dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 205

href
href

wxFontData

The default value is black.

getChosenFont(This) -> wxFont:wxFont()
Types:

This = wxFontData()
Gets the font chosen by the user if the user pressed OK (wxFontDialog::ShowModal() (not implemented in
wx) returned wxID_OK).

getEnableEffects(This) -> boolean()
Types:

This = wxFontData()
Determines whether "effects" are enabled under Windows.

This refers to the controls for manipulating colour, strikeout and underline properties.

The default value is true.

getInitialFont(This) -> wxFont:wxFont()
Types:

This = wxFontData()
Gets the font that will be initially used by the font dialog.

This should have previously been set by the application.

getShowHelp(This) -> boolean()
Types:

This = wxFontData()
Returns true if the Help button will be shown (Windows only).

The default value is false.

setAllowSymbols(This, AllowSymbols) -> ok
Types:

This = wxFontData()
AllowSymbols = boolean()

Under Windows, determines whether symbol fonts can be selected.

Has no effect on other platforms.

The default value is true.

setChosenFont(This, Font) -> ok
Types:

This = wxFontData()
Font = wxFont:wxFont()

Sets the font that will be returned to the user (for internal use only).

206 | Ericsson AB. All Rights Reserved.: wxErlang

wxFontData

setColour(This, Colour) -> ok
Types:

This = wxFontData()
Colour = wx:wx_colour()

Sets the colour that will be used for the font foreground colour.

The default colour is black.

setInitialFont(This, Font) -> ok
Types:

This = wxFontData()
Font = wxFont:wxFont()

Sets the font that will be initially used by the font dialog.

setRange(This, Min, Max) -> ok
Types:

This = wxFontData()
Min = Max = integer()

Sets the valid range for the font point size (Windows only).

The default is 0, 0 (unrestricted range).

setShowHelp(This, ShowHelp) -> ok
Types:

This = wxFontData()
ShowHelp = boolean()

Determines whether the Help button will be displayed in the font dialog (Windows only).

The default value is false.

destroy(This :: wxFontData()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 207

wxFontDialog

wxFontDialog
Erlang module

This class represents the font chooser dialog.

See: Overview cmndlg, wxFontData, ?wxGetFontFromUser()

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxFontDialog

Data Types
wxFontDialog() = wx:wx_object()

Exports

new() -> wxFontDialog()
Default ctor.

create/3 must be called before the dialog can be shown.

new(Parent, Data) -> wxFontDialog()
Types:

Parent = wxWindow:wxWindow()
Data = wxFontData:wxFontData()

Constructor.

Pass a parent window, and the wxFontData object to be used to initialize the dialog controls.

create(This, Parent, Data) -> boolean()
Types:

This = wxFontDialog()
Parent = wxWindow:wxWindow()
Data = wxFontData:wxFontData()

Creates the dialog if the wxFontDialog object had been initialized using the default constructor.

Return: true on success and false if an error occurred.

getFontData(This) -> wxFontData:wxFontData()
Types:

This = wxFontDialog()
Returns the wxFontData associated with the font dialog.

destroy(This :: wxFontDialog()) -> ok
Destroys the object.

208 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxFontPickerCtrl

wxFontPickerCtrl
Erlang module

This control allows the user to select a font. The generic implementation is a button which brings up a wxFontDialog
when clicked. Native implementation may differ but this is usually a (small) widget which give access to the font-
chooser dialog. It is only available if wxUSE_FONTPICKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxFontDialog, wxFontPickerEvent

This class is derived (and can use functions) from: wxPickerBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxFontPickerCtrl

Events
Event types emitted from this class: command_fontpicker_changed

Data Types
wxFontPickerCtrl() = wx:wx_object()

Exports

new() -> wxFontPickerCtrl()

new(Parent, Id) -> wxFontPickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxFontPickerCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {initial, wxFont:wxFont()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Initializes the object and calls create/4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 209

href

wxFontPickerCtrl

This = wxFontPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxFontPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {initial, wxFont:wxFont()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates this widget with given parameters.

Return: true if the control was successfully created or false if creation failed.

getSelectedFont(This) -> wxFont:wxFont()
Types:

This = wxFontPickerCtrl()
Returns the currently selected font.

Note that this function is completely different from wxWindow:getFont/1.

setSelectedFont(This, Font) -> ok
Types:

This = wxFontPickerCtrl()
Font = wxFont:wxFont()

Sets the currently selected font.

Note that this function is completely different from wxWindow:setFont/2.

getMaxPointSize(This) -> integer()
Types:

This = wxFontPickerCtrl()
Returns the maximum point size value allowed for the user-chosen font.

setMaxPointSize(This, Max) -> ok
Types:

This = wxFontPickerCtrl()
Max = integer()

Sets the maximum point size value allowed for the user-chosen font.

The default value is 100. Note that big fonts can require a lot of memory and CPU time both for creation and
for rendering; thus, specially because the user has the option to specify the fontsize through a text control (see

210 | Ericsson AB. All Rights Reserved.: wxErlang

wxFontPickerCtrl

wxFNTP_USE_TEXTCTRL), it's a good idea to put a limit to the maximum font size when huge fonts do not make
much sense.

destroy(This :: wxFontPickerCtrl()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 211

wxFontPickerEvent

wxFontPickerEvent
Erlang module

This event class is used for the events generated by wxFontPickerCtrl.

See: wxFontPickerCtrl

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxFontPickerEvent

Events
Use wxEvtHandler:connect/3 with wxFontPickerEventType to subscribe to events of this type.

Data Types
wxFontPickerEvent() = wx:wx_object()
wxFontPicker() =
 #wxFontPicker{type =
 wxFontPickerEvent:wxFontPickerEventType(),
 font = wxFont:wxFont()}
wxFontPickerEventType() = command_fontpicker_changed

Exports

getFont(This) -> wxFont:wxFont()
Types:

This = wxFontPickerEvent()
Retrieve the font the user has just selected.

212 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFont

wxFont
Erlang module

A font is an object which determines the appearance of text.

Fonts are used for drawing text to a device context, and setting the appearance of a window's text, see
wxDC:setFont/2 and wxWindow:setFont/2.

The easiest way to create a custom font is to use wxFontInfo (not implemented in wx) object to specify the font
attributes and then use new/5 constructor. Alternatively, you could start with one of the pre-defined fonts or use
wxWindow:getFont/1 and modify the font, e.g. by increasing its size using MakeLarger() (not implemented
in wx) or changing its weight using MakeBold() (not implemented in wx).

This class uses reference counting and copy-on-write internally so that assignments between two instances of this class
are very cheap. You can therefore use actual objects instead of pointers without efficiency problems. If an instance
of this class is changed it will create its own data internally so that other instances, which previously shared the data
using the reference counting, are not affected.

You can retrieve the current system font settings with wxSystemSettings.

Predefined objects (include wx.hrl): ?wxNullFont, ?wxNORMAL_FONT, ?wxSMALL_FONT, ?
wxITALIC_FONT, ?wxSWISS_FONT

See: Overview font, wxDC:setFont/2, wxDC:drawText/3, wxDC:getTextExtent/3, wxFontDialog,
wxSystemSettings

wxWidgets docs: wxFont

Data Types
wxFont() = wx:wx_object()

Exports

new() -> wxFont()
Default ctor.

new(NativeInfoString) -> wxFont()
new(Font) -> wxFont()
Types:

Font = wxFont()
Copy constructor, uses reference counting.

new(PointSize, Family, Style, Weight) -> wxFont()
new(PixelSize, Family, Style, Weight) -> wxFont()
Types:

PixelSize = {W :: integer(), H :: integer()}
Family = Style = Weight = wx:wx_enum()

new(PointSize, Family, Style, Weight, Options :: [Option]) ->

Ericsson AB. All Rights Reserved.: wxErlang | 213

href
href

wxFont

 wxFont()
new(PixelSize, Family, Style, Weight, Options :: [Option]) ->
 wxFont()
Types:

PixelSize = {W :: integer(), H :: integer()}
Family = Style = Weight = wx:wx_enum()
Option =
 {underline, boolean()} |
 {faceName, unicode:chardata()} |
 {encoding, wx:wx_enum()}

Creates a font object with the specified attributes and size in pixels.

Notice that the use of this constructor is often more verbose and less readable than the use of constructor from
wxFontInfo (not implemented in wx), consider using that constructor instead.

Remark: If the desired font does not exist, the closest match will be chosen. Under Windows, only scalable TrueType
fonts are used.

destroy(This :: wxFont()) -> ok
Destructor.

See reference-counted object destruction for more info.

Remark: Although all remaining fonts are deleted when the application exits, the application should try to clean up
all fonts itself. This is because wxWidgets cannot know if a pointer to the font object is stored in an application data
structure, and there is a risk of double deletion.

isFixedWidth(This) -> boolean()
Types:

This = wxFont()
Returns true if the font is a fixed width (or monospaced) font, false if it is a proportional one or font is invalid.

Note that this function under some platforms is different from just testing for the font family being equal to
wxFONTFAMILY_TELETYPE because native platform-specific functions are used for the check (resulting in a more
accurate return value).

getDefaultEncoding() -> wx:wx_enum()
Returns the current application's default encoding.

See: Overview fontencoding, setDefaultEncoding/1

getFaceName(This) -> unicode:charlist()
Types:

This = wxFont()
Returns the face name associated with the font, or the empty string if there is no face information.

See: setFaceName/2

getFamily(This) -> wx:wx_enum()
Types:

214 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFont

This = wxFont()
Gets the font family if possible.

As described in ?wxFontFamily docs the returned value acts as a rough, basic classification of the main font properties
(look, spacing).

If the current font face name is not recognized by wxFont or by the underlying system, wxFONTFAMILY_DEFAULT
is returned.

Note that currently this function is not very precise and so not particularly useful. Font families mostly make sense
only for font creation, see setFamily/2.

See: setFamily/2

getNativeFontInfoDesc(This) -> unicode:charlist()
Types:

This = wxFont()
Returns the platform-dependent string completely describing this font.

Returned string is always non-empty unless the font is invalid (in which case an assert is triggered).

Note that the returned string is not meant to be shown or edited by the user: a typical use of this function is for serializing
in string-form a wxFont object.

See: SetNativeFontInfo() (not implemented in wx), getNativeFontInfoUserDesc/1

getNativeFontInfoUserDesc(This) -> unicode:charlist()
Types:

This = wxFont()
Returns a user-friendly string for this font object.

Returned string is always non-empty unless the font is invalid (in which case an assert is triggered).

The string does not encode all wxFont infos under all platforms; e.g. under wxMSW the font family is not present
in the returned string.

Some examples of the formats of returned strings (which are platform-dependent) are in
SetNativeFontInfoUserDesc() (not implemented in wx).

See: SetNativeFontInfoUserDesc() (not implemented in wx), getNativeFontInfoDesc/1

getPointSize(This) -> integer()
Types:

This = wxFont()
Gets the point size as an integer number.

This function is kept for compatibility reasons. New code should use GetFractionalPointSize() (not
implemented in wx) and support fractional point sizes.

See: setPointSize/2

See: GetFractionalPointSize() (not implemented in wx)

getStyle(This) -> wx:wx_enum()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 215

wxFont

This = wxFont()
Gets the font style.

See ?wxFontStyle for a list of valid styles.

See: setStyle/2

getUnderlined(This) -> boolean()
Types:

This = wxFont()
Returns true if the font is underlined, false otherwise.

See: setUnderlined/2

getWeight(This) -> wx:wx_enum()
Types:

This = wxFont()
Gets the font weight.

See ?wxFontWeight for a list of valid weight identifiers.

See: setWeight/2

ok(This) -> boolean()
Types:

This = wxFont()
See: isOk/1.

isOk(This) -> boolean()
Types:

This = wxFont()
Returns true if this object is a valid font, false otherwise.

setDefaultEncoding(Encoding) -> ok
Types:

Encoding = wx:wx_enum()
Sets the default font encoding.

See: Overview fontencoding, getDefaultEncoding/0

setFaceName(This, FaceName) -> boolean()
Types:

This = wxFont()
FaceName = unicode:chardata()

Sets the facename for the font.

Remark: To avoid portability problems, don't rely on a specific face, but specify the font family instead (see ?
wxFontFamily and setFamily/2).

216 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFont

Return: true if the given face name exists; if the face name doesn't exist in the user's system then the font is invalidated
(so that isOk/1 will return false) and false is returned.

See: getFaceName/1, setFamily/2

setFamily(This, Family) -> ok
Types:

This = wxFont()
Family = wx:wx_enum()

Sets the font family.

As described in ?wxFontFamily docs the given family value acts as a rough, basic indication of the main font
properties (look, spacing).

Note that changing the font family results in changing the font face name.

See: getFamily/1, setFaceName/2

setPointSize(This, PointSize) -> ok
Types:

This = wxFont()
PointSize = integer()

Sets the font size in points to an integer value.

This is a legacy version of the function only supporting integer point sizes. It can still be used, but to avoid
unnecessarily restricting the font size in points to integer values, consider using the new (added in wxWidgets 3.1.2)
SetFractionalPointSize() (not implemented in wx) function instead.

setStyle(This, Style) -> ok
Types:

This = wxFont()
Style = wx:wx_enum()

Sets the font style.

See: getStyle/1

setUnderlined(This, Underlined) -> ok
Types:

This = wxFont()
Underlined = boolean()

Sets underlining.

See: getUnderlined/1

setWeight(This, Weight) -> ok
Types:

This = wxFont()
Weight = wx:wx_enum()

Sets the font weight.

Ericsson AB. All Rights Reserved.: wxErlang | 217

wxFont

See: getWeight/1

218 | Ericsson AB. All Rights Reserved.: wxErlang

wxFrame

wxFrame
Erlang module

A frame is a window whose size and position can (usually) be changed by the user.

It usually has thick borders and a title bar, and can optionally contain a menu bar, toolbar and status bar. A frame can
contain any window that is not a frame or dialog.

A frame that has a status bar and toolbar, created via the createStatusBar/2 and createToolBar/2
functions, manages these windows and adjusts the value returned by wxWindow:getClientSize/1 to reflect the
remaining size available to application windows.

Remark: An application should normally define an wxCloseEvent handler for the frame to respond to system close
events, for example so that related data and subwindows can be cleaned up.

Default event processing

wxFrame processes the following events:

Styles

This class supports the following styles:

See also the overview_windowstyles.

Extra Styles

This class supports the following extra styles:

See: wxMDIParentFrame, wxMDIChildFrame, wxMiniFrame, wxDialog

This class is derived (and can use functions) from: wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxFrame

Events
Event types emitted from this class: close_window, iconize, menu_open, menu_close,
menu_highlight

Data Types
wxFrame() = wx:wx_object()

Exports

new() -> wxFrame()
Default constructor.

new(Parent, Id, Title) -> wxFrame()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 219

href

wxFrame

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

new(Parent, Id, Title, Options :: [Option]) -> wxFrame()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating the window.

Remark: For Motif, MWM (the Motif Window Manager) should be running for any window styles to work (otherwise
all styles take effect).

See: create/5

destroy(This :: wxFrame()) -> ok
Destructor.

Destroys all child windows and menu bar if present.

See overview_windowdeletion for more info.

create(This, Parent, Id, Title) -> boolean()
Types:

This = wxFrame()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

create(This, Parent, Id, Title, Options :: [Option]) -> boolean()
Types:

This = wxFrame()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Used in two-step frame construction.

See new/4 for further details.

220 | Ericsson AB. All Rights Reserved.: wxErlang

wxFrame

createStatusBar(This) -> wxStatusBar:wxStatusBar()
Types:

This = wxFrame()

createStatusBar(This, Options :: [Option]) ->
 wxStatusBar:wxStatusBar()
Types:

This = wxFrame()
Option =
 {number, integer()} | {style, integer()} | {id, integer()}

Creates a status bar at the bottom of the frame.

Return: A pointer to the status bar if it was created successfully, NULL otherwise.

Remark: The width of the status bar is the whole width of the frame (adjusted automatically when resizing), and the
height and text size are chosen by the host windowing system.

See: setStatusText/3, OnCreateStatusBar() (not implemented in wx), getStatusBar/1

createToolBar(This) -> wxToolBar:wxToolBar()
Types:

This = wxFrame()

createToolBar(This, Options :: [Option]) -> wxToolBar:wxToolBar()
Types:

This = wxFrame()
Option = {style, integer()} | {id, integer()}

Creates a toolbar at the top or left of the frame.

Return: A pointer to the toolbar if it was created successfully, NULL otherwise.

Remark: By default, the toolbar is an instance of wxToolBar. To use a different class, override
OnCreateToolBar() (not implemented in wx). When a toolbar has been created with this function, or made
known to the frame with setToolBar/2, the frame will manage the toolbar position and adjust the return value
from wxWindow:getClientSize/1 to reflect the available space for application windows. Under Pocket PC,
you should always use this function for creating the toolbar to be managed by the frame, so that wxWidgets can use a
combined menubar and toolbar. Where you manage your own toolbars, create a wxToolBar as usual.

See: createStatusBar/2, OnCreateToolBar() (not implemented in wx), setToolBar/2,
getToolBar/1

getClientAreaOrigin(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxFrame()
Returns the origin of the frame client area (in client coordinates).

It may be different from (0, 0) if the frame has a toolbar.

getMenuBar(This) -> wxMenuBar:wxMenuBar()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 221

wxFrame

This = wxFrame()
Returns a pointer to the menubar currently associated with the frame (if any).

See: setMenuBar/2, wxMenuBar, wxMenu

getStatusBar(This) -> wxStatusBar:wxStatusBar()
Types:

This = wxFrame()
Returns a pointer to the status bar currently associated with the frame (if any).

See: createStatusBar/2, wxStatusBar

getStatusBarPane(This) -> integer()
Types:

This = wxFrame()
Returns the status bar pane used to display menu and toolbar help.

See: setStatusBarPane/2

getToolBar(This) -> wxToolBar:wxToolBar()
Types:

This = wxFrame()
Returns a pointer to the toolbar currently associated with the frame (if any).

See: createToolBar/2, wxToolBar, setToolBar/2

processCommand(This, Id) -> boolean()
Types:

This = wxFrame()
Id = integer()

Simulate a menu command.

sendSizeEvent(This) -> ok
Types:

This = wxFrame()

sendSizeEvent(This, Options :: [Option]) -> ok
Types:

This = wxFrame()
Option = {flags, integer()}

This function sends a dummy wxSizeEvent to the window allowing it to re-layout its children positions.

It is sometimes useful to call this function after adding or deleting a children after the frame creation or if a child
size changes. Note that if the frame is using either sizers or constraints for the children layout, it is enough to call
wxWindow:layout/1 directly and this function should not be used in this case.

If flags includes wxSEND_EVENT_POST value, this function posts the event, i.e. schedules it for later processing,
instead of dispatching it directly. You can also use PostSizeEvent() (not implemented in wx) as a more readable
equivalent of calling this function with this flag.

222 | Ericsson AB. All Rights Reserved.: wxErlang

wxFrame

setMenuBar(This, MenuBar) -> ok
Types:

This = wxFrame()
MenuBar = wxMenuBar:wxMenuBar()

Tells the frame to show the given menu bar.

Remark: If the frame is destroyed, the menu bar and its menus will be destroyed also, so do not delete the menu
bar explicitly (except by resetting the frame's menu bar to another frame or NULL). Under Windows, a size event is
generated, so be sure to initialize data members properly before calling setMenuBar/2. Note that on some platforms,
it is not possible to call this function twice for the same frame object.

See: getMenuBar/1, wxMenuBar, wxMenu

setStatusBar(This, StatusBar) -> ok
Types:

This = wxFrame()
StatusBar = wxStatusBar:wxStatusBar()

Associates a status bar with the frame.

If statusBar is NULL, then the status bar, if present, is detached from the frame, but not deleted.

See: createStatusBar/2, wxStatusBar, getStatusBar/1

setStatusBarPane(This, N) -> ok
Types:

This = wxFrame()
N = integer()

Set the status bar pane used to display menu and toolbar help.

Using -1 disables help display.

setStatusText(This, Text) -> ok
Types:

This = wxFrame()
Text = unicode:chardata()

setStatusText(This, Text, Options :: [Option]) -> ok
Types:

This = wxFrame()
Text = unicode:chardata()
Option = {number, integer()}

Sets the status bar text and updates the status bar display.

This is a simple wrapper for wxStatusBar:setStatusText/3 which doesn't do anything if the frame has no
status bar, i.e. getStatusBar/1 returns NULL.

Remark: Use an empty string to clear the status bar.

See: createStatusBar/2, wxStatusBar

Ericsson AB. All Rights Reserved.: wxErlang | 223

wxFrame

setStatusWidths(This, Widths_field) -> ok
Types:

This = wxFrame()
Widths_field = [integer()]

Sets the widths of the fields in the status bar.

Remark: The widths of the variable fields are calculated from the total width of all fields, minus the sum of widths of
the non-variable fields, divided by the number of variable fields.

setToolBar(This, ToolBar) -> ok
Types:

This = wxFrame()
ToolBar = wxToolBar:wxToolBar()

Associates a toolbar with the frame.

224 | Ericsson AB. All Rights Reserved.: wxErlang

wxGauge

wxGauge
Erlang module

A gauge is a horizontal or vertical bar which shows a quantity (often time).

wxGauge supports two working modes: determinate and indeterminate progress.

The first is the usual working mode (see setValue/2 and setRange/2) while the second can be used when
the program is doing some processing but you don't know how much progress is being done. In this case, you can
periodically call the pulse/1 function to make the progress bar switch to indeterminate mode (graphically it's usually
a set of blocks which move or bounce in the bar control).

wxGauge supports dynamic switch between these two work modes.

There are no user commands for the gauge.

Styles

This class supports the following styles:

See: wxSlider, wxScrollBar

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxGauge

Data Types
wxGauge() = wx:wx_object()

Exports

new() -> wxGauge()
Default constructor.

new(Parent, Id, Range) -> wxGauge()
Types:

Parent = wxWindow:wxWindow()
Id = Range = integer()

new(Parent, Id, Range, Options :: [Option]) -> wxGauge()
Types:

Parent = wxWindow:wxWindow()
Id = Range = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a gauge.

See: create/5

Ericsson AB. All Rights Reserved.: wxErlang | 225

href

wxGauge

destroy(This :: wxGauge()) -> ok
Destructor, destroying the gauge.

create(This, Parent, Id, Range) -> boolean()
Types:

This = wxGauge()
Parent = wxWindow:wxWindow()
Id = Range = integer()

create(This, Parent, Id, Range, Options :: [Option]) -> boolean()
Types:

This = wxGauge()
Parent = wxWindow:wxWindow()
Id = Range = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates the gauge for two-step construction.

See new/4 for further details.

getRange(This) -> integer()
Types:

This = wxGauge()
Returns the maximum position of the gauge.

See: setRange/2

getValue(This) -> integer()
Types:

This = wxGauge()
Returns the current position of the gauge.

See: setValue/2

isVertical(This) -> boolean()
Types:

This = wxGauge()
Returns true if the gauge is vertical (has wxGA_VERTICAL style) and false otherwise.

setRange(This, Range) -> ok
Types:

226 | Ericsson AB. All Rights Reserved.: wxErlang

wxGauge

This = wxGauge()
Range = integer()

Sets the range (maximum value) of the gauge.

This function makes the gauge switch to determinate mode, if it's not already.

When the gauge is in indeterminate mode, under wxMSW the gauge repeatedly goes from zero to range and back;
under other ports when in indeterminate mode, the range setting is ignored.

See: getRange/1

setValue(This, Pos) -> ok
Types:

This = wxGauge()
Pos = integer()

Sets the position of the gauge.

The pos must be between 0 and the gauge range as returned by getRange/1, inclusive.

This function makes the gauge switch to determinate mode, if it was in indeterminate mode before.

See: getValue/1

pulse(This) -> ok
Types:

This = wxGauge()
Switch the gauge to indeterminate mode (if required) and makes the gauge move a bit to indicate the user that some
progress has been made.

Note: After calling this function the value returned by getValue/1 is undefined and thus you need to explicitly call
setValue/2 if you want to restore the determinate mode.

Ericsson AB. All Rights Reserved.: wxErlang | 227

wxGBSizerItem

wxGBSizerItem
Erlang module

The wxGBSizerItem class is used by the wxGridBagSizer for tracking the items in the sizer. It adds grid position
and spanning information to the normal wxSizerItem by adding wxGBPosition (not implemented in wx) and
wxGBSpan (not implemented in wx) attributes. Most of the time you will not need to use a wxGBSizerItem directly
in your code, but there are a couple of cases where it is handy.

This class is derived (and can use functions) from: wxSizerItem

wxWidgets docs: wxGBSizerItem

Data Types
wxGBSizerItem() = wx:wx_object()

228 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGCDC

wxGCDC
Erlang module

wxGCDC is a device context that draws on a wxGraphicsContext.

wxGCDC does its best to implement wxDC API, but the following features are not (fully) implemented because
wxGraphicsContext doesn't support them:

See: wxDC, wxGraphicsContext

This class is derived (and can use functions) from: wxDC

wxWidgets docs: wxGCDC

Data Types
wxGCDC() = wx:wx_object()

Exports

new() -> wxGCDC()

new(WindowDC) -> wxGCDC()
Types:

WindowDC =
 wxWindowDC:wxWindowDC() |
 wxMemoryDC:wxMemoryDC() |
 wxGraphicsContext:wxGraphicsContext()

Constructs a wxGCDC from a wxWindowDC.

destroy(This :: wxGCDC()) -> ok

getGraphicsContext(This) -> wxGraphicsContext:wxGraphicsContext()
Types:

This = wxGCDC()
Retrieves associated wxGraphicsContext.

setGraphicsContext(This, Context) -> ok
Types:

This = wxGCDC()
Context = wxGraphicsContext:wxGraphicsContext()

Set the graphics context to be used for this wxGCDC.

Note that this object takes ownership of context and will delete it when it is destroyed or when
setGraphicsContext/2 is called again.

Also, unlike the constructor taking wxGraphicsContext, this method will reapply the current font, pen and brush,
so that this object continues to use them, if they had been changed before (which is never the case when constructing
wxGCDC directly from wxGraphicsContext).

Ericsson AB. All Rights Reserved.: wxErlang | 229

href

wxGenericDirCtrl

wxGenericDirCtrl
Erlang module

This control can be used to place a directory listing (with optional files) on an arbitrary window.

The control contains a wxTreeCtrl window representing the directory hierarchy, and optionally, a wxChoice
window containing a list of filters.

Styles

This class supports the following styles:

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxGenericDirCtrl

Events
Event types emitted from this class: dirctrl_selectionchanged, dirctrl_fileactivated

Data Types
wxGenericDirCtrl() = wx:wx_object()

Exports

new() -> wxGenericDirCtrl()
Default constructor.

new(Parent) -> wxGenericDirCtrl()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxGenericDirCtrl()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {dir, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {filter, unicode:chardata()} |
 {defaultFilter, integer()}

Main constructor.

destroy(This :: wxGenericDirCtrl()) -> ok
Destructor.

230 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGenericDirCtrl

create(This, Parent) -> boolean()
Types:

This = wxGenericDirCtrl()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxGenericDirCtrl()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {dir, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {filter, unicode:chardata()} |
 {defaultFilter, integer()}

Create function for two-step construction.

See new/2 for details.

init(This) -> ok
Types:

This = wxGenericDirCtrl()
Initializes variables.

collapseTree(This) -> ok
Types:

This = wxGenericDirCtrl()
Collapses the entire tree.

expandPath(This, Path) -> boolean()
Types:

This = wxGenericDirCtrl()
Path = unicode:chardata()

Tries to expand as much of the given path as possible, so that the filename or directory is visible in the tree control.

getDefaultPath(This) -> unicode:charlist()
Types:

This = wxGenericDirCtrl()
Gets the default path.

getPath(This) -> unicode:charlist()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 231

wxGenericDirCtrl

This = wxGenericDirCtrl()
Gets the currently-selected directory or filename.

getPath(This, ItemId) -> unicode:charlist()
Types:

This = wxGenericDirCtrl()
ItemId = integer()

Gets the path corresponding to the given tree control item.

Since: 2.9.5

getFilePath(This) -> unicode:charlist()
Types:

This = wxGenericDirCtrl()
Gets selected filename path only (else empty string).

This function doesn't count a directory as a selection.

getFilter(This) -> unicode:charlist()
Types:

This = wxGenericDirCtrl()
Returns the filter string.

getFilterIndex(This) -> integer()
Types:

This = wxGenericDirCtrl()
Returns the current filter index (zero-based).

getRootId(This) -> integer()
Types:

This = wxGenericDirCtrl()
Returns the root id for the tree control.

getTreeCtrl(This) -> wxTreeCtrl:wxTreeCtrl()
Types:

This = wxGenericDirCtrl()
Returns a pointer to the tree control.

reCreateTree(This) -> ok
Types:

This = wxGenericDirCtrl()
Collapse and expand the tree, thus re-creating it from scratch.

May be used to update the displayed directory content.

232 | Ericsson AB. All Rights Reserved.: wxErlang

wxGenericDirCtrl

setDefaultPath(This, Path) -> ok
Types:

This = wxGenericDirCtrl()
Path = unicode:chardata()

Sets the default path.

setFilter(This, Filter) -> ok
Types:

This = wxGenericDirCtrl()
Filter = unicode:chardata()

Sets the filter string.

setFilterIndex(This, N) -> ok
Types:

This = wxGenericDirCtrl()
N = integer()

Sets the current filter index (zero-based).

setPath(This, Path) -> ok
Types:

This = wxGenericDirCtrl()
Path = unicode:chardata()

Sets the current path.

Ericsson AB. All Rights Reserved.: wxErlang | 233

wxGLCanvas

wxGLCanvas
Erlang module

wxGLCanvas is a class for displaying OpenGL graphics. It is always used in conjunction with wxGLContext as
the context can only be made current (i.e. active for the OpenGL commands) when it is associated to a wxGLCanvas.

More precisely, you first need to create a wxGLCanvas window and then create an instance of a wxGLContext
that is initialized with this wxGLCanvas and then later use either setCurrent/2 with the instance of the
wxGLContext or wxGLContext:setCurrent/2 with the instance of the wxGLCanvas (which might be not
the same as was used for the creation of the context) to bind the OpenGL state that is represented by the rendering
context to the canvas, and then finally call swapBuffers/1 to swap the buffers of the OpenGL canvas and thus
show your current output.

Please note that wxGLContext always uses physical pixels, even on the platforms where wxWindow uses logical
pixels, affected by the coordinate scaling, on high DPI displays. Thus, if you want to set the OpenGL view port
to the size of entire window, you must multiply the result returned by wxWindow:getClientSize/1 by
wxWindow:getContentScaleFactor/1 before passing it to glViewport(). Same considerations apply to
other OpenGL functions and other coordinates, notably those retrieved from wxMouseEvent in the event handlers.

Notice that versions of wxWidgets previous to 2.9 used to implicitly create a wxGLContext inside wxGLCanvas
itself. This is still supported in the current version but is deprecated now and will be removed in the future, please
update your code to create the rendering contexts explicitly.

To set up the attributes for the canvas (number of bits for the depth buffer, number of bits for the stencil buffer and
so on) you pass them in the constructor using a wxGLAttributes (not implemented in wx) instance. You can still
use the way before 3.1.0 (setting up the correct values of the attribList parameter) but it's discouraged.

Note: On those platforms which use a configure script (e.g. Linux and macOS) OpenGL support is automatically
enabled if the relative headers and libraries are found. To switch it on under the other platforms (e.g. Windows), you
need to edit the setup.h file and set wxUSE_GLCANVAS to 1 and then also pass USE_OPENGL=1 to the make
utility. You may also need to add opengl32.lib (and glu32.lib for old OpenGL versions) to the list of the
libraries your program is linked with.

See: wxGLContext, wxGLAttributes (not implemented in wx), wxGLContextAttrs (not implemented in
wx)

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxGLCanvas

Data Types
wxGLCanvas() = wx:wx_object()

Exports

new(Parent) -> wxGLCanvas()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxGLCanvas()
Types:

234 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGLCanvas

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {attribList, [integer()]} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {name, unicode:chardata()} |
 {palette, wxPalette:wxPalette()}

This constructor is still available only for compatibility reasons.

Please use the constructor with wxGLAttributes (not implemented in wx) instead.

If attribList is not specified, wxGLAttributes::PlatformDefaults() (not implemented in wx) is used,
plus some other attributes (see below).

setCurrent(This, Context) -> boolean()
Types:

This = wxGLCanvas()
Context = wxGLContext:wxGLContext()

Makes the OpenGL state that is represented by the OpenGL rendering context context current, i.e.

it will be used by all subsequent OpenGL calls.

This is equivalent to wxGLContext:setCurrent/2 called with this window as parameter.

Note: This function may only be called when the window is shown on screen, in particular it can't usually be called
from the constructor as the window isn't yet shown at this moment.

Return: false if an error occurred.

createSurface(This) -> boolean()
Types:

This = wxGLCanvas()

isDisplaySupported(AttribList) -> boolean()
Types:

AttribList = [integer()]
Determines if a canvas having the specified attributes is available.

This only applies for visual attributes, not rendering context attributes. Please, use the new form of this method, using
wxGLAttributes (not implemented in wx).

Return: true if attributes are supported.

swapBuffers(This) -> boolean()
Types:

This = wxGLCanvas()
Swaps the double-buffer of this window, making the back-buffer the front-buffer and vice versa, so that the output of
the previous OpenGL commands is displayed on the window.

Return: false if an error occurred.

Ericsson AB. All Rights Reserved.: wxErlang | 235

wxGLCanvas

destroy(This :: wxGLCanvas()) -> ok
Destroys the object.

236 | Ericsson AB. All Rights Reserved.: wxErlang

wxGLContext

wxGLContext
Erlang module

An instance of a wxGLContext represents the state of an OpenGL state machine and the connection between OpenGL
and the system.

The OpenGL state includes everything that can be set with the OpenGL API: colors, rendering variables, buffer data
ids, texture objects, etc. It is possible to have multiple rendering contexts share buffer data and textures. This feature
is specially useful when the application use multiple threads for updating data into the memory of the graphics card.

Whether one only rendering context is used with or bound to multiple output windows or if each window has its own
bound context is a developer decision. It is important to take into account that GPU makers may set different pointers
to the same OGL function for different contexts. The way these pointers are retrieved from the OGL driver should
be used again for each new context.

Binding (making current) a rendering context with another instance of a wxGLCanvas however works only if the
both wxGLCanvas instances were created with the same attributes.

OpenGL version 3 introduced a new type of specification profile, the modern core profile. The old compatibility profile
maintains all legacy features. Since wxWidgets 3.1.0 you can choose the type of context and even ask for a specified
OGL version number. However, its advised to use only core profile as the compatibility profile may run a bit slower.

OpenGL core profile specification defines several flags at context creation that determine not only the type of context
but also some features. Some of these flags can be set in the list of attributes used at wxGLCanvas ctor. But
since wxWidgets 3.1.0 it is strongly encouraged to use the new mechanism: setting the context attributes with a
wxGLContextAttrs (not implemented in wx) object and the canvas attributes with a wxGLAttributes (not
implemented in wx) object.

The best way of knowing if your OpenGL environment supports a specific type of context is creating a wxGLContext
instance and checking isOK/1. If it returns false, then simply delete that instance and create a new one with other
attributes.

wxHAS_OPENGL_ES is defined on platforms that only have this implementation available (e.g. the iPhone) and don't
support the full specification.

See: wxGLCanvas, wxGLContextAttrs (not implemented in wx), wxGLAttributes (not implemented in wx)

wxWidgets docs: wxGLContext

Data Types
wxGLContext() = wx:wx_object()

Exports

new(Win) -> wxGLContext()
Types:

Win = wxGLCanvas:wxGLCanvas()

new(Win, Options :: [Option]) -> wxGLContext()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 237

href

wxGLContext

Win = wxGLCanvas:wxGLCanvas()
Option = {other, wxGLContext()}

Constructor.

setCurrent(This, Win) -> boolean()
Types:

This = wxGLContext()
Win = wxGLCanvas:wxGLCanvas()

Makes the OpenGL state that is represented by this rendering context current with the wxGLCanvas win.

Note: win can be a different wxGLCanvas window than the one that was passed to the constructor of this
rendering context. If RC is an object of type wxGLContext, the statements "RC.SetCurrent(win);" and
"win.SetCurrent(RC);" are equivalent, see wxGLCanvas:setCurrent/2.

isOK(This) -> boolean()
Types:

This = wxGLContext()
Checks if the underlying OpenGL rendering context was correctly created by the system with the requested attributes.

If this function returns false then the wxGLContext object is useless and should be deleted and recreated with
different attributes.

Since: 3.1.0

destroy(This :: wxGLContext()) -> ok
Destroys the object.

238 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsBrush

wxGraphicsBrush
Erlang module

A wxGraphicsBrush is a native representation of a brush. The contents are specific and private to the respective
renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get a valid instance is via
wxGraphicsContext:createBrush/2 or wxGraphicsRenderer:createBrush/2.

This class is derived (and can use functions) from: wxGraphicsObject

wxWidgets docs: wxGraphicsBrush

Data Types
wxGraphicsBrush() = wx:wx_object()

Ericsson AB. All Rights Reserved.: wxErlang | 239

href

wxGraphicsContext

wxGraphicsContext
Erlang module

A wxGraphicsContext instance is the object that is drawn upon. It is created by a renderer using
wxGraphicsRenderer:createContext/2. This can be either directly using a renderer instance, or indirectly
using the static convenience create/1 functions of wxGraphicsContext that always delegate the task to the
default renderer.

Remark: For some renderers (like Direct2D or Cairo) processing of drawing operations may be deferred (Direct2D
render target normally builds up a batch of rendering commands but defers processing of these commands, Cairo
operates on a separate surface) so to make drawing results visible you need to update the content of the context by
calling wxGraphicsContext::Flush() (not implemented in wx) or by destroying the context.

See: wxGraphicsRenderer:createContext/2, wxGCDC, wxDC

This class is derived (and can use functions) from: wxGraphicsObject

wxWidgets docs: wxGraphicsContext

Data Types
wxGraphicsContext() = wx:wx_object()

Exports

destroy(This :: wxGraphicsContext()) -> ok
Creates a wxGraphicsContext from a wxWindow.

See: wxGraphicsRenderer:createContext/2

create() -> wxGraphicsContext()
Create a lightweight context that can be used only for measuring text.

create(WindowDC) -> wxGraphicsContext()
Types:

WindowDC =
 wxWindowDC:wxWindowDC() |
 wxWindow:wxWindow() |
 wxMemoryDC:wxMemoryDC() |
 wxImage:wxImage()

Creates a wxGraphicsContext from a wxWindowDC.

See: wxGraphicsRenderer:createContext/2

createPen(This, Pen) -> wxGraphicsPen:wxGraphicsPen()
Types:

This = wxGraphicsContext()
Pen = wxPen:wxPen()

Creates a native pen from a wxPen.

240 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsContext

Prefer to use the overload taking wxGraphicsPenInfo (not implemented in wx) unless you already have a wxPen
as constructing one only to pass it to this method is wasteful.

createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsContext()
Brush = wxBrush:wxBrush()

Creates a native brush from a wxBrush.

createRadialGradientBrush(This, StartX, StartY, EndX, EndY,
 Radius, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsContext()
StartX = StartY = EndX = EndY = Radius = number()
Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

createRadialGradientBrush(This, StartX, StartY, EndX, EndY,
 Radius, OColor, CColor) ->
 wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsContext()
StartX = StartY = EndX = EndY = Radius = number()
OColor = CColor = wx:wx_colour()

Creates a native brush with a radial gradient. The brush originates at (@a
startX, @a startY) and ends on a circle around (@a endX, @a endY) with the given
@a radius. The gradient may be specified either by its start and end colours @a
oColor and @a cColor or by a full set of gradient @a stops. The version taking
wxGraphicsGradientStops is new in wxWidgets 2.9.1.

The ability to apply a transformation matrix to the gradient was added in 3.1.3

createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsContext()
X1 = Y1 = X2 = Y2 = number()
Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2) ->

Ericsson AB. All Rights Reserved.: wxErlang | 241

wxGraphicsContext

 wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsContext()
X1 = Y1 = X2 = Y2 = number()
C1 = C2 = wx:wx_colour()

Creates a native brush with a linear gradient. The brush starts at (@a x1, @a
y1) and ends at (@a x2, @a y2). Either just the start and end gradient colours
(@a c1 and @a c2) or full set of gradient @a stops can be specified. The version
taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.

The matrix parameter was added in wxWidgets 3.1.3

createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()
Types:

This = wxGraphicsContext()
Font = wxFont:wxFont()

createFont(This, SizeInPixels, Facename) ->
 wxGraphicsFont:wxGraphicsFont()
createFont(This, Font, Facename :: [Option]) ->
 wxGraphicsFont:wxGraphicsFont()
Types:

This = wxGraphicsContext()
Font = wxFont:wxFont()
Option = {col, wx:wx_colour()}

Creates a native graphics font from a wxFont and a text colour.

Remark: For Direct2D graphics fonts can be created from TrueType fonts only.

createFont(This, SizeInPixels, Facename, Options :: [Option]) ->
 wxGraphicsFont:wxGraphicsFont()
Types:

This = wxGraphicsContext()
SizeInPixels = number()
Facename = unicode:chardata()
Option = {flags, integer()} | {col, wx:wx_colour()}

Creates a font object with the specified attributes.

The use of overload taking wxFont is preferred, see wxGraphicsRenderer:createFont/4 for more details.

Remark: For Direct2D graphics fonts can be created from TrueType fonts only.

Since: 2.9.3

createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix()
Types:

242 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsContext

This = wxGraphicsContext()

createMatrix(This, Options :: [Option]) ->
 wxGraphicsMatrix:wxGraphicsMatrix()
Types:

This = wxGraphicsContext()
Option =
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}

Creates a native affine transformation matrix from the passed in values.

The default parameters result in an identity matrix.

createPath(This) -> wxGraphicsPath:wxGraphicsPath()
Types:

This = wxGraphicsContext()
Creates a native graphics path which is initially empty.

clip(This, Region) -> ok
Types:

This = wxGraphicsContext()
Region = wxRegion:wxRegion()

Sets the clipping region to the intersection of the given region and the previously set clipping region.

The clipping region is an area to which drawing is restricted.

Remark:

clip(This, X, Y, W, H) -> ok
Types:

This = wxGraphicsContext()
X = Y = W = H = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

resetClip(This) -> ok
Types:

This = wxGraphicsContext()
Resets the clipping to original shape.

drawBitmap(This, Bmp, X, Y, W, H) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 243

wxGraphicsContext

This = wxGraphicsContext()
Bmp = wxBitmap:wxBitmap()
X = Y = W = H = number()

Draws the bitmap.

In case of a mono bitmap, this is treated as a mask and the current brushed is used for filling.

drawEllipse(This, X, Y, W, H) -> ok
Types:

This = wxGraphicsContext()
X = Y = W = H = number()

Draws an ellipse.

drawIcon(This, Icon, X, Y, W, H) -> ok
Types:

This = wxGraphicsContext()
Icon = wxIcon:wxIcon()
X = Y = W = H = number()

Draws the icon.

drawLines(This, Points) -> ok
Types:

This = wxGraphicsContext()
Points = [{X :: float(), Y :: float()}]

drawLines(This, Points, Options :: [Option]) -> ok
Types:

This = wxGraphicsContext()
Points = [{X :: float(), Y :: float()}]
Option = {fillStyle, wx:wx_enum()}

Draws a polygon.

drawPath(This, Path) -> ok
Types:

This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()

drawPath(This, Path, Options :: [Option]) -> ok
Types:

244 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsContext

This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()
Option = {fillStyle, wx:wx_enum()}

Draws the path by first filling and then stroking.

drawRectangle(This, X, Y, W, H) -> ok
Types:

This = wxGraphicsContext()
X = Y = W = H = number()

Draws a rectangle.

drawRoundedRectangle(This, X, Y, W, H, Radius) -> ok
Types:

This = wxGraphicsContext()
X = Y = W = H = Radius = number()

Draws a rounded rectangle.

drawText(This, Str, X, Y) -> ok
Types:

This = wxGraphicsContext()
Str = unicode:chardata()
X = Y = number()

Draws text at the defined position.

drawText(This, Str, X, Y, Angle) -> ok
drawText(This, Str, X, Y, BackgroundBrush) -> ok
Types:

This = wxGraphicsContext()
Str = unicode:chardata()
X = Y = number()
BackgroundBrush = wxGraphicsBrush:wxGraphicsBrush()

Draws text at the defined position.

drawText(This, Str, X, Y, Angle, BackgroundBrush) -> ok
Types:

This = wxGraphicsContext()
Str = unicode:chardata()
X = Y = Angle = number()
BackgroundBrush = wxGraphicsBrush:wxGraphicsBrush()

Draws text at the defined position.

Ericsson AB. All Rights Reserved.: wxErlang | 245

wxGraphicsContext

fillPath(This, Path) -> ok
Types:

This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()

fillPath(This, Path, Options :: [Option]) -> ok
Types:

This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()
Option = {fillStyle, wx:wx_enum()}

Fills the path with the current brush.

strokePath(This, Path) -> ok
Types:

This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()

Strokes along a path with the current pen.

getPartialTextExtents(This, Text) -> [number()]
Types:

This = wxGraphicsContext()
Text = unicode:chardata()

Fills the widths array with the widths from the beginning of text to the corresponding character of text.

getTextExtent(This, Text) -> Result
Types:

Result =
 {Width :: number(),
 Height :: number(),
 Descent :: number(),
 ExternalLeading :: number()}
This = wxGraphicsContext()
Text = unicode:chardata()

Gets the dimensions of the string using the currently selected font.

rotate(This, Angle) -> ok
Types:

This = wxGraphicsContext()
Angle = number()

Rotates the current transformation matrix (in radians).

scale(This, XScale, YScale) -> ok
Types:

246 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsContext

This = wxGraphicsContext()
XScale = YScale = number()

Scales the current transformation matrix.

translate(This, Dx, Dy) -> ok
Types:

This = wxGraphicsContext()
Dx = Dy = number()

Translates the current transformation matrix.

getTransform(This) -> wxGraphicsMatrix:wxGraphicsMatrix()
Types:

This = wxGraphicsContext()
Gets the current transformation matrix of this context.

setTransform(This, Matrix) -> ok
Types:

This = wxGraphicsContext()
Matrix = wxGraphicsMatrix:wxGraphicsMatrix()

Sets the current transformation matrix of this context.

concatTransform(This, Matrix) -> ok
Types:

This = wxGraphicsContext()
Matrix = wxGraphicsMatrix:wxGraphicsMatrix()

Concatenates the passed in transform with the current transform of this context.

setBrush(This, Brush) -> ok
Types:

This = wxGraphicsContext()
Brush = wxGraphicsBrush:wxGraphicsBrush() | wxBrush:wxBrush()

Sets the brush for filling paths.

setFont(This, Font) -> ok
Types:

This = wxGraphicsContext()
Font = wxGraphicsFont:wxGraphicsFont()

Sets the font for drawing text.

setFont(This, Font, Colour) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 247

wxGraphicsContext

This = wxGraphicsContext()
Font = wxFont:wxFont()
Colour = wx:wx_colour()

Sets the font for drawing text.

Remark: For Direct2D only TrueType fonts can be used.

setPen(This, Pen) -> ok
Types:

This = wxGraphicsContext()
Pen = wxPen:wxPen() | wxGraphicsPen:wxGraphicsPen()

Sets the pen used for stroking.

strokeLine(This, X1, Y1, X2, Y2) -> ok
Types:

This = wxGraphicsContext()
X1 = Y1 = X2 = Y2 = number()

Strokes a single line.

strokeLines(This, Points) -> ok
Types:

This = wxGraphicsContext()
Points = [{X :: float(), Y :: float()}]

Stroke lines connecting all the points.

Unlike the other overload of this function, this method draws a single polyline and not a number of disconnected lines.

248 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsFont

wxGraphicsFont
Erlang module

A wxGraphicsFont is a native representation of a font. The contents are specific and private to the respective
renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get a valid instance is via
wxGraphicsContext:createFont/4 or wxGraphicsRenderer:createFont/4.

This class is derived (and can use functions) from: wxGraphicsObject

wxWidgets docs: wxGraphicsFont

Data Types
wxGraphicsFont() = wx:wx_object()

Ericsson AB. All Rights Reserved.: wxErlang | 249

href

wxGraphicsGradientStops

wxGraphicsGradientStops
Erlang module

The stops are maintained in order of position. If two or more stops are added with the same position then the one(s)
added later come later. This can be useful for producing discontinuities in the colour gradient.

Notice that this class is write-once, you can't modify the stops once they had been added.

Since: 2.9.1

wxWidgets docs: wxGraphicsGradientStops

Data Types
wxGraphicsGradientStops() = wx:wx_object()

Exports

new() -> wxGraphicsGradientStops()

new(Options :: [Option]) -> wxGraphicsGradientStops()
Types:

Option = {startCol, wx:wx_colour()} | {endCol, wx:wx_colour()}
Initializes the gradient stops with the given boundary colours.

Creates a wxGraphicsGradientStops instance with start colour given by startCol and end colour given by
endCol.

item(This, N) -> {wx:wx_colour4(), float()}
Types:

This = wxGraphicsGradientStops()
N = integer()

Returns the stop at the given index.

getCount(This) -> integer()
Types:

This = wxGraphicsGradientStops()
Returns the number of stops.

setStartColour(This, Col) -> ok
Types:

This = wxGraphicsGradientStops()
Col = wx:wx_colour()

Set the start colour to col.

getStartColour(This) -> wx:wx_colour4()
Types:

250 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsGradientStops

This = wxGraphicsGradientStops()
Returns the start colour.

setEndColour(This, Col) -> ok
Types:

This = wxGraphicsGradientStops()
Col = wx:wx_colour()

Set the end colour to col.

getEndColour(This) -> wx:wx_colour4()
Types:

This = wxGraphicsGradientStops()
Returns the end colour.

add(This, Col, Pos) -> ok
Types:

This = wxGraphicsGradientStops()
Col = wx:wx_colour()
Pos = number()

Add a new stop.

destroy(This :: wxGraphicsGradientStops()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 251

wxGraphicsMatrix

wxGraphicsMatrix
Erlang module

A wxGraphicsMatrix is a native representation of an affine matrix. The contents are specific and private to the
respective renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get a valid
instance is via wxGraphicsContext:createMatrix/2 or wxGraphicsRenderer:createMatrix/2.

This class is derived (and can use functions) from: wxGraphicsObject

wxWidgets docs: wxGraphicsMatrix

Data Types
wxGraphicsMatrix() = wx:wx_object()

Exports

concat(This, T) -> ok
Types:

This = T = wxGraphicsMatrix()

Concatenates the matrix passed with the current matrix.

The effect of the resulting transformation is to first apply the transformation in t to the coordinates and then apply
the transformation in the current matrix to the coordinates.

get(This) -> Result
Types:

Result =
 {A :: number(),
 B :: number(),
 C :: number(),
 D :: number(),
 Tx :: number(),
 Ty :: number()}
This = wxGraphicsMatrix()

Returns the component values of the matrix via the argument pointers.

invert(This) -> ok
Types:

This = wxGraphicsMatrix()
Inverts the matrix.

isEqual(This, T) -> boolean()
Types:

This = T = wxGraphicsMatrix()

Returns true if the elements of the transformation matrix are equal.

252 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsMatrix

isIdentity(This) -> boolean()
Types:

This = wxGraphicsMatrix()
Return true if this is the identity matrix.

rotate(This, Angle) -> ok
Types:

This = wxGraphicsMatrix()
Angle = number()

Rotates this matrix clockwise (in radians).

scale(This, XScale, YScale) -> ok
Types:

This = wxGraphicsMatrix()
XScale = YScale = number()

Scales this matrix.

translate(This, Dx, Dy) -> ok
Types:

This = wxGraphicsMatrix()
Dx = Dy = number()

Translates this matrix.

set(This) -> ok
Types:

This = wxGraphicsMatrix()

set(This, Options :: [Option]) -> ok
Types:

This = wxGraphicsMatrix()
Option =
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}

Sets the matrix to the respective values (default values are the identity matrix).

transformPoint(This) -> {X :: number(), Y :: number()}
Types:

This = wxGraphicsMatrix()
Applies this matrix to a point.

Ericsson AB. All Rights Reserved.: wxErlang | 253

wxGraphicsMatrix

transformDistance(This) -> {Dx :: number(), Dy :: number()}
Types:

This = wxGraphicsMatrix()
Applies this matrix to a distance (ie.

performs all transforms except translations).

254 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsObject

wxGraphicsObject
Erlang module

This class is the superclass of native graphics objects like pens etc. It allows reference counting. Not instantiated by
user code.

See: wxGraphicsBrush, wxGraphicsPen, wxGraphicsMatrix, wxGraphicsPath

wxWidgets docs: wxGraphicsObject

Data Types
wxGraphicsObject() = wx:wx_object()

Exports

destroy(This :: wxGraphicsObject()) -> ok

getRenderer(This) -> wxGraphicsRenderer:wxGraphicsRenderer()
Types:

This = wxGraphicsObject()
Returns the renderer that was used to create this instance, or NULL if it has not been initialized yet.

isNull(This) -> boolean()
Types:

This = wxGraphicsObject()
Return: false if this object is valid, otherwise returns true.

Ericsson AB. All Rights Reserved.: wxErlang | 255

href

wxGraphicsPath

wxGraphicsPath
Erlang module

A wxGraphicsPath is a native representation of a geometric path. The contents are specific and private to the
respective renderer. Instances are reference counted and can therefore be assigned as usual. The only way to get a valid
instance is by using wxGraphicsContext:createPath/1 or wxGraphicsRenderer:createPath/1.

This class is derived (and can use functions) from: wxGraphicsObject

wxWidgets docs: wxGraphicsPath

Data Types
wxGraphicsPath() = wx:wx_object()

Exports

moveToPoint(This, P) -> ok
Types:

This = wxGraphicsPath()
P = {X :: float(), Y :: float()}

Begins a new subpath at p.

moveToPoint(This, X, Y) -> ok
Types:

This = wxGraphicsPath()
X = Y = number()

Begins a new subpath at (x,y).

addArc(This, C, R, StartAngle, EndAngle, Clockwise) -> ok
Types:

This = wxGraphicsPath()
C = {X :: float(), Y :: float()}
R = StartAngle = EndAngle = number()
Clockwise = boolean()

addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise) -> ok
Types:

This = wxGraphicsPath()
X = Y = R = StartAngle = EndAngle = number()
Clockwise = boolean()

Adds an arc of a circle.

256 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsPath

The circle is defined by the coordinates of its centre (x, y) or c and its radius r. The arc goes from the starting
angle startAngle to endAngle either clockwise or counter-clockwise depending on the value of clockwise
argument.

The angles are measured in radians but, contrary to the usual mathematical convention, are always clockwise from
the horizontal axis.

If for clockwise arc endAngle is less than startAngle it will be progressively increased by 2*pi until it is greater
than startAngle. If for counter-clockwise arc endAngle is greater than startAngle it will be progressively
decreased by 2*pi until it is less than startAngle.

If there is a current point set, an initial line segment will be added to the path to connect the current point to the
beginning of the arc.

addArcToPoint(This, X1, Y1, X2, Y2, R) -> ok
Types:

This = wxGraphicsPath()
X1 = Y1 = X2 = Y2 = R = number()

Adds an arc (of a circle with radius r) that is tangent to the line connecting current point and (x1, y1) and to the line
connecting (x1, y1) and (x2, y2).

If the current point and the starting point of the arc are different, a straight line connecting these points is also appended.
If there is no current point before the call to addArcToPoint/6 this function will behave as if preceded by a call
to MoveToPoint(0, 0). After this call the current point will be at the ending point of the arc.

addCircle(This, X, Y, R) -> ok
Types:

This = wxGraphicsPath()
X = Y = R = number()

Appends a circle around (x,y) with radius r as a new closed subpath.

After this call the current point will be at (x+r, y).

addCurveToPoint(This, C1, C2, E) -> ok
Types:

This = wxGraphicsPath()
C1 = C2 = E = {X :: float(), Y :: float()}

Adds a cubic bezier curve from the current point, using two control points and an end point.

If there is no current point before the call to addCurveToPoint/7 this function will behave as if preceded by a
call to MoveToPoint(c1).

addCurveToPoint(This, Cx1, Cy1, Cx2, Cy2, X, Y) -> ok
Types:

This = wxGraphicsPath()
Cx1 = Cy1 = Cx2 = Cy2 = X = Y = number()

Adds a cubic bezier curve from the current point, using two control points and an end point.

Ericsson AB. All Rights Reserved.: wxErlang | 257

wxGraphicsPath

If there is no current point before the call to addCurveToPoint/7 this function will behave as if preceded by a
call to MoveToPoint(cx1, cy1).

addEllipse(This, X, Y, W, H) -> ok
Types:

This = wxGraphicsPath()
X = Y = W = H = number()

Appends an ellipse fitting into the passed in rectangle as a new closed subpath.

After this call the current point will be at (x+w, y+h/2).

addLineToPoint(This, P) -> ok
Types:

This = wxGraphicsPath()
P = {X :: float(), Y :: float()}

Adds a straight line from the current point to p.

If current point is not yet set before the call to addLineToPoint/3 this function will behave as moveToPoint/3.

addLineToPoint(This, X, Y) -> ok
Types:

This = wxGraphicsPath()
X = Y = number()

Adds a straight line from the current point to (x,y).

If current point is not yet set before the call to addLineToPoint/3 this function will behave as moveToPoint/3.

addPath(This, Path) -> ok
Types:

This = Path = wxGraphicsPath()

Adds another path onto the current path.

After this call the current point will be at the added path's current point. For Direct2D the path being appended shouldn't
contain a started non-empty subpath when this function is called.

addQuadCurveToPoint(This, Cx, Cy, X, Y) -> ok
Types:

This = wxGraphicsPath()
Cx = Cy = X = Y = number()

Adds a quadratic bezier curve from the current point, using a control point and an end point.

If there is no current point before the call to addQuadCurveToPoint/5 this function will behave as if preceded
by a call to MoveToPoint(cx, cy).

addRectangle(This, X, Y, W, H) -> ok
Types:

258 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsPath

This = wxGraphicsPath()
X = Y = W = H = number()

Appends a rectangle as a new closed subpath.

After this call the current point will be at (x, y).

addRoundedRectangle(This, X, Y, W, H, Radius) -> ok
Types:

This = wxGraphicsPath()
X = Y = W = H = Radius = number()

Appends a rounded rectangle as a new closed subpath.

If radius equals 0 this function will behave as addRectangle/5, otherwise after this call the current point will
be at (x+w, y+h/2).

closeSubpath(This) -> ok
Types:

This = wxGraphicsPath()
Closes the current sub-path.

After this call the current point will be at the joined endpoint of the sub-path.

contains(This, C) -> boolean()
Types:

This = wxGraphicsPath()
C = {X :: float(), Y :: float()}

contains(This, X, Y) -> boolean()
contains(This, C, Y :: [Option]) -> boolean()
Types:

This = wxGraphicsPath()
C = {X :: float(), Y :: float()}
Option = {fillStyle, wx:wx_enum()}

Return: true if the point is within the path.

contains(This, X, Y, Options :: [Option]) -> boolean()
Types:

This = wxGraphicsPath()
X = Y = number()
Option = {fillStyle, wx:wx_enum()}

Return: true if the point is within the path.

getBox(This) ->
 {X :: float(), Y :: float(), W :: float(), H :: float()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 259

wxGraphicsPath

This = wxGraphicsPath()
Gets the bounding box enclosing all points (possibly including control points).

getCurrentPoint(This) -> {X :: float(), Y :: float()}
Types:

This = wxGraphicsPath()
Gets the last point of the current path, (0,0) if not yet set.

transform(This, Matrix) -> ok
Types:

This = wxGraphicsPath()
Matrix = wxGraphicsMatrix:wxGraphicsMatrix()

Transforms each point of this path by the matrix.

For Direct2D the current path shouldn't contain a started non-empty subpath when this function is called.

260 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsPen

wxGraphicsPen
Erlang module

A wxGraphicsPen is a native representation of a pen. The contents are specific and private to the respective
renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get a valid instance is
via wxGraphicsContext:createPen/2 or wxGraphicsRenderer::CreatePen() (not implemented in
wx).

This class is derived (and can use functions) from: wxGraphicsObject

wxWidgets docs: wxGraphicsPen

Data Types
wxGraphicsPen() = wx:wx_object()

Ericsson AB. All Rights Reserved.: wxErlang | 261

href

wxGraphicsRenderer

wxGraphicsRenderer
Erlang module

A wxGraphicsRenderer is the instance corresponding to the rendering engine used. There may be multiple
instances on a system, if there are different rendering engines present, but there is always only one instance per engine.
This instance is pointed back to by all objects created by it (wxGraphicsContext, wxGraphicsPath etc.)
and can be retrieved through their wxGraphicsObject:getRenderer/1 method. Therefore you can create an
additional instance of a path etc. by calling wxGraphicsObject:getRenderer/1 and then using the appropriate
CreateXXX() function of that renderer.

wxWidgets docs: wxGraphicsRenderer

Data Types
wxGraphicsRenderer() = wx:wx_object()

Exports

getDefaultRenderer() -> wxGraphicsRenderer()
Returns the default renderer on this platform.

On macOS this is the Core Graphics (a.k.a. Quartz 2D) renderer, on MSW the GDIPlus renderer, and on GTK we
currently default to the Cairo renderer.

createContext(This, WindowDC) ->
 wxGraphicsContext:wxGraphicsContext()
Types:

This = wxGraphicsRenderer()
WindowDC =
 wxWindowDC:wxWindowDC() |
 wxWindow:wxWindow() |
 wxMemoryDC:wxMemoryDC()

Creates a wxGraphicsContext from a wxWindowDC.

createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsRenderer()
Brush = wxBrush:wxBrush()

Creates a native brush from a wxBrush.

createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
Types:

262 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsRenderer

This = wxGraphicsRenderer()
X1 = Y1 = X2 = Y2 = number()
Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()

Creates a native brush with a linear gradient.

Stops support is new since wxWidgets 2.9.1, previously only the start and end colours could be specified.

The ability to apply a transformation matrix to the gradient was added in 3.1.3

createRadialGradientBrush(This, StartX, StartY, EndX, EndY,
 Radius, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsRenderer()
StartX = StartY = EndX = EndY = Radius = number()
Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()

Creates a native brush with a radial gradient.

Stops support is new since wxWidgets 2.9.1, previously only the start and end colours could be specified.

The ability to apply a transformation matrix to the gradient was added in 3.1.3

createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()
Types:

This = wxGraphicsRenderer()
Font = wxFont:wxFont()

createFont(This, SizeInPixels, Facename) ->
 wxGraphicsFont:wxGraphicsFont()
createFont(This, Font, Facename :: [Option]) ->
 wxGraphicsFont:wxGraphicsFont()
Types:

This = wxGraphicsRenderer()
Font = wxFont:wxFont()
Option = {col, wx:wx_colour()}

Creates a native graphics font from a wxFont and a text colour.

createFont(This, SizeInPixels, Facename, Options :: [Option]) ->
 wxGraphicsFont:wxGraphicsFont()
Types:

This = wxGraphicsRenderer()
SizeInPixels = number()
Facename = unicode:chardata()
Option = {flags, integer()} | {col, wx:wx_colour()}

Creates a graphics font with the given characteristics.

Ericsson AB. All Rights Reserved.: wxErlang | 263

wxGraphicsRenderer

If possible, the createFont/4 overload taking wxFont should be used instead. The main advantage of this
overload is that it can be used without X server connection under Unix when using Cairo.

Since: 2.9.3

createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix()
Types:

This = wxGraphicsRenderer()

createMatrix(This, Options :: [Option]) ->
 wxGraphicsMatrix:wxGraphicsMatrix()
Types:

This = wxGraphicsRenderer()
Option =
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}

Creates a native affine transformation matrix from the passed in values.

The defaults result in an identity matrix.

createPath(This) -> wxGraphicsPath:wxGraphicsPath()
Types:

This = wxGraphicsRenderer()
Creates a native graphics path which is initially empty.

264 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridBagSizer

wxGridBagSizer
Erlang module

A wxSizer that can lay out items in a virtual grid like a wxFlexGridSizer but in this case explicit positioning of
the items is allowed using wxGBPosition (not implemented in wx), and items can optionally span more than one
row and/or column using wxGBSpan (not implemented in wx).

This class is derived (and can use functions) from: wxFlexGridSizer wxGridSizer wxSizer

wxWidgets docs: wxGridBagSizer

Data Types
wxGridBagSizer() = wx:wx_object()

Exports

new() -> wxGridBagSizer()

new(Options :: [Option]) -> wxGridBagSizer()
Types:

Option = {vgap, integer()} | {hgap, integer()}
Constructor, with optional parameters to specify the gap between the rows and columns.

add(This, Item) -> wxSizerItem:wxSizerItem()
Types:

This = wxGridBagSizer()
Item = wxGBSizerItem:wxGBSizerItem()

add(This, Window, Pos) -> wxSizerItem:wxSizerItem()
Types:

This = wxGridBagSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Pos = {R :: integer(), C :: integer()}

add(This, Width, Height, Pos) -> wxSizerItem:wxSizerItem()
add(This, Window, Pos, Pos :: [Option]) ->
 wxSizerItem:wxSizerItem()
Types:

This = wxGridBagSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Pos = {R :: integer(), C :: integer()}
Option =
 {span, {RS :: integer(), CS :: integer()}} |
 {flag, integer()} |
 {border, integer()} |

Ericsson AB. All Rights Reserved.: wxErlang | 265

href

wxGridBagSizer

 {userData, wx:wx_object()}
Adds the given item to the given position.

Return: A valid pointer if the item was successfully placed at the given position, or NULL if something was already
there.

add(This, Width, Height, Pos, Options :: [Option]) ->
 wxSizerItem:wxSizerItem()
Types:

This = wxGridBagSizer()
Width = Height = integer()
Pos = {R :: integer(), C :: integer()}
Option =
 {span, {RS :: integer(), CS :: integer()}} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}

Adds a spacer to the given position.

width and height specify the dimension of the spacer to be added.

Return: A valid pointer if the spacer was successfully placed at the given position, or NULL if something was already
there.

calcMin(This) -> {W :: integer(), H :: integer()}
Types:

This = wxGridBagSizer()
Called when the managed size of the sizer is needed or when layout needs done.

checkForIntersection(This, Item) -> boolean()
Types:

This = wxGridBagSizer()
Item = wxGBSizerItem:wxGBSizerItem()

checkForIntersection(This, Pos, Span) -> boolean()
checkForIntersection(This, Item, Span :: [Option]) -> boolean()
Types:

This = wxGridBagSizer()
Item = wxGBSizerItem:wxGBSizerItem()
Option = {excludeItem, wxGBSizerItem:wxGBSizerItem()}

Look at all items and see if any intersect (or would overlap) the given item.

Returns true if so, false if there would be no overlap. If an excludeItem is given then it will not be checked for
intersection, for example it may be the item we are checking the position of.

checkForIntersection(This, Pos, Span, Options :: [Option]) ->
 boolean()
Types:

266 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridBagSizer

This = wxGridBagSizer()
Pos = {R :: integer(), C :: integer()}
Span = {RS :: integer(), CS :: integer()}
Option = {excludeItem, wxGBSizerItem:wxGBSizerItem()}

findItem(This, Window) -> wxGBSizerItem:wxGBSizerItem()
Types:

This = wxGridBagSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()

Find the sizer item for the given window or subsizer, returns NULL if not found.

(non-recursive)

findItemAtPoint(This, Pt) -> wxGBSizerItem:wxGBSizerItem()
Types:

This = wxGridBagSizer()
Pt = {X :: integer(), Y :: integer()}

Return the sizer item located at the point given in pt, or NULL if there is no item at that point.

The (x,y) coordinates in pt correspond to the client coordinates of the window using the sizer for layout. (non-
recursive)

findItemAtPosition(This, Pos) -> wxGBSizerItem:wxGBSizerItem()
Types:

This = wxGridBagSizer()
Pos = {R :: integer(), C :: integer()}

Return the sizer item for the given grid cell, or NULL if there is no item at that position.

(non-recursive)

findItemWithData(This, UserData) -> wxGBSizerItem:wxGBSizerItem()
Types:

This = wxGridBagSizer()
UserData = wx:wx_object()

Return the sizer item that has a matching user data (it only compares pointer values) or NULL if not found.

(non-recursive)

getCellSize(This, Row, Col) -> {W :: integer(), H :: integer()}
Types:

This = wxGridBagSizer()
Row = Col = integer()

Get the size of the specified cell, including hgap and vgap.

Only valid after window layout has been performed.

Ericsson AB. All Rights Reserved.: wxErlang | 267

wxGridBagSizer

getEmptyCellSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxGridBagSizer()
Get the size used for cells in the grid with no item.

getItemPosition(This, Window) -> {R :: integer(), C :: integer()}
getItemPosition(This, Index) -> {R :: integer(), C :: integer()}
Types:

This = wxGridBagSizer()
Index = integer()

getItemSpan(This, Window) -> {RS :: integer(), CS :: integer()}
getItemSpan(This, Index) -> {RS :: integer(), CS :: integer()}
Types:

This = wxGridBagSizer()
Index = integer()

setEmptyCellSize(This, Sz) -> ok
Types:

This = wxGridBagSizer()
Sz = {W :: integer(), H :: integer()}

Set the size used for cells in the grid with no item.

setItemPosition(This, Window, Pos) -> boolean()
setItemPosition(This, Index, Pos) -> boolean()
Types:

This = wxGridBagSizer()
Index = integer()
Pos = {R :: integer(), C :: integer()}

setItemSpan(This, Window, Span) -> boolean()
setItemSpan(This, Index, Span) -> boolean()
Types:

This = wxGridBagSizer()
Index = integer()
Span = {RS :: integer(), CS :: integer()}

destroy(This :: wxGridBagSizer()) -> ok
Destroys the object.

268 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellAttr

wxGridCellAttr
Erlang module

This class can be used to alter the cells' appearance in the grid by changing their attributes from the defaults. An object
of this class may be returned by wxGridTableBase::GetAttr() (not implemented in wx).

Note that objects of this class are reference-counted and it's recommended to use wxGridCellAttrPtr smart pointer
class when working with them to avoid memory leaks.

wxWidgets docs: wxGridCellAttr

Data Types
wxGridCellAttr() = wx:wx_object()

Exports

setTextColour(This, ColText) -> ok
Types:

This = wxGridCellAttr()
ColText = wx:wx_colour()

Sets the text colour.

setBackgroundColour(This, ColBack) -> ok
Types:

This = wxGridCellAttr()
ColBack = wx:wx_colour()

Sets the background colour.

setFont(This, Font) -> ok
Types:

This = wxGridCellAttr()
Font = wxFont:wxFont()

Sets the font.

setAlignment(This, HAlign, VAlign) -> ok
Types:

This = wxGridCellAttr()
HAlign = VAlign = integer()

Sets the alignment.

hAlign can be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT and vAlign can be one of
wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

setReadOnly(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 269

href

wxGridCellAttr

This = wxGridCellAttr()

setReadOnly(This, Options :: [Option]) -> ok
Types:

This = wxGridCellAttr()
Option = {isReadOnly, boolean()}

Sets the cell as read-only.

setRenderer(This, Renderer) -> ok
Types:

This = wxGridCellAttr()
Renderer = wxGridCellRenderer:wxGridCellRenderer()

Sets the renderer to be used for cells with this attribute.

Takes ownership of the pointer.

setEditor(This, Editor) -> ok
Types:

This = wxGridCellAttr()
Editor = wxGridCellEditor:wxGridCellEditor()

Sets the editor to be used with the cells with this attribute.

hasTextColour(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this attribute has a valid text colour set.

hasBackgroundColour(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this attribute has a valid background colour set.

hasFont(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this attribute has a valid font set.

hasAlignment(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this attribute has a valid alignment set.

hasRenderer(This) -> boolean()
Types:

270 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellAttr

This = wxGridCellAttr()
Returns true if this attribute has a valid cell renderer set.

hasEditor(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this attribute has a valid cell editor set.

getTextColour(This) -> wx:wx_colour4()
Types:

This = wxGridCellAttr()
Returns the text colour.

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxGridCellAttr()
Returns the background colour.

getFont(This) -> wxFont:wxFont()
Types:

This = wxGridCellAttr()
Returns the font.

getAlignment(This) -> {HAlign :: integer(), VAlign :: integer()}
Types:

This = wxGridCellAttr()
Get the alignment to use for the cell with the given attribute.

If this attribute doesn't specify any alignment, the default attribute alignment is used (which can be changed using
wxGrid:setDefaultCellAlignment/3 but is left and top by default).

Notice that hAlign and vAlign values are always overwritten by this function, use
GetNonDefaultAlignment() (not implemented in wx) if this is not desirable.

getRenderer(This, Grid, Row, Col) ->
 wxGridCellRenderer:wxGridCellRenderer()
Types:

This = wxGridCellAttr()
Grid = wxGrid:wxGrid()
Row = Col = integer()

Returns the cell renderer.

The caller is responsible for calling DecRef() (not implemented in wx) on the returned pointer, use
GetRendererPtr() (not implemented in wx) to do it automatically.

getEditor(This, Grid, Row, Col) ->

Ericsson AB. All Rights Reserved.: wxErlang | 271

wxGridCellAttr

 wxGridCellEditor:wxGridCellEditor()
Types:

This = wxGridCellAttr()
Grid = wxGrid:wxGrid()
Row = Col = integer()

Returns the cell editor.

The caller is responsible for calling DecRef() (not implemented in wx) on the returned pointer, use
GetEditorPtr() (not implemented in wx) to do it automatically.

isReadOnly(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this cell is set as read-only.

setDefAttr(This, DefAttr) -> ok
Types:

This = DefAttr = wxGridCellAttr()

272 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellBoolEditor

wxGridCellBoolEditor
Erlang module

Grid cell editor for boolean data.

See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in
wx), wxGridCellChoiceEditor, wxGridCellEnumEditor (not implemented in
wx), wxGridCellFloatEditor, wxGridCellNumberEditor, wxGridCellTextEditor,
wxGridCellDateEditor (not implemented in wx)

This class is derived (and can use functions) from: wxGridCellEditor

wxWidgets docs: wxGridCellBoolEditor

Data Types
wxGridCellBoolEditor() = wx:wx_object()

Exports

new() -> wxGridCellBoolEditor()
Default constructor.

isTrueValue(Value) -> boolean()
Types:

Value = unicode:chardata()
Returns true if the given value is equal to the string representation of the truth value we currently use (see
useStringValues/1).

useStringValues() -> ok

useStringValues(Options :: [Option]) -> ok
Types:

Option =
 {valueTrue, unicode:chardata()} |
 {valueFalse, unicode:chardata()}

This method allows you to customize the values returned by wxGridCellNumberEditor:getValue/1 for the
cell using this editor.

By default, the default values of the arguments are used, i.e. "1" is returned if the cell is checked and an empty string
otherwise.

destroy(This :: wxGridCellBoolEditor()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 273

href

wxGridCellBoolRenderer

wxGridCellBoolRenderer
Erlang module

This class may be used to format boolean data in a cell.

See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented in wx),
wxGridCellDateTimeRenderer (not implemented in wx), wxGridCellEnumRenderer (not implemented
in wx), wxGridCellFloatRenderer, wxGridCellNumberRenderer, wxGridCellStringRenderer

This class is derived (and can use functions) from: wxGridCellRenderer

wxWidgets docs: wxGridCellBoolRenderer

Data Types
wxGridCellBoolRenderer() = wx:wx_object()

Exports

new() -> wxGridCellBoolRenderer()

destroy(This :: wxGridCellBoolRenderer()) -> ok
Destroys the object.

274 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellChoiceEditor

wxGridCellChoiceEditor
Erlang module

Grid cell editor for string data providing the user a choice from a list of strings.

See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in
wx), wxGridCellBoolEditor, wxGridCellEnumEditor (not implemented in
wx), wxGridCellFloatEditor, wxGridCellNumberEditor, wxGridCellTextEditor,
wxGridCellDateEditor (not implemented in wx)

This class is derived (and can use functions) from: wxGridCellEditor

wxWidgets docs: wxGridCellChoiceEditor

Data Types
wxGridCellChoiceEditor() = wx:wx_object()

Exports

new(Choices) -> wxGridCellChoiceEditor()
Types:

Choices = [unicode:chardata()]

new(Choices, Options :: [Option]) -> wxGridCellChoiceEditor()
Types:

Choices = [unicode:chardata()]
Option = {allowOthers, boolean()}

Choice cell renderer ctor.

setParameters(This, Params) -> ok
Types:

This = wxGridCellChoiceEditor()
Params = unicode:chardata()

Parameters string format is "item1[,item2[...,itemN]]".

This method can be called before the editor is used for the first time, or later, in which case it replaces the previously
specified strings with the new ones.

destroy(This :: wxGridCellChoiceEditor()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 275

href

wxGridCellEditor

wxGridCellEditor
Erlang module

This class is responsible for providing and manipulating the in-place edit controls for the grid. Instances of
wxGridCellEditor (actually, instances of derived classes since it is an abstract class) can be associated with the
cell attributes for individual cells, rows, columns, or even for the entire grid.

Normally wxGridCellEditor shows some UI control allowing the user to edit the cell, but starting with
wxWidgets 3.1.4 it's also possible to define "activatable" cell editors, that change the value of the cell directly when
it's activated (typically by pressing Space key or clicking on it), see TryActivate() (not implemented in wx)
method. Note that when implementing an editor which is always activatable, i.e. never shows any in-place editor, it is
more convenient to derive its class from wxGridCellActivatableEditor (not implemented in wx) than from
wxGridCellEditor itself.

See: wxGridCellAutoWrapStringEditor (not implemented in wx), wxGridCellBoolEditor,
wxGridCellChoiceEditor, wxGridCellEnumEditor (not implemented in wx),
wxGridCellFloatEditor, wxGridCellNumberEditor, wxGridCellTextEditor,
wxGridCellDateEditor (not implemented in wx)

wxWidgets docs: wxGridCellEditor

Data Types
wxGridCellEditor() = wx:wx_object()

Exports

create(This, Parent, Id, EvtHandler) -> ok
Types:

This = wxGridCellEditor()
Parent = wxWindow:wxWindow()
Id = integer()
EvtHandler = wxEvtHandler:wxEvtHandler()

Creates the actual edit control.

isCreated(This) -> boolean()
Types:

This = wxGridCellEditor()
Returns true if the edit control has been created.

setSize(This, Rect) -> ok
Types:

This = wxGridCellEditor()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),

276 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellEditor

 H :: integer()}
Size and position the edit control.

show(This, Show) -> ok
Types:

This = wxGridCellEditor()
Show = boolean()

show(This, Show, Options :: [Option]) -> ok
Types:

This = wxGridCellEditor()
Show = boolean()
Option = {attr, wxGridCellAttr:wxGridCellAttr()}

Show or hide the edit control, use the specified attributes to set colours/fonts for it.

reset(This) -> ok
Types:

This = wxGridCellEditor()
Reset the value in the control back to its starting value.

startingKey(This, Event) -> ok
Types:

This = wxGridCellEditor()
Event = wxKeyEvent:wxKeyEvent()

If the editor is enabled by pressing keys on the grid, this will be called to let the editor do something about that first
key if desired.

startingClick(This) -> ok
Types:

This = wxGridCellEditor()
If the editor is enabled by clicking on the cell, this method will be called.

handleReturn(This, Event) -> ok
Types:

This = wxGridCellEditor()
Event = wxKeyEvent:wxKeyEvent()

Some types of controls on some platforms may need some help with the Return key.

Ericsson AB. All Rights Reserved.: wxErlang | 277

wxGridCellFloatEditor

wxGridCellFloatEditor
Erlang module

The editor for floating point numbers data.

See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in wx),
wxGridCellBoolEditor, wxGridCellChoiceEditor, wxGridCellEnumEditor (not implemented
in wx), wxGridCellNumberEditor, wxGridCellTextEditor, wxGridCellDateEditor (not
implemented in wx)

This class is derived (and can use functions) from: wxGridCellEditor

wxWidgets docs: wxGridCellFloatEditor

Data Types
wxGridCellFloatEditor() = wx:wx_object()

Exports

new() -> wxGridCellFloatEditor()

new(Options :: [Option]) -> wxGridCellFloatEditor()
Types:

Option =
 {width, integer()} |
 {precision, integer()} |
 {format, integer()}

Float cell editor ctor.

setParameters(This, Params) -> ok
Types:

This = wxGridCellFloatEditor()
Params = unicode:chardata()

The parameters string format is "width[,precision[,format]]" where format should be chosen between f|e|g|E|G (f
is used by default)

destroy(This :: wxGridCellFloatEditor()) -> ok
Destroys the object.

278 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellFloatRenderer

wxGridCellFloatRenderer
Erlang module

This class may be used to format floating point data in a cell.

See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented in
wx), wxGridCellBoolRenderer, wxGridCellDateTimeRenderer (not implemented in
wx), wxGridCellEnumRenderer (not implemented in wx), wxGridCellNumberRenderer,
wxGridCellStringRenderer

This class is derived (and can use functions) from: wxGridCellStringRenderer wxGridCellRenderer

wxWidgets docs: wxGridCellFloatRenderer

Data Types
wxGridCellFloatRenderer() = wx:wx_object()

Exports

new() -> wxGridCellFloatRenderer()

new(Options :: [Option]) -> wxGridCellFloatRenderer()
Types:

Option =
 {width, integer()} |
 {precision, integer()} |
 {format, integer()}

Float cell renderer ctor.

getPrecision(This) -> integer()
Types:

This = wxGridCellFloatRenderer()
Returns the precision.

getWidth(This) -> integer()
Types:

This = wxGridCellFloatRenderer()
Returns the width.

setParameters(This, Params) -> ok
Types:

This = wxGridCellFloatRenderer()
Params = unicode:chardata()

The parameters string format is "width[,precision[,format]]" where format should be chosen between f|e|g|E|G (f
is used by default)

Ericsson AB. All Rights Reserved.: wxErlang | 279

href

wxGridCellFloatRenderer

setPrecision(This, Precision) -> ok
Types:

This = wxGridCellFloatRenderer()
Precision = integer()

Sets the precision.

setWidth(This, Width) -> ok
Types:

This = wxGridCellFloatRenderer()
Width = integer()

Sets the width.

destroy(This :: wxGridCellFloatRenderer()) -> ok
Destroys the object.

280 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellNumberEditor

wxGridCellNumberEditor
Erlang module

Grid cell editor for numeric integer data.

See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in wx),
wxGridCellBoolEditor, wxGridCellChoiceEditor, wxGridCellEnumEditor (not implemented in
wx), wxGridCellFloatEditor, wxGridCellTextEditor, wxGridCellDateEditor (not implemented
in wx)

This class is derived (and can use functions) from: wxGridCellTextEditor wxGridCellEditor

wxWidgets docs: wxGridCellNumberEditor

Data Types
wxGridCellNumberEditor() = wx:wx_object()

Exports

new() -> wxGridCellNumberEditor()

new(Options :: [Option]) -> wxGridCellNumberEditor()
Types:

Option = {min, integer()} | {max, integer()}
Allows you to specify the range for acceptable data.

Values equal to -1 for both min and max indicate that no range checking should be done.

getValue(This) -> unicode:charlist()
Types:

This = wxGridCellNumberEditor()
Returns the value currently in the editor control.

setParameters(This, Params) -> ok
Types:

This = wxGridCellNumberEditor()
Params = unicode:chardata()

Parameters string format is "min,max".

destroy(This :: wxGridCellNumberEditor()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 281

href

wxGridCellNumberRenderer

wxGridCellNumberRenderer
Erlang module

This class may be used to format integer data in a cell.

See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented in
wx), wxGridCellBoolRenderer, wxGridCellDateTimeRenderer (not implemented in
wx), wxGridCellEnumRenderer (not implemented in wx), wxGridCellFloatRenderer,
wxGridCellStringRenderer

This class is derived (and can use functions) from: wxGridCellStringRenderer wxGridCellRenderer

wxWidgets docs: wxGridCellNumberRenderer

Data Types
wxGridCellNumberRenderer() = wx:wx_object()

Exports

new() -> wxGridCellNumberRenderer()
Default constructor.

destroy(This :: wxGridCellNumberRenderer()) -> ok
Destroys the object.

282 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellRenderer

wxGridCellRenderer
Erlang module

This class is responsible for actually drawing the cell in the grid. You may pass it to the wxGridCellAttr (below) to
change the format of one given cell or to wxGrid:setDefaultRenderer/2 to change the view of all cells. This
is an abstract class, and you will normally use one of the predefined derived classes or derive your own class from it.

See: wxGridCellAutoWrapStringRenderer (not implemented in wx), wxGridCellBoolRenderer,
wxGridCellDateTimeRenderer (not implemented in wx), wxGridCellEnumRenderer (not implemented
in wx), wxGridCellFloatRenderer, wxGridCellNumberRenderer, wxGridCellStringRenderer

wxWidgets docs: wxGridCellRenderer

Data Types
wxGridCellRenderer() = wx:wx_object()

Exports

draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected) -> ok
Types:

This = wxGridCellRenderer()
Grid = wxGrid:wxGrid()
Attr = wxGridCellAttr:wxGridCellAttr()
Dc = wxDC:wxDC()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Row = Col = integer()
IsSelected = boolean()

Draw the given cell on the provided DC inside the given rectangle using the style specified by the attribute and the
default or selected state corresponding to the isSelected value.

This pure virtual function has a default implementation which will prepare the DC using the given attribute: it will
draw the rectangle with the background colour from attr and set the text colour and font.

getBestSize(This, Grid, Attr, Dc, Row, Col) ->
 {W :: integer(), H :: integer()}
Types:

This = wxGridCellRenderer()
Grid = wxGrid:wxGrid()
Attr = wxGridCellAttr:wxGridCellAttr()
Dc = wxDC:wxDC()
Row = Col = integer()

Get the preferred size of the cell for its contents.

Ericsson AB. All Rights Reserved.: wxErlang | 283

href

wxGridCellRenderer

This method must be overridden in the derived classes to return the minimal fitting size for displaying the content
of the given grid cell.

See: GetBestHeight() (not implemented in wx), GetBestWidth() (not implemented in wx)

284 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellStringRenderer

wxGridCellStringRenderer
Erlang module

This class may be used to format string data in a cell; it is the default for string cells.

See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented in
wx), wxGridCellBoolRenderer, wxGridCellDateTimeRenderer (not implemented in
wx), wxGridCellEnumRenderer (not implemented in wx), wxGridCellFloatRenderer,
wxGridCellNumberRenderer

This class is derived (and can use functions) from: wxGridCellRenderer

wxWidgets docs: wxGridCellStringRenderer

Data Types
wxGridCellStringRenderer() = wx:wx_object()

Exports

new() -> wxGridCellStringRenderer()

destroy(This :: wxGridCellStringRenderer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 285

href

wxGridCellTextEditor

wxGridCellTextEditor
Erlang module

Grid cell editor for string/text data.

See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in wx),
wxGridCellBoolEditor, wxGridCellChoiceEditor, wxGridCellEnumEditor (not implemented
in wx), wxGridCellFloatEditor, wxGridCellNumberEditor, wxGridCellDateEditor (not
implemented in wx)

This class is derived (and can use functions) from: wxGridCellEditor

wxWidgets docs: wxGridCellTextEditor

Data Types
wxGridCellTextEditor() = wx:wx_object()

Exports

new() -> wxGridCellTextEditor()

new(Options :: [Option]) -> wxGridCellTextEditor()
Types:

Option = {maxChars, integer()}
Text cell editor constructor.

setParameters(This, Params) -> ok
Types:

This = wxGridCellTextEditor()
Params = unicode:chardata()

The parameters string format is "n" where n is a number representing the maximum width.

destroy(This :: wxGridCellTextEditor()) -> ok
Destroys the object.

286 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridEvent

wxGridEvent
Erlang module

This event class contains information about various grid events.

Notice that all grid event table macros are available in two versions: EVT_GRID_XXX and EVT_GRID_CMD_XXX.
The only difference between the two is that the former doesn't allow to specify the grid window identifier and so takes
a single parameter, the event handler, but is not suitable if there is more than one grid control in the window where
the event table is used (as it would catch the events from all the grids). The version with CMD takes the id as first
argument and the event handler as the second one and so can be used with multiple grids as well. Otherwise there are
no difference between the two and only the versions without the id are documented below for brevity.

This class is derived (and can use functions) from: wxNotifyEvent wxCommandEvent wxEvent

wxWidgets docs: wxGridEvent

Events
Use wxEvtHandler:connect/3 with wxGridEventType to subscribe to events of this type.

Data Types
wxGridEvent() = wx:wx_object()
wxGrid() =
 #wxGrid{type = wxGridEvent:wxGridEventType(),
 row = integer(),
 col = integer(),
 pos = {X :: integer(), Y :: integer()},
 selecting = boolean(),
 control = boolean(),
 meta = boolean(),
 shift = boolean(),
 alt = boolean()}
wxGridEventType() =
 grid_cell_left_click | grid_cell_right_click |
 grid_cell_left_dclick | grid_cell_right_dclick |
 grid_label_left_click | grid_label_right_click |
 grid_label_left_dclick | grid_label_right_dclick |
 grid_cell_changed | grid_select_cell | grid_cell_begin_drag |
 grid_editor_shown | grid_editor_hidden | grid_col_move |
 grid_col_sort | grid_tabbing

Exports

altDown(This) -> boolean()
Types:

This = wxGridEvent()
Returns true if the Alt key was down at the time of the event.

Ericsson AB. All Rights Reserved.: wxErlang | 287

href

wxGridEvent

controlDown(This) -> boolean()
Types:

This = wxGridEvent()
Returns true if the Control key was down at the time of the event.

getCol(This) -> integer()
Types:

This = wxGridEvent()
Column at which the event occurred.

Notice that for a wxEVT_GRID_SELECT_CELL event this column is the column of the newly selected cell while the
previously selected cell can be retrieved using wxGrid:getGridCursorCol/1.

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxGridEvent()
Position in pixels at which the event occurred.

getRow(This) -> integer()
Types:

This = wxGridEvent()
Row at which the event occurred.

Notice that for a wxEVT_GRID_SELECT_CELL event this row is the row of the newly selected cell while the
previously selected cell can be retrieved using wxGrid:getGridCursorRow/1.

metaDown(This) -> boolean()
Types:

This = wxGridEvent()
Returns true if the Meta key was down at the time of the event.

selecting(This) -> boolean()
Types:

This = wxGridEvent()
Returns true if the user is selecting grid cells, or false if deselecting.

shiftDown(This) -> boolean()
Types:

This = wxGridEvent()
Returns true if the Shift key was down at the time of the event.

288 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridSizer

wxGridSizer
Erlang module

A grid sizer is a sizer which lays out its children in a two-dimensional table with all table fields having the same size,
i.e. the width of each field is the width of the widest child, the height of each field is the height of the tallest child.

See: wxSizer, Overview sizer

This class is derived (and can use functions) from: wxSizer

wxWidgets docs: wxGridSizer

Data Types
wxGridSizer() = wx:wx_object()

Exports

new(Cols) -> wxGridSizer()
Types:

Cols = integer()

new(Cols, Options :: [Option]) -> wxGridSizer()
Types:

Cols = integer()
Option = {gap, {W :: integer(), H :: integer()}}

new(Cols, Vgap, Hgap) -> wxGridSizer()
new(Rows, Cols, Gap) -> wxGridSizer()
Types:

Rows = Cols = integer()
Gap = {W :: integer(), H :: integer()}

new(Rows, Cols, Vgap, Hgap) -> wxGridSizer()
Types:

Rows = Cols = Vgap = Hgap = integer()

getCols(This) -> integer()
Types:

This = wxGridSizer()
Returns the number of columns that has been specified for the sizer.

Returns zero if the sizer is automatically adjusting the number of columns depending on number of its children. To get
the effective number of columns or rows being currently used, see GetEffectiveColsCount() (not implemented
in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 289

href
href

wxGridSizer

getHGap(This) -> integer()
Types:

This = wxGridSizer()
Returns the horizontal gap (in pixels) between cells in the sizer.

getRows(This) -> integer()
Types:

This = wxGridSizer()
Returns the number of rows that has been specified for the sizer.

Returns zero if the sizer is automatically adjusting the number of rows depending on number of its children. To get the
effective number of columns or rows being currently used, see GetEffectiveRowsCount() (not implemented
in wx).

getVGap(This) -> integer()
Types:

This = wxGridSizer()
Returns the vertical gap (in pixels) between the cells in the sizer.

setCols(This, Cols) -> ok
Types:

This = wxGridSizer()
Cols = integer()

Sets the number of columns in the sizer.

setHGap(This, Gap) -> ok
Types:

This = wxGridSizer()
Gap = integer()

Sets the horizontal gap (in pixels) between cells in the sizer.

setRows(This, Rows) -> ok
Types:

This = wxGridSizer()
Rows = integer()

Sets the number of rows in the sizer.

setVGap(This, Gap) -> ok
Types:

This = wxGridSizer()
Gap = integer()

Sets the vertical gap (in pixels) between the cells in the sizer.

290 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridSizer

destroy(This :: wxGridSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 291

wxGrid

wxGrid
Erlang module

wxGrid and its related classes are used for displaying and editing tabular data. They provide a rich set of features for
display, editing, and interacting with a variety of data sources. For simple applications, and to help you get started,
wxGrid is the only class you need to refer to directly. It will set up default instances of the other classes and manage
them for you. For more complex applications you can derive your own classes for custom grid views, grid data tables,
cell editors and renderers. The overview_grid has examples of simple and more complex applications, explains the
relationship between the various grid classes and has a summary of the keyboard shortcuts and mouse functions
provided by wxGrid.

A wxGridTableBase (not implemented in wx) class holds the actual data to be displayed by a wxGrid class. One or
more wxGrid classes may act as a view for one table class. The default table class is called wxGridStringTable
(not implemented in wx) and holds an array of strings. An instance of such a class is created by createGrid/4.

wxGridCellRenderer is the abstract base class for rendering contents in a cell. The following renderers are
predefined:

The look of a cell can be further defined using wxGridCellAttr. An object of this type may be returned by
wxGridTableBase::GetAttr() (not implemented in wx).

wxGridCellEditor is the abstract base class for editing the value of a cell. The following editors are predefined:

Please see wxGridEvent, wxGridSizeEvent (not implemented in wx), wxGridRangeSelectEvent (not
implemented in wx), and wxGridEditorCreatedEvent (not implemented in wx) for the documentation of all
event types you can use with wxGrid.

See: Overview grid, wxGridUpdateLocker (not implemented in wx)

This class is derived (and can use functions) from: wxScrolledWindow wxPanel wxWindow wxEvtHandler

wxWidgets docs: wxGrid

Data Types
wxGrid() = wx:wx_object()

Exports

new() -> wxGrid()
Default constructor.

You must call Create() (not implemented in wx) to really create the grid window and also call createGrid/4
or SetTable() (not implemented in wx) or AssignTable() (not implemented in wx) to initialize its contents.

new(Parent, Id) -> wxGrid()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxGrid()
Types:

292 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxGrid

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor creating the grid window.

You must call either createGrid/4 or SetTable() (not implemented in wx) or AssignTable() (not
implemented in wx) to initialize the grid contents before using it.

destroy(This :: wxGrid()) -> ok
Destructor.

This will also destroy the associated grid table unless you passed a table object to the grid and specified that the grid
should not take ownership of the table (see SetTable() (not implemented in wx)).

appendCols(This) -> boolean()
Types:

This = wxGrid()

appendCols(This, Options :: [Option]) -> boolean()
Types:

This = wxGrid()
Option = {numCols, integer()} | {updateLabels, boolean()}

Appends one or more new columns to the right of the grid.

The updateLabels argument is not used at present. If you are using a derived grid table class you will need
to override wxGridTableBase::AppendCols() (not implemented in wx). See insertCols/2 for further
information.

Return: true on success or false if appending columns failed.

appendRows(This) -> boolean()
Types:

This = wxGrid()

appendRows(This, Options :: [Option]) -> boolean()
Types:

This = wxGrid()
Option = {numRows, integer()} | {updateLabels, boolean()}

Appends one or more new rows to the bottom of the grid.

The updateLabels argument is not used at present. If you are using a derived grid table class you will need
to override wxGridTableBase::AppendRows() (not implemented in wx). See insertRows/2 for further
information.

Return: true on success or false if appending rows failed.

Ericsson AB. All Rights Reserved.: wxErlang | 293

wxGrid

autoSize(This) -> ok
Types:

This = wxGrid()
Automatically sets the height and width of all rows and columns to fit their contents.

autoSizeColumn(This, Col) -> ok
Types:

This = wxGrid()
Col = integer()

autoSizeColumn(This, Col, Options :: [Option]) -> ok
Types:

This = wxGrid()
Col = integer()
Option = {setAsMin, boolean()}

Automatically sizes the column to fit its contents.

If setAsMin is true the calculated width will also be set as the minimal width for the column.

autoSizeColumns(This) -> ok
Types:

This = wxGrid()

autoSizeColumns(This, Options :: [Option]) -> ok
Types:

This = wxGrid()
Option = {setAsMin, boolean()}

Automatically sizes all columns to fit their contents.

If setAsMin is true the calculated widths will also be set as the minimal widths for the columns.

autoSizeRow(This, Row) -> ok
Types:

This = wxGrid()
Row = integer()

autoSizeRow(This, Row, Options :: [Option]) -> ok
Types:

This = wxGrid()
Row = integer()
Option = {setAsMin, boolean()}

Automatically sizes the row to fit its contents.

If setAsMin is true the calculated height will also be set as the minimal height for the row.

294 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

autoSizeRows(This) -> ok
Types:

This = wxGrid()

autoSizeRows(This, Options :: [Option]) -> ok
Types:

This = wxGrid()
Option = {setAsMin, boolean()}

Automatically sizes all rows to fit their contents.

If setAsMin is true the calculated heights will also be set as the minimal heights for the rows.

beginBatch(This) -> ok
Types:

This = wxGrid()
Increments the grid's batch count.

When the count is greater than zero repainting of the grid is suppressed. Each call to BeginBatch must be matched
by a later call to endBatch/1. Code that does a lot of grid modification can be enclosed between beginBatch/1
and endBatch/1 calls to avoid screen flicker. The final endBatch/1 call will cause the grid to be repainted.

Notice that you should use wxGridUpdateLocker (not implemented in wx) which ensures that there is always a
matching endBatch/1 call for this beginBatch/1 if possible instead of calling this method directly.

blockToDeviceRect(This, TopLeft, BottomRight) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxGrid()
TopLeft = BottomRight = {R :: integer(), C :: integer()}

Convert grid cell coordinates to grid window pixel coordinates.

This function returns the rectangle that encloses the block of cells limited by topLeft and bottomRight cell in
device coords and clipped to the client size of the grid window.

Since: 3.1.3 Parameter gridWindow has been added.

See: cellToRect/3

canDragCell(This) -> boolean()
Types:

This = wxGrid()
Return true if the dragging of cells is enabled or false otherwise.

canDragColMove(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 295

wxGrid

This = wxGrid()
Returns true if columns can be moved by dragging with the mouse.

Columns can be moved by dragging on their labels.

canDragGridRowEdges(This) -> boolean()
Types:

This = wxGrid()
Return true if row edges inside the grid can be dragged to resize the rows.

See: canDragGridSize/1, canDragRowSize/2

Since: 3.1.4

canDragColSize(This, Col) -> boolean()
Types:

This = wxGrid()
Col = integer()

Returns true if the given column can be resized by dragging with the mouse.

This function returns true if resizing the columns interactively is globally enabled, i.e. if disableDragColSize/1
hadn't been called, and if this column wasn't explicitly marked as non-resizable with DisableColResize() (not
implemented in wx).

canDragRowSize(This, Row) -> boolean()
Types:

This = wxGrid()
Row = integer()

Returns true if the given row can be resized by dragging with the mouse.

This is the same as canDragColSize/2 but for rows.

canDragGridSize(This) -> boolean()
Types:

This = wxGrid()
Return true if the dragging of grid lines to resize rows and columns is enabled or false otherwise.

canEnableCellControl(This) -> boolean()
Types:

This = wxGrid()
Returns true if the in-place edit control for the current grid cell can be used and false otherwise.

This function always returns false for the read-only cells.

cellToRect(This, Coords) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),

296 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

 H :: integer()}
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}

Return the rectangle corresponding to the grid cell's size and position in logical coordinates.

See: blockToDeviceRect/3

cellToRect(This, Row, Col) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxGrid()
Row = Col = integer()

Return the rectangle corresponding to the grid cell's size and position in logical coordinates.

See: blockToDeviceRect/3

clearGrid(This) -> ok
Types:

This = wxGrid()
Clears all data in the underlying grid table and repaints the grid.

The table is not deleted by this function. If you are using a derived table class then you need to override
wxGridTableBase::Clear() (not implemented in wx) for this function to have any effect.

clearSelection(This) -> ok
Types:

This = wxGrid()
Deselects all cells that are currently selected.

createGrid(This, NumRows, NumCols) -> boolean()
Types:

This = wxGrid()
NumRows = NumCols = integer()

createGrid(This, NumRows, NumCols, Options :: [Option]) ->
 boolean()
Types:

This = wxGrid()
NumRows = NumCols = integer()
Option = {selmode, wx:wx_enum()}

Creates a grid with the specified initial number of rows and columns.

Ericsson AB. All Rights Reserved.: wxErlang | 297

wxGrid

Call this directly after the grid constructor. When you use this function wxGrid will create and manage a simple table
of string values for you. All of the grid data will be stored in memory.

For applications with more complex data types or relationships, or for dealing with very large datasets, you should
derive your own grid table class and pass a table object to the grid with SetTable() (not implemented in wx) or
AssignTable() (not implemented in wx).

deleteCols(This) -> boolean()
Types:

This = wxGrid()

deleteCols(This, Options :: [Option]) -> boolean()
Types:

This = wxGrid()
Option =
 {pos, integer()} |
 {numCols, integer()} |
 {updateLabels, boolean()}

Deletes one or more columns from a grid starting at the specified position.

The updateLabels argument is not used at present. If you are using a derived grid table class you will need
to override wxGridTableBase::DeleteCols() (not implemented in wx). See insertCols/2 for further
information.

Return: true on success or false if deleting columns failed.

deleteRows(This) -> boolean()
Types:

This = wxGrid()

deleteRows(This, Options :: [Option]) -> boolean()
Types:

This = wxGrid()
Option =
 {pos, integer()} |
 {numRows, integer()} |
 {updateLabels, boolean()}

Deletes one or more rows from a grid starting at the specified position.

The updateLabels argument is not used at present. If you are using a derived grid table class you will need
to override wxGridTableBase::DeleteRows() (not implemented in wx). See insertRows/2 for further
information.

Return: true on success or false if deleting rows failed.

disableCellEditControl(This) -> ok
Types:

This = wxGrid()
Disables in-place editing of grid cells.

298 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

Equivalent to calling EnableCellEditControl(false).

disableDragColSize(This) -> ok
Types:

This = wxGrid()
Disables column sizing by dragging with the mouse.

Equivalent to passing false to enableDragColSize/2.

disableDragGridSize(This) -> ok
Types:

This = wxGrid()
Disable mouse dragging of grid lines to resize rows and columns.

Equivalent to passing false to enableDragGridSize/2

disableDragRowSize(This) -> ok
Types:

This = wxGrid()
Disables row sizing by dragging with the mouse.

Equivalent to passing false to enableDragRowSize/2.

enableCellEditControl(This) -> ok
Types:

This = wxGrid()

enableCellEditControl(This, Options :: [Option]) -> ok
Types:

This = wxGrid()
Option = {enable, boolean()}

Enables or disables in-place editing of grid cell data.

Enabling in-place editing generates wxEVT_GRID_EDITOR_SHOWN and, if it isn't vetoed by the application, shows
the in-place editor which allows the user to change the cell value.

Disabling in-place editing does nothing if the in-place editor isn't currently shown, otherwise the
wxEVT_GRID_EDITOR_HIDDEN event is generated but, unlike the "shown" event, it can't be vetoed and the in-
place editor is dismissed unconditionally.

Note that it is an error to call this function if the current cell is read-only, use canEnableCellControl/1 to
check for this precondition.

enableDragColSize(This) -> ok
Types:

This = wxGrid()

enableDragColSize(This, Options :: [Option]) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 299

wxGrid

This = wxGrid()
Option = {enable, boolean()}

Enables or disables column sizing by dragging with the mouse.

See: DisableColResize() (not implemented in wx)

enableDragGridSize(This) -> ok
Types:

This = wxGrid()

enableDragGridSize(This, Options :: [Option]) -> ok
Types:

This = wxGrid()
Option = {enable, boolean()}

Enables or disables row and column resizing by dragging gridlines with the mouse.

enableDragRowSize(This) -> ok
Types:

This = wxGrid()

enableDragRowSize(This, Options :: [Option]) -> ok
Types:

This = wxGrid()
Option = {enable, boolean()}

Enables or disables row sizing by dragging with the mouse.

See: DisableRowResize() (not implemented in wx)

enableEditing(This, Edit) -> ok
Types:

This = wxGrid()
Edit = boolean()

Makes the grid globally editable or read-only.

If the edit argument is false this function sets the whole grid as read-only. If the argument is true the grid is set to
the default state where cells may be editable. In the default state you can set single grid cells and whole rows and
columns to be editable or read-only via wxGridCellAttr:setReadOnly/2. For single cells you can also use
the shortcut function setReadOnly/4.

For more information about controlling grid cell attributes see the wxGridCellAttr class and the overview_grid.

enableGridLines(This) -> ok
Types:

This = wxGrid()

enableGridLines(This, Options :: [Option]) -> ok
Types:

300 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

This = wxGrid()
Option = {enable, boolean()}

Turns the drawing of grid lines on or off.

endBatch(This) -> ok
Types:

This = wxGrid()
Decrements the grid's batch count.

When the count is greater than zero repainting of the grid is suppressed. Each previous call to beginBatch/1
must be matched by a later call to endBatch/1. Code that does a lot of grid modification can be enclosed between
beginBatch/1 and endBatch/1 calls to avoid screen flicker. The final endBatch/1 will cause the grid to be
repainted.

See: wxGridUpdateLocker (not implemented in wx)

fit(This) -> ok
Types:

This = wxGrid()
Overridden wxWindow method.

forceRefresh(This) -> ok
Types:

This = wxGrid()
Causes immediate repainting of the grid.

Use this instead of the usual wxWindow:refresh/2.

getBatchCount(This) -> integer()
Types:

This = wxGrid()
Returns the number of times that beginBatch/1 has been called without (yet) matching calls to endBatch/1.

While the grid's batch count is greater than zero the display will not be updated.

getCellAlignment(This, Row, Col) ->
 {Horiz :: integer(), Vert :: integer()}
Types:

This = wxGrid()
Row = Col = integer()

Sets the arguments to the horizontal and vertical text alignment values for the grid cell at the specified location.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.

Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

getCellBackgroundColour(This, Row, Col) -> wx:wx_colour4()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 301

wxGrid

This = wxGrid()
Row = Col = integer()

Returns the background colour of the cell at the specified location.

getCellEditor(This, Row, Col) ->
 wxGridCellEditor:wxGridCellEditor()
Types:

This = wxGrid()
Row = Col = integer()

Returns a pointer to the editor for the cell at the specified location.

See wxGridCellEditor and the overview_grid for more information about cell editors and renderers.

The caller must call DecRef() on the returned pointer.

getCellFont(This, Row, Col) -> wxFont:wxFont()
Types:

This = wxGrid()
Row = Col = integer()

Returns the font for text in the grid cell at the specified location.

getCellRenderer(This, Row, Col) ->
 wxGridCellRenderer:wxGridCellRenderer()
Types:

This = wxGrid()
Row = Col = integer()

Returns a pointer to the renderer for the grid cell at the specified location.

See wxGridCellRenderer and the overview_grid for more information about cell editors and renderers.

The caller must call DecRef() on the returned pointer.

getCellTextColour(This, Row, Col) -> wx:wx_colour4()
Types:

This = wxGrid()
Row = Col = integer()

Returns the text colour for the grid cell at the specified location.

getCellValue(This, Coords) -> unicode:charlist()
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}

Returns the string contained in the cell at the specified location.

For simple applications where a grid object automatically uses a default grid table of string values you use this function
together with setCellValue/4 to access cell values. For more complex applications where you have derived your

302 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

own grid table class that contains various data types (e.g. numeric, boolean or user-defined custom types) then you
only use this function for those cells that contain string values.

See wxGridTableBase::CanGetValueAs() (not implemented in wx) and the overview_grid for more
information.

getCellValue(This, Row, Col) -> unicode:charlist()
Types:

This = wxGrid()
Row = Col = integer()

Returns the string contained in the cell at the specified location.

For simple applications where a grid object automatically uses a default grid table of string values you use this function
together with setCellValue/4 to access cell values. For more complex applications where you have derived your
own grid table class that contains various data types (e.g. numeric, boolean or user-defined custom types) then you
only use this function for those cells that contain string values.

See wxGridTableBase::CanGetValueAs() (not implemented in wx) and the overview_grid for more
information.

getColLabelAlignment(This) ->
 {Horiz :: integer(), Vert :: integer()}
Types:

This = wxGrid()
Sets the arguments to the current column label alignment values.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.

Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

getColLabelSize(This) -> integer()
Types:

This = wxGrid()
Returns the current height of the column labels.

getColLabelValue(This, Col) -> unicode:charlist()
Types:

This = wxGrid()
Col = integer()

Returns the specified column label.

The default grid table class provides column labels of the form A,B...Z,AA,AB...ZZ,AAA... If you are using a custom
grid table you can override wxGridTableBase::GetColLabelValue() (not implemented in wx) to provide
your own labels.

getColMinimalAcceptableWidth(This) -> integer()
Types:

This = wxGrid()
Returns the minimal width to which a column may be resized.

Ericsson AB. All Rights Reserved.: wxErlang | 303

wxGrid

Use setColMinimalAcceptableWidth/2 to change this value globally or setColMinimalWidth/3 to do
it for individual columns.

See: getRowMinimalAcceptableHeight/1

getDefaultCellAlignment(This) ->
 {Horiz :: integer(), Vert :: integer()}
Types:

This = wxGrid()
Returns the default cell alignment.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.

Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

See: setDefaultCellAlignment/3

getDefaultCellBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxGrid()
Returns the current default background colour for grid cells.

getDefaultCellFont(This) -> wxFont:wxFont()
Types:

This = wxGrid()
Returns the current default font for grid cell text.

getDefaultCellTextColour(This) -> wx:wx_colour4()
Types:

This = wxGrid()
Returns the current default colour for grid cell text.

getDefaultColLabelSize(This) -> integer()
Types:

This = wxGrid()
Returns the default height for column labels.

getDefaultColSize(This) -> integer()
Types:

This = wxGrid()
Returns the current default width for grid columns.

getDefaultEditor(This) -> wxGridCellEditor:wxGridCellEditor()
Types:

This = wxGrid()
Returns a pointer to the current default grid cell editor.

304 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

See wxGridCellEditor and the overview_grid for more information about cell editors and renderers.

getDefaultEditorForCell(This, C) ->
 wxGridCellEditor:wxGridCellEditor()
Types:

This = wxGrid()
C = {R :: integer(), C :: integer()}

Returns the default editor for the specified cell.

The base class version returns the editor appropriate for the current cell type but this method may be overridden in the
derived classes to use custom editors for some cells by default.

Notice that the same may be achieved in a usually simpler way by associating a custom editor with the given cell
or cells.

The caller must call DecRef() on the returned pointer.

getDefaultEditorForCell(This, Row, Col) ->
 wxGridCellEditor:wxGridCellEditor()
Types:

This = wxGrid()
Row = Col = integer()

Returns the default editor for the specified cell.

The base class version returns the editor appropriate for the current cell type but this method may be overridden in the
derived classes to use custom editors for some cells by default.

Notice that the same may be achieved in a usually simpler way by associating a custom editor with the given cell
or cells.

The caller must call DecRef() on the returned pointer.

getDefaultEditorForType(This, TypeName) ->
 wxGridCellEditor:wxGridCellEditor()
Types:

This = wxGrid()
TypeName = unicode:chardata()

Returns the default editor for the cells containing values of the given type.

The base class version returns the editor which was associated with the specified typeName when it was registered
registerDataType/4 but this function may be overridden to return something different. This allows overriding
an editor used for one of the standard types.

The caller must call DecRef() on the returned pointer.

getDefaultRenderer(This) ->
 wxGridCellRenderer:wxGridCellRenderer()
Types:

This = wxGrid()
Returns a pointer to the current default grid cell renderer.

See wxGridCellRenderer and the overview_grid for more information about cell editors and renderers.

Ericsson AB. All Rights Reserved.: wxErlang | 305

wxGrid

The caller must call DecRef() on the returned pointer.

getDefaultRendererForCell(This, Row, Col) ->
 wxGridCellRenderer:wxGridCellRenderer()
Types:

This = wxGrid()
Row = Col = integer()

Returns the default renderer for the given cell.

The base class version returns the renderer appropriate for the current cell type but this method may be overridden in
the derived classes to use custom renderers for some cells by default.

The caller must call DecRef() on the returned pointer.

getDefaultRendererForType(This, TypeName) ->
 wxGridCellRenderer:wxGridCellRenderer()
Types:

This = wxGrid()
TypeName = unicode:chardata()

Returns the default renderer for the cell containing values of the given type.

See: getDefaultEditorForType/2

getDefaultRowLabelSize(This) -> integer()
Types:

This = wxGrid()
Returns the default width for the row labels.

getDefaultRowSize(This) -> integer()
Types:

This = wxGrid()
Returns the current default height for grid rows.

getGridCursorCol(This) -> integer()
Types:

This = wxGrid()
Returns the current grid cell column position.

See: GetGridCursorCoords() (not implemented in wx)

getGridCursorRow(This) -> integer()
Types:

This = wxGrid()
Returns the current grid cell row position.

See: GetGridCursorCoords() (not implemented in wx)

306 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

getGridLineColour(This) -> wx:wx_colour4()
Types:

This = wxGrid()
Returns the colour used for grid lines.

See: GetDefaultGridLinePen() (not implemented in wx)

gridLinesEnabled(This) -> boolean()
Types:

This = wxGrid()
Returns true if drawing of grid lines is turned on, false otherwise.

getLabelBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxGrid()
Returns the colour used for the background of row and column labels.

getLabelFont(This) -> wxFont:wxFont()
Types:

This = wxGrid()
Returns the font used for row and column labels.

getLabelTextColour(This) -> wx:wx_colour4()
Types:

This = wxGrid()
Returns the colour used for row and column label text.

getNumberCols(This) -> integer()
Types:

This = wxGrid()
Returns the total number of grid columns.

This is the same as the number of columns in the underlying grid table.

getNumberRows(This) -> integer()
Types:

This = wxGrid()
Returns the total number of grid rows.

This is the same as the number of rows in the underlying grid table.

getOrCreateCellAttr(This, Row, Col) ->
 wxGridCellAttr:wxGridCellAttr()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 307

wxGrid

This = wxGrid()
Row = Col = integer()

Returns the attribute for the given cell creating one if necessary.

If the cell already has an attribute, it is returned. Otherwise a new attribute is created, associated with the cell and
returned. In any case the caller must call DecRef() on the returned pointer.

Prefer to use GetOrCreateCellAttrPtr() (not implemented in wx) to avoid the need to call DecRef() on the
returned pointer.

This function may only be called if CanHaveAttributes() (not implemented in wx) returns true.

getRowMinimalAcceptableHeight(This) -> integer()
Types:

This = wxGrid()
Returns the minimal size to which rows can be resized.

Use setRowMinimalAcceptableHeight/2 to change this value globally or setRowMinimalHeight/3 to
do it for individual cells.

See: getColMinimalAcceptableWidth/1

getRowLabelAlignment(This) ->
 {Horiz :: integer(), Vert :: integer()}
Types:

This = wxGrid()
Returns the alignment used for row labels.

Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.

Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

getRowLabelSize(This) -> integer()
Types:

This = wxGrid()
Returns the current width of the row labels.

getRowLabelValue(This, Row) -> unicode:charlist()
Types:

This = wxGrid()
Row = integer()

Returns the specified row label.

The default grid table class provides numeric row labels. If you are using a custom grid table you can override
wxGridTableBase::GetRowLabelValue() (not implemented in wx) to provide your own labels.

getRowSize(This, Row) -> integer()
Types:

308 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

This = wxGrid()
Row = integer()

Returns the height of the specified row.

getScrollLineX(This) -> integer()
Types:

This = wxGrid()
Returns the number of pixels per horizontal scroll increment.

The default is 15.

See: getScrollLineY/1, setScrollLineX/2, setScrollLineY/2

getScrollLineY(This) -> integer()
Types:

This = wxGrid()
Returns the number of pixels per vertical scroll increment.

The default is 15.

See: getScrollLineX/1, setScrollLineX/2, setScrollLineY/2

getSelectedCells(This) -> [{R :: integer(), C :: integer()}]
Types:

This = wxGrid()
Returns an array of individually selected cells.

Notice that this array does not contain all the selected cells in general as it doesn't include the cells selected as part of
column, row or block selection. You must use this method, getSelectedCols/1, getSelectedRows/1 and
getSelectionBlockTopLeft/1 and getSelectionBlockBottomRight/1 methods to obtain the entire
selection in general.

Please notice this behaviour is by design and is needed in order to support grids of arbitrary size (when an entire
column is selected in a grid with a million of columns, we don't want to create an array with a million of entries in this
function, instead it returns an empty array and getSelectedCols/1 returns an array containing one element).

The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in wx) in the new code.

getSelectedCols(This) -> [integer()]
Types:

This = wxGrid()
Returns an array of selected columns.

Please notice that this method alone is not sufficient to find all the selected columns as it contains only the columns
which were individually selected but not those being part of the block selection or being selected in virtue of all of
their cells being selected individually, please see getSelectedCells/1 for more details.

The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in wx) in the new code.

getSelectedRows(This) -> [integer()]
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 309

wxGrid

This = wxGrid()
Returns an array of selected rows.

Please notice that this method alone is not sufficient to find all the selected rows as it contains only the rows which
were individually selected but not those being part of the block selection or being selected in virtue of all of their cells
being selected individually, please see getSelectedCells/1 for more details.

The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in wx) in the new code.

getSelectionBackground(This) -> wx:wx_colour4()
Types:

This = wxGrid()
Returns the colour used for drawing the selection background.

getSelectionBlockTopLeft(This) ->
 [{R :: integer(), C :: integer()}]
Types:

This = wxGrid()
Returns an array of the top left corners of blocks of selected cells.

Please see getSelectedCells/1 for more information about the selection representation in wxGrid.

The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in wx) in the new code.

See: getSelectionBlockBottomRight/1

getSelectionBlockBottomRight(This) ->
 [{R :: integer(), C :: integer()}]
Types:

This = wxGrid()
Returns an array of the bottom right corners of blocks of selected cells.

Please see getSelectedCells/1 for more information about the selection representation in wxGrid.

The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in wx) in the new code.

See: getSelectionBlockTopLeft/1

getSelectionForeground(This) -> wx:wx_colour4()
Types:

This = wxGrid()
Returns the colour used for drawing the selection foreground.

getGridWindow(This) -> wxWindow:wxWindow()
Types:

This = wxGrid()
Return the main grid window containing the grid cells.

This window is always shown.

310 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

getGridRowLabelWindow(This) -> wxWindow:wxWindow()
Types:

This = wxGrid()
Return the row labels window.

This window is not shown if the row labels were hidden using HideRowLabels() (not implemented in wx).

getGridColLabelWindow(This) -> wxWindow:wxWindow()
Types:

This = wxGrid()
Return the column labels window.

This window is not shown if the columns labels were hidden using HideColLabels() (not implemented in wx).

Depending on whether UseNativeColHeader() (not implemented in wx) was called or not this can be either a
wxHeaderCtrl (not implemented in wx) or a plain wxWindow. This function returns a valid window pointer in
either case but in the former case you can also use GetGridColHeader() (not implemented in wx) to access it
if you need wxHeaderCtrl-specific functionality.

getGridCornerLabelWindow(This) -> wxWindow:wxWindow()
Types:

This = wxGrid()
Return the window in the top left grid corner.

This window is shown only of both columns and row labels are shown and normally doesn't contain anything. Clicking
on it is handled by wxGrid however and can be used to select the entire grid.

hideCellEditControl(This) -> ok
Types:

This = wxGrid()
Hides the in-place cell edit control.

insertCols(This) -> boolean()
Types:

This = wxGrid()

insertCols(This, Options :: [Option]) -> boolean()
Types:

This = wxGrid()
Option =
 {pos, integer()} |
 {numCols, integer()} |
 {updateLabels, boolean()}

Inserts one or more new columns into a grid with the first new column at the specified position.

Notice that inserting the columns in the grid requires grid table cooperation: when this method is called, grid object
begins by requesting the underlying grid table to insert new columns. If this is successful the table notifies the grid and
the grid updates the display. For a default grid (one where you have called createGrid/4) this process is automatic.
If you are using a custom grid table (specified with SetTable() (not implemented in wx) or AssignTable()

Ericsson AB. All Rights Reserved.: wxErlang | 311

wxGrid

(not implemented in wx)) then you must override wxGridTableBase::InsertCols() (not implemented in
wx) in your derived table class.

Return: true if the columns were successfully inserted, false if an error occurred (most likely the table couldn't be
updated).

insertRows(This) -> boolean()
Types:

This = wxGrid()

insertRows(This, Options :: [Option]) -> boolean()
Types:

This = wxGrid()
Option =
 {pos, integer()} |
 {numRows, integer()} |
 {updateLabels, boolean()}

Inserts one or more new rows into a grid with the first new row at the specified position.

Notice that you must implement wxGridTableBase::InsertRows() (not implemented in wx) if you use a grid
with a custom table, please see insertCols/2 for more information.

Return: true if the rows were successfully inserted, false if an error occurred (most likely the table couldn't be updated).

isCellEditControlEnabled(This) -> boolean()
Types:

This = wxGrid()
Returns true if the in-place edit control is currently enabled.

isCurrentCellReadOnly(This) -> boolean()
Types:

This = wxGrid()
Returns true if the current cell is read-only.

See: setReadOnly/4, isReadOnly/3

isEditable(This) -> boolean()
Types:

This = wxGrid()
Returns false if the whole grid has been set as read-only or true otherwise.

See enableEditing/2 for more information about controlling the editing status of grid cells.

isInSelection(This, Coords) -> boolean()
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}

Returns true if the given cell is selected.

312 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

isInSelection(This, Row, Col) -> boolean()
Types:

This = wxGrid()
Row = Col = integer()

Returns true if the given cell is selected.

isReadOnly(This, Row, Col) -> boolean()
Types:

This = wxGrid()
Row = Col = integer()

Returns true if the cell at the specified location can't be edited.

See: setReadOnly/4, isCurrentCellReadOnly/1

isSelection(This) -> boolean()
Types:

This = wxGrid()
Returns true if there are currently any selected cells, rows, columns or blocks.

isVisible(This, Coords) -> boolean()
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}

isVisible(This, Row, Col) -> boolean()
isVisible(This, Coords, Col :: [Option]) -> boolean()
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}
Option = {wholeCellVisible, boolean()}

Returns true if a cell is either entirely or at least partially visible in the grid window.

By default, the cell must be entirely visible for this function to return true but if wholeCellVisible is false, the
function returns true even if the cell is only partially visible.

isVisible(This, Row, Col, Options :: [Option]) -> boolean()
Types:

This = wxGrid()
Row = Col = integer()
Option = {wholeCellVisible, boolean()}

Returns true if a cell is either entirely or at least partially visible in the grid window.

By default, the cell must be entirely visible for this function to return true but if wholeCellVisible is false, the
function returns true even if the cell is only partially visible.

Ericsson AB. All Rights Reserved.: wxErlang | 313

wxGrid

makeCellVisible(This, Coords) -> ok
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}

Brings the specified cell into the visible grid cell area with minimal scrolling.

Does nothing if the cell is already visible.

makeCellVisible(This, Row, Col) -> ok
Types:

This = wxGrid()
Row = Col = integer()

Brings the specified cell into the visible grid cell area with minimal scrolling.

Does nothing if the cell is already visible.

moveCursorDown(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor down by one row.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

moveCursorLeft(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor left by one column.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

moveCursorRight(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor right by one column.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

moveCursorUp(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor up by one row.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

314 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

moveCursorDownBlock(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor down in the current column such that it skips to the beginning or end of a block of non-empty
cells.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

moveCursorLeftBlock(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor left in the current row such that it skips to the beginning or end of a block of non-empty cells.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

moveCursorRightBlock(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor right in the current row such that it skips to the beginning or end of a block of non-empty cells.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

moveCursorUpBlock(This, ExpandSelection) -> boolean()
Types:

This = wxGrid()
ExpandSelection = boolean()

Moves the grid cursor up in the current column such that it skips to the beginning or end of a block of non-empty cells.

If a block of cells was previously selected it will expand if the argument is true or be cleared if the argument is false.

movePageDown(This) -> boolean()
Types:

This = wxGrid()
Moves the grid cursor down by some number of rows so that the previous bottom visible row becomes the top visible
row.

movePageUp(This) -> boolean()
Types:

This = wxGrid()
Moves the grid cursor up by some number of rows so that the previous top visible row becomes the bottom visible row.

registerDataType(This, TypeName, Renderer, Editor) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 315

wxGrid

This = wxGrid()
TypeName = unicode:chardata()
Renderer = wxGridCellRenderer:wxGridCellRenderer()
Editor = wxGridCellEditor:wxGridCellEditor()

Register a new data type.

The data types allow to naturally associate specific renderers and editors to the cells containing values of the given
type. For example, the grid automatically registers a data type with the name wxGRID_VALUE_STRING which uses
wxGridCellStringRenderer and wxGridCellTextEditor as its renderer and editor respectively - this is
the data type used by all the cells of the default wxGridStringTable (not implemented in wx), so this renderer
and editor are used by default for all grid cells.

However if a custom table returns wxGRID_VALUE_BOOL from its wxGridTableBase::GetTypeName() (not
implemented in wx) method, then wxGridCellBoolRenderer and wxGridCellBoolEditor are used for it
because the grid also registers a boolean data type with this name.

And as this mechanism is completely generic, you may register your own data types using your own custom renderers
and editors. Just remember that the table must identify a cell as being of the given type for them to be used for this cell.

saveEditControlValue(This) -> ok
Types:

This = wxGrid()
Sets the value of the current grid cell to the current in-place edit control value.

This is called automatically when the grid cursor moves from the current cell to a new cell. It is also a good idea to
call this function when closing a grid since any edits to the final cell location will not be saved otherwise.

selectAll(This) -> ok
Types:

This = wxGrid()
Selects all cells in the grid.

selectBlock(This, TopLeft, BottomRight) -> ok
Types:

This = wxGrid()
TopLeft = BottomRight = {R :: integer(), C :: integer()}

selectBlock(This, TopLeft, BottomRight, Options :: [Option]) -> ok
Types:

This = wxGrid()
TopLeft = BottomRight = {R :: integer(), C :: integer()}
Option = {addToSelected, boolean()}

Selects a rectangular block of cells.

If addToSelected is false then any existing selection will be deselected; if true the column will be added to the
existing selection.

selectBlock(This, TopRow, LeftCol, BottomRow, RightCol) -> ok
Types:

316 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

This = wxGrid()
TopRow = LeftCol = BottomRow = RightCol = integer()

selectBlock(This, TopRow, LeftCol, BottomRow, RightCol,
 Options :: [Option]) ->
 ok
Types:

This = wxGrid()
TopRow = LeftCol = BottomRow = RightCol = integer()
Option = {addToSelected, boolean()}

Selects a rectangular block of cells.

If addToSelected is false then any existing selection will be deselected; if true the column will be added to the
existing selection.

selectCol(This, Col) -> ok
Types:

This = wxGrid()
Col = integer()

selectCol(This, Col, Options :: [Option]) -> ok
Types:

This = wxGrid()
Col = integer()
Option = {addToSelected, boolean()}

Selects the specified column.

If addToSelected is false then any existing selection will be deselected; if true the column will be added to the
existing selection.

This method won't select anything if the current selection mode is wxGridSelectRows.

selectRow(This, Row) -> ok
Types:

This = wxGrid()
Row = integer()

selectRow(This, Row, Options :: [Option]) -> ok
Types:

This = wxGrid()
Row = integer()
Option = {addToSelected, boolean()}

Selects the specified row.

If addToSelected is false then any existing selection will be deselected; if true the row will be added to the existing
selection.

Ericsson AB. All Rights Reserved.: wxErlang | 317

wxGrid

This method won't select anything if the current selection mode is wxGridSelectColumns.

setCellAlignment(This, Row, Col, Horiz, Vert) -> ok
Types:

This = wxGrid()
Row = Col = Horiz = Vert = integer()

Sets the horizontal and vertical alignment for grid cell text at the specified location.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.

Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

setCellBackgroundColour(This, Row, Col, Colour) -> ok
Types:

This = wxGrid()
Row = Col = integer()
Colour = wx:wx_colour()

Set the background colour for the given cell or all cells by default.

setCellEditor(This, Row, Col, Editor) -> ok
Types:

This = wxGrid()
Row = Col = integer()
Editor = wxGridCellEditor:wxGridCellEditor()

Sets the editor for the grid cell at the specified location.

The grid will take ownership of the pointer.

See wxGridCellEditor and the overview_grid for more information about cell editors and renderers.

setCellFont(This, Row, Col, Font) -> ok
Types:

This = wxGrid()
Row = Col = integer()
Font = wxFont:wxFont()

Sets the font for text in the grid cell at the specified location.

setCellRenderer(This, Row, Col, Renderer) -> ok
Types:

This = wxGrid()
Row = Col = integer()
Renderer = wxGridCellRenderer:wxGridCellRenderer()

Sets the renderer for the grid cell at the specified location.

The grid will take ownership of the pointer.

See wxGridCellRenderer and the overview_grid for more information about cell editors and renderers.

318 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

setCellTextColour(This, Row, Col, Colour) -> ok
Types:

This = wxGrid()
Row = Col = integer()
Colour = wx:wx_colour()

Sets the text colour for the given cell.

setCellValue(This, Coords, S) -> ok
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}
S = unicode:chardata()

Sets the string value for the cell at the specified location.

For simple applications where a grid object automatically uses a default grid table of string values you use this function
together with getCellValue/3 to access cell values. For more complex applications where you have derived your
own grid table class that contains various data types (e.g. numeric, boolean or user-defined custom types) then you
only use this function for those cells that contain string values.

See wxGridTableBase::CanSetValueAs() (not implemented in wx) and the overview_grid for more
information.

setCellValue(This, Row, Col, S) -> ok
Types:

This = wxGrid()
Row = Col = integer()
S = unicode:chardata()

Sets the string value for the cell at the specified location.

For simple applications where a grid object automatically uses a default grid table of string values you use this function
together with getCellValue/3 to access cell values. For more complex applications where you have derived your
own grid table class that contains various data types (e.g. numeric, boolean or user-defined custom types) then you
only use this function for those cells that contain string values.

See wxGridTableBase::CanSetValueAs() (not implemented in wx) and the overview_grid for more
information.

setColAttr(This, Col, Attr) -> ok
Types:

This = wxGrid()
Col = integer()
Attr = wxGridCellAttr:wxGridCellAttr()

Sets the cell attributes for all cells in the specified column.

For more information about controlling grid cell attributes see the wxGridCellAttr cell attribute class and the
overview_grid.

setColFormatBool(This, Col) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 319

wxGrid

This = wxGrid()
Col = integer()

Sets the specified column to display boolean values.

See: setColFormatCustom/3

setColFormatNumber(This, Col) -> ok
Types:

This = wxGrid()
Col = integer()

Sets the specified column to display integer values.

See: setColFormatCustom/3

setColFormatFloat(This, Col) -> ok
Types:

This = wxGrid()
Col = integer()

setColFormatFloat(This, Col, Options :: [Option]) -> ok
Types:

This = wxGrid()
Col = integer()
Option = {width, integer()} | {precision, integer()}

Sets the specified column to display floating point values with the given width and precision.

See: setColFormatCustom/3

setColFormatCustom(This, Col, TypeName) -> ok
Types:

This = wxGrid()
Col = integer()
TypeName = unicode:chardata()

Sets the specified column to display data in a custom format.

This method provides an alternative to defining a custom grid table which would return typeName from its
GetTypeName() method for the cells in this column: while it doesn't really change the type of the cells in this column,
it does associate the renderer and editor used for the cells of the specified type with them.

See the overview_grid for more information on working with custom data types.

setColLabelAlignment(This, Horiz, Vert) -> ok
Types:

This = wxGrid()
Horiz = Vert = integer()

Sets the horizontal and vertical alignment of column label text.

320 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT. Vertical
alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

setColLabelSize(This, Height) -> ok
Types:

This = wxGrid()
Height = integer()

Sets the height of the column labels.

If height equals to wxGRID_AUTOSIZE then height is calculated automatically so that no label is truncated. Note
that this could be slow for a large table.

setColLabelValue(This, Col, Value) -> ok
Types:

This = wxGrid()
Col = integer()
Value = unicode:chardata()

Set the value for the given column label.

If you are using a custom grid table you must override wxGridTableBase::SetColLabelValue() (not
implemented in wx) for this to have any effect.

setColMinimalWidth(This, Col, Width) -> ok
Types:

This = wxGrid()
Col = Width = integer()

Sets the minimal width for the specified column col.

It is usually best to call this method during grid creation as calling it later will not resize the column to the given
minimal width even if it is currently narrower than it.

width must be greater than the minimal acceptable column width as returned by
getColMinimalAcceptableWidth/1.

setColMinimalAcceptableWidth(This, Width) -> ok
Types:

This = wxGrid()
Width = integer()

Sets the minimal width to which the user can resize columns.

See: getColMinimalAcceptableWidth/1

setColSize(This, Col, Width) -> ok
Types:

This = wxGrid()
Col = Width = integer()

Sets the width of the specified column.

Ericsson AB. All Rights Reserved.: wxErlang | 321

wxGrid

setDefaultCellAlignment(This, Horiz, Vert) -> ok
Types:

This = wxGrid()
Horiz = Vert = integer()

Sets the default horizontal and vertical alignment for grid cell text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT. Vertical
alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

setDefaultCellBackgroundColour(This, Colour) -> ok
Types:

This = wxGrid()
Colour = wx:wx_colour()

Sets the default background colour for grid cells.

setDefaultCellFont(This, Font) -> ok
Types:

This = wxGrid()
Font = wxFont:wxFont()

Sets the default font to be used for grid cell text.

setDefaultCellTextColour(This, Colour) -> ok
Types:

This = wxGrid()
Colour = wx:wx_colour()

Sets the current default colour for grid cell text.

setDefaultEditor(This, Editor) -> ok
Types:

This = wxGrid()
Editor = wxGridCellEditor:wxGridCellEditor()

Sets the default editor for grid cells.

The grid will take ownership of the pointer.

See wxGridCellEditor and the overview_grid for more information about cell editors and renderers.

setDefaultRenderer(This, Renderer) -> ok
Types:

This = wxGrid()
Renderer = wxGridCellRenderer:wxGridCellRenderer()

Sets the default renderer for grid cells.

The grid will take ownership of the pointer.

See wxGridCellRenderer and the overview_grid for more information about cell editors and renderers.

322 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

setDefaultColSize(This, Width) -> ok
Types:

This = wxGrid()
Width = integer()

setDefaultColSize(This, Width, Options :: [Option]) -> ok
Types:

This = wxGrid()
Width = integer()
Option = {resizeExistingCols, boolean()}

Sets the default width for columns in the grid.

This will only affect columns subsequently added to the grid unless resizeExistingCols is true.

If width is less than getColMinimalAcceptableWidth/1, then the minimal acceptable width is used instead
of it.

setDefaultRowSize(This, Height) -> ok
Types:

This = wxGrid()
Height = integer()

setDefaultRowSize(This, Height, Options :: [Option]) -> ok
Types:

This = wxGrid()
Height = integer()
Option = {resizeExistingRows, boolean()}

Sets the default height for rows in the grid.

This will only affect rows subsequently added to the grid unless resizeExistingRows is true.

If height is less than getRowMinimalAcceptableHeight/1, then the minimal acceptable height is used
instead of it.

setGridCursor(This, Coords) -> ok
Types:

This = wxGrid()
Coords = {R :: integer(), C :: integer()}

Set the grid cursor to the specified cell.

The grid cursor indicates the current cell and can be moved by the user using the arrow keys or the mouse.

Calling this function generates a wxEVT_GRID_SELECT_CELL event and if the event handler vetoes this event,
the cursor is not moved.

This function doesn't make the target call visible, use GoToCell() (not implemented in wx) to do this.

setGridCursor(This, Row, Col) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 323

wxGrid

This = wxGrid()
Row = Col = integer()

Set the grid cursor to the specified cell.

The grid cursor indicates the current cell and can be moved by the user using the arrow keys or the mouse.

Calling this function generates a wxEVT_GRID_SELECT_CELL event and if the event handler vetoes this event,
the cursor is not moved.

This function doesn't make the target call visible, use GoToCell() (not implemented in wx) to do this.

setGridLineColour(This, Colour) -> ok
Types:

This = wxGrid()
Colour = wx:wx_colour()

Sets the colour used to draw grid lines.

setLabelBackgroundColour(This, Colour) -> ok
Types:

This = wxGrid()
Colour = wx:wx_colour()

Sets the background colour for row and column labels.

setLabelFont(This, Font) -> ok
Types:

This = wxGrid()
Font = wxFont:wxFont()

Sets the font for row and column labels.

setLabelTextColour(This, Colour) -> ok
Types:

This = wxGrid()
Colour = wx:wx_colour()

Sets the colour for row and column label text.

setMargins(This, ExtraWidth, ExtraHeight) -> ok
Types:

This = wxGrid()
ExtraWidth = ExtraHeight = integer()

Sets the extra margins used around the grid area.

A grid may occupy more space than needed for its data display and this function allows setting how big this extra
space is

setReadOnly(This, Row, Col) -> ok
Types:

324 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

This = wxGrid()
Row = Col = integer()

setReadOnly(This, Row, Col, Options :: [Option]) -> ok
Types:

This = wxGrid()
Row = Col = integer()
Option = {isReadOnly, boolean()}

Makes the cell at the specified location read-only or editable.

See: isReadOnly/3

setRowAttr(This, Row, Attr) -> ok
Types:

This = wxGrid()
Row = integer()
Attr = wxGridCellAttr:wxGridCellAttr()

Sets the cell attributes for all cells in the specified row.

The grid takes ownership of the attribute pointer.

See the wxGridCellAttr class for more information about controlling cell attributes.

setRowLabelAlignment(This, Horiz, Vert) -> ok
Types:

This = wxGrid()
Horiz = Vert = integer()

Sets the horizontal and vertical alignment of row label text.

Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT. Vertical
alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

setRowLabelSize(This, Width) -> ok
Types:

This = wxGrid()
Width = integer()

Sets the width of the row labels.

If width equals wxGRID_AUTOSIZE then width is calculated automatically so that no label is truncated. Note that
this could be slow for a large table.

setRowLabelValue(This, Row, Value) -> ok
Types:

This = wxGrid()
Row = integer()
Value = unicode:chardata()

Sets the value for the given row label.

Ericsson AB. All Rights Reserved.: wxErlang | 325

wxGrid

If you are using a derived grid table you must override wxGridTableBase::SetRowLabelValue() (not
implemented in wx) for this to have any effect.

setRowMinimalHeight(This, Row, Height) -> ok
Types:

This = wxGrid()
Row = Height = integer()

Sets the minimal height for the specified row.

See setColMinimalWidth/3 for more information.

setRowMinimalAcceptableHeight(This, Height) -> ok
Types:

This = wxGrid()
Height = integer()

Sets the minimal row height used by default.

See setColMinimalAcceptableWidth/2 for more information.

setRowSize(This, Row, Height) -> ok
Types:

This = wxGrid()
Row = Height = integer()

Sets the height of the specified row.

See setColSize/3 for more information.

setScrollLineX(This, X) -> ok
Types:

This = wxGrid()
X = integer()

Sets the number of pixels per horizontal scroll increment.

The default is 15.

See: getScrollLineX/1, getScrollLineY/1, setScrollLineY/2

setScrollLineY(This, Y) -> ok
Types:

This = wxGrid()
Y = integer()

Sets the number of pixels per vertical scroll increment.

The default is 15.

See: getScrollLineX/1, getScrollLineY/1, setScrollLineX/2

setSelectionBackground(This, C) -> ok
Types:

326 | Ericsson AB. All Rights Reserved.: wxErlang

wxGrid

This = wxGrid()
C = wx:wx_colour()

Set the colour to be used for drawing the selection background.

setSelectionForeground(This, C) -> ok
Types:

This = wxGrid()
C = wx:wx_colour()

Set the colour to be used for drawing the selection foreground.

setSelectionMode(This, Selmode) -> ok
Types:

This = wxGrid()
Selmode = wx:wx_enum()

Set the selection behaviour of the grid.

The existing selection is converted to conform to the new mode if possible and discarded otherwise (e.g. any individual
selected cells are deselected if the new mode allows only the selection of the entire rows or columns).

showCellEditControl(This) -> ok
Types:

This = wxGrid()
Displays the active in-place cell edit control for the current cell after it was hidden.

This method should only be called after calling hideCellEditControl/1, to start editing the current grid cell
use enableCellEditControl/2 instead.

xToCol(This, X) -> integer()
Types:

This = wxGrid()
X = integer()

xToCol(This, X, Options :: [Option]) -> integer()
Types:

This = wxGrid()
X = integer()
Option = {clipToMinMax, boolean()}

Returns the column at the given pixel position depending on the window.

Return: The column index or wxNOT_FOUND.

xToEdgeOfCol(This, X) -> integer()
Types:

This = wxGrid()
X = integer()

Returns the column whose right hand edge is close to the given logical x position.

Ericsson AB. All Rights Reserved.: wxErlang | 327

wxGrid

If no column edge is near to this position wxNOT_FOUND is returned.

yToEdgeOfRow(This, Y) -> integer()
Types:

This = wxGrid()
Y = integer()

Returns the row whose bottom edge is close to the given logical y position.

If no row edge is near to this position wxNOT_FOUND is returned.

yToRow(This, Y) -> integer()
Types:

This = wxGrid()
Y = integer()

yToRow(This, Y, Options :: [Option]) -> integer()
Types:

This = wxGrid()
Y = integer()
Option = {clipToMinMax, boolean()}

Returns the grid row that corresponds to the logical y coordinate.

The parameter gridWindow is new since wxWidgets 3.1.3. If it is specified, i.e. non-NULL, only the cells of this
window are considered, i.e. the function returns wxNOT_FOUND if y is out of bounds.

If gridWindow is NULL, the function returns wxNOT_FOUND only if there is no row at all at the y position.

328 | Ericsson AB. All Rights Reserved.: wxErlang

wxHelpEvent

wxHelpEvent
Erlang module

A help event is sent when the user has requested context-sensitive help. This can either be caused by the application
requesting context-sensitive help mode via wxContextHelp (not implemented in wx), or (on MS Windows) by the
system generating a WM_HELP message when the user pressed F1 or clicked on the query button in a dialog caption.

A help event is sent to the window that the user clicked on, and is propagated up the window hierarchy until the event
is processed or there are no more event handlers.

The application should call wxEvent:getId/1 to check the identity of the clicked-on window, and then either
show some suitable help or call wxEvent:skip/2 if the identifier is unrecognised.

Calling Skip is important because it allows wxWidgets to generate further events for ancestors of the clicked-on
window. Otherwise it would be impossible to show help for container windows, since processing would stop after
the first window found.

See: wxContextHelp (not implemented in wx), wxDialog, Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxHelpEvent

Events
Use wxEvtHandler:connect/3 with wxHelpEventType to subscribe to events of this type.

Data Types
wxHelpEvent() = wx:wx_object()
wxHelp() = #wxHelp{type = wxHelpEvent:wxHelpEventType()}
wxHelpEventType() = help | detailed_help

Exports

getOrigin(This) -> wx:wx_enum()
Types:

This = wxHelpEvent()
Returns the origin of the help event which is one of the wxHelpEvent::Origin (not implemented in wx) values.

The application may handle events generated using the keyboard or mouse differently, e.g. by using
wx_misc:getMousePosition/0 for the mouse events.

See: setOrigin/2

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxHelpEvent()
Returns the left-click position of the mouse, in screen coordinates.

This allows the application to position the help appropriately.

Ericsson AB. All Rights Reserved.: wxErlang | 329

href
href

wxHelpEvent

setOrigin(This, Origin) -> ok
Types:

This = wxHelpEvent()
Origin = wx:wx_enum()

Set the help event origin, only used internally by wxWidgets normally.

See: getOrigin/1

setPosition(This, Pt) -> ok
Types:

This = wxHelpEvent()
Pt = {X :: integer(), Y :: integer()}

Sets the left-click position of the mouse, in screen coordinates.

330 | Ericsson AB. All Rights Reserved.: wxErlang

wxHtmlEasyPrinting

wxHtmlEasyPrinting
Erlang module

This class provides very simple interface to printing architecture. It allows you to print HTML documents using only
a few commands.

Note: Do not create this class on the stack only. You should create an instance on app startup and use this instance for
all printing operations. The reason is that this class stores various settings in it.

wxWidgets docs: wxHtmlEasyPrinting

Data Types
wxHtmlEasyPrinting() = wx:wx_object()

Exports

new() -> wxHtmlEasyPrinting()

new(Options :: [Option]) -> wxHtmlEasyPrinting()
Types:

Option =
 {name, unicode:chardata()} |
 {parentWindow, wxWindow:wxWindow()}

Constructor.

getPrintData(This) -> wxPrintData:wxPrintData()
Types:

This = wxHtmlEasyPrinting()
Returns pointer to wxPrintData instance used by this class.

You can set its parameters (via SetXXXX methods).

getPageSetupData(This) ->
 wxPageSetupDialogData:wxPageSetupDialogData()
Types:

This = wxHtmlEasyPrinting()
Returns a pointer to wxPageSetupDialogData instance used by this class.

You can set its parameters (via SetXXXX methods).

previewFile(This, Htmlfile) -> boolean()
Types:

This = wxHtmlEasyPrinting()
Htmlfile = unicode:chardata()

Preview HTML file.

Ericsson AB. All Rights Reserved.: wxErlang | 331

href

wxHtmlEasyPrinting

Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of
the error.

previewText(This, Htmltext) -> boolean()
Types:

This = wxHtmlEasyPrinting()
Htmltext = unicode:chardata()

previewText(This, Htmltext, Options :: [Option]) -> boolean()
Types:

This = wxHtmlEasyPrinting()
Htmltext = unicode:chardata()
Option = {basepath, unicode:chardata()}

Preview HTML text (not file!).

Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of
the error.

printFile(This, Htmlfile) -> boolean()
Types:

This = wxHtmlEasyPrinting()
Htmlfile = unicode:chardata()

Print HTML file.

Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of
the error.

printText(This, Htmltext) -> boolean()
Types:

This = wxHtmlEasyPrinting()
Htmltext = unicode:chardata()

printText(This, Htmltext, Options :: [Option]) -> boolean()
Types:

This = wxHtmlEasyPrinting()
Htmltext = unicode:chardata()
Option = {basepath, unicode:chardata()}

Print HTML text (not file!).

Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of
the error.

pageSetup(This) -> ok
Types:

This = wxHtmlEasyPrinting()
Display page setup dialog and allows the user to modify settings.

332 | Ericsson AB. All Rights Reserved.: wxErlang

wxHtmlEasyPrinting

setFonts(This, Normal_face, Fixed_face) -> ok
Types:

This = wxHtmlEasyPrinting()
Normal_face = Fixed_face = unicode:chardata()

setFonts(This, Normal_face, Fixed_face, Options :: [Option]) -> ok
Types:

This = wxHtmlEasyPrinting()
Normal_face = Fixed_face = unicode:chardata()
Option = {sizes, [integer()]}

Sets fonts.

See wxHtmlDCRenderer::SetFonts (not implemented in wx) for detailed description.

setHeader(This, Header) -> ok
Types:

This = wxHtmlEasyPrinting()
Header = unicode:chardata()

setHeader(This, Header, Options :: [Option]) -> ok
Types:

This = wxHtmlEasyPrinting()
Header = unicode:chardata()
Option = {pg, integer()}

Set page header.

The following macros can be used inside it:

setFooter(This, Footer) -> ok
Types:

This = wxHtmlEasyPrinting()
Footer = unicode:chardata()

setFooter(This, Footer, Options :: [Option]) -> ok
Types:

This = wxHtmlEasyPrinting()
Footer = unicode:chardata()
Option = {pg, integer()}

Set page footer.

The following macros can be used inside it: @DATE@ is replaced by the current date in default format
@PAGENUM@ is replaced by page number @PAGESCNT@ is replaced by total number of pages @TIME@ is
replaced by the current time in default format @TITLE@ is replaced with the title of the document

destroy(This :: wxHtmlEasyPrinting()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 333

wxHtmlLinkEvent

wxHtmlLinkEvent
Erlang module

This event class is used for the events generated by wxHtmlWindow.

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxHtmlLinkEvent

Events
Use wxEvtHandler:connect/3 with wxHtmlLinkEventType to subscribe to events of this type.

Data Types
wxHtmlLinkEvent() = wx:wx_object()
wxHtmlLink() =
 #wxHtmlLink{type = wxHtmlLinkEvent:wxHtmlLinkEventType(),
 linkInfo = wx:wx_wxHtmlLinkInfo()}
wxHtmlLinkEventType() =
 command_html_link_clicked | html_cell_clicked |
 html_cell_hover

Exports

getLinkInfo(This) -> wx:wx_wxHtmlLinkInfo()
Types:

This = wxHtmlLinkEvent()
Returns the wx_wxHtmlLinkInfo() which contains info about the cell clicked and the hyperlink it contains.

334 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxHtmlWindow

wxHtmlWindow
Erlang module

wxHtmlWindow is probably the only class you will directly use unless you want to do something special (like adding
new tag handlers or MIME filters).

The purpose of this class is to display rich content pages (either local file or downloaded via HTTP protocol) in a
window based on a subset of the HTML standard. The width of the window is constant, given in the constructor and
virtual height is changed dynamically depending on page size. Once the window is created you can set its content by
calling setPage/2 with raw HTML, loadPage/2 with a wxFileSystem (not implemented in wx) location or
loadFile/2 with a filename.

Note: If you want complete HTML/CSS support as well as a Javascript engine, consider using wxWebView instead.

wxHtmlWindow uses the wxImage class for displaying images, so you need to initialize the handlers for any
image formats you use before loading a page. See ?wxInitAllImageHandlers and wxImage::AddHandler (not
implemented in wx).

Styles

This class supports the following styles:

See: wxHtmlLinkEvent, wxHtmlCellEvent (not implemented in wx)

This class is derived (and can use functions) from: wxScrolledWindow wxPanel wxWindow wxEvtHandler

wxWidgets docs: wxHtmlWindow

Events
Event types emitted from this class: html_cell_clicked, html_cell_hover,
command_html_link_clicked

Data Types
wxHtmlWindow() = wx:wx_object()

Exports

new() -> wxHtmlWindow()
Default ctor.

new(Parent) -> wxHtmlWindow()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxHtmlWindow()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |

Ericsson AB. All Rights Reserved.: wxErlang | 335

href

wxHtmlWindow

 {style, integer()}
Constructor.

The parameters are the same as wxScrolled::wxScrolled() (not implemented in wx) constructor.

appendToPage(This, Source) -> boolean()
Types:

This = wxHtmlWindow()
Source = unicode:chardata()

Appends HTML fragment to currently displayed text and refreshes the window.

Return: false if an error occurred, true otherwise.

getOpenedAnchor(This) -> unicode:charlist()
Types:

This = wxHtmlWindow()
Returns anchor within currently opened page (see getOpenedPage/1).

If no page is opened or if the displayed page wasn't produced by call to loadPage/2, empty string is returned.

getOpenedPage(This) -> unicode:charlist()
Types:

This = wxHtmlWindow()
Returns full location of the opened page.

If no page is opened or if the displayed page wasn't produced by call to loadPage/2, empty string is returned.

getOpenedPageTitle(This) -> unicode:charlist()
Types:

This = wxHtmlWindow()
Returns title of the opened page or wxEmptyString if the current page does not contain <TITLE> tag.

getRelatedFrame(This) -> wxFrame:wxFrame()
Types:

This = wxHtmlWindow()
Returns the related frame.

historyBack(This) -> boolean()
Types:

This = wxHtmlWindow()
Moves back to the previous page.

Only pages displayed using loadPage/2 are stored in history list.

historyCanBack(This) -> boolean()
Types:

336 | Ericsson AB. All Rights Reserved.: wxErlang

wxHtmlWindow

This = wxHtmlWindow()
Returns true if it is possible to go back in the history i.e.

historyBack/1 won't fail.

historyCanForward(This) -> boolean()
Types:

This = wxHtmlWindow()
Returns true if it is possible to go forward in the history i.e.

historyForward/1 won't fail.

historyClear(This) -> ok
Types:

This = wxHtmlWindow()
Clears history.

historyForward(This) -> boolean()
Types:

This = wxHtmlWindow()
Moves to next page in history.

Only pages displayed using loadPage/2 are stored in history list.

loadFile(This, Filename) -> boolean()
Types:

This = wxHtmlWindow()
Filename = unicode:chardata()

Loads an HTML page from a file and displays it.

Return: false if an error occurred, true otherwise

See: loadPage/2

loadPage(This, Location) -> boolean()
Types:

This = wxHtmlWindow()
Location = unicode:chardata()

Unlike setPage/2 this function first loads the HTML page from location and then displays it.

Return: false if an error occurred, true otherwise

See: loadFile/2

selectAll(This) -> ok
Types:

This = wxHtmlWindow()
Selects all text in the window.

Ericsson AB. All Rights Reserved.: wxErlang | 337

wxHtmlWindow

See: selectLine/2, selectWord/2

selectionToText(This) -> unicode:charlist()
Types:

This = wxHtmlWindow()
Returns the current selection as plain text.

Returns an empty string if no text is currently selected.

selectLine(This, Pos) -> ok
Types:

This = wxHtmlWindow()
Pos = {X :: integer(), Y :: integer()}

Selects the line of text that pos points at.

Note that pos is relative to the top of displayed page, not to window's origin, use
wxScrolledWindow:calcUnscrolledPosition/3 to convert physical coordinate.

See: selectAll/1, selectWord/2

selectWord(This, Pos) -> ok
Types:

This = wxHtmlWindow()
Pos = {X :: integer(), Y :: integer()}

Selects the word at position pos.

Note that pos is relative to the top of displayed page, not to window's origin, use
wxScrolledWindow:calcUnscrolledPosition/3 to convert physical coordinate.

See: selectAll/1, selectLine/2

setBorders(This, B) -> ok
Types:

This = wxHtmlWindow()
B = integer()

This function sets the space between border of window and HTML contents.

See image:

setFonts(This, Normal_face, Fixed_face) -> ok
Types:

This = wxHtmlWindow()
Normal_face = Fixed_face = unicode:chardata()

setFonts(This, Normal_face, Fixed_face, Options :: [Option]) -> ok
Types:

338 | Ericsson AB. All Rights Reserved.: wxErlang

wxHtmlWindow

This = wxHtmlWindow()
Normal_face = Fixed_face = unicode:chardata()
Option = {sizes, [integer()]}

This function sets font sizes and faces.

See wxHtmlDCRenderer::SetFonts (not implemented in wx) for detailed description.

See: SetSize()

setPage(This, Source) -> boolean()
Types:

This = wxHtmlWindow()
Source = unicode:chardata()

Sets the source of a page and displays it, for example:

If you want to load a document from some location use loadPage/2 instead.

Return: false if an error occurred, true otherwise.

setRelatedFrame(This, Frame, Format) -> ok
Types:

This = wxHtmlWindow()
Frame = wxFrame:wxFrame()
Format = unicode:chardata()

Sets the frame in which page title will be displayed.

format is the format of the frame title, e.g. "HtmlHelp : %s". It must contain exactly one s. This s is substituted
with HTML page title.

setRelatedStatusBar(This, Statusbar) -> ok
setRelatedStatusBar(This, Index) -> ok
Types:

This = wxHtmlWindow()
Index = integer()

After calling setRelatedFrame/3, this sets statusbar slot where messages will be displayed.

(Default is -1 = no messages.)

setRelatedStatusBar(This, Statusbar, Options :: [Option]) -> ok
Types:

This = wxHtmlWindow()
Statusbar = wxStatusBar:wxStatusBar()
Option = {index, integer()}

Sets the associated statusbar where messages will be displayed.

Call this instead of setRelatedFrame/3 if you want statusbar updates only, no changing of the frame title.

Since: 2.9.0

Ericsson AB. All Rights Reserved.: wxErlang | 339

wxHtmlWindow

toText(This) -> unicode:charlist()
Types:

This = wxHtmlWindow()
Returns content of currently displayed page as plain text.

destroy(This :: wxHtmlWindow()) -> ok
Destroys the object.

340 | Ericsson AB. All Rights Reserved.: wxErlang

wxIconBundle

wxIconBundle
Erlang module

This class contains multiple copies of an icon in different sizes. It is typically used in wxDialog::SetIcons (not
implemented in wx) and wxTopLevelWindow:setIcons/2.

Predefined objects (include wx.hrl): ?wxNullIconBundle

wxWidgets docs: wxIconBundle

Data Types
wxIconBundle() = wx:wx_object()

Exports

new() -> wxIconBundle()
Default ctor.

new(Ic) -> wxIconBundle()
new(File) -> wxIconBundle()
Types:

File = unicode:chardata()
Initializes the bundle with the icon(s) found in the file.

new(File, Type) -> wxIconBundle()
Types:

File = unicode:chardata()
Type = wx:wx_enum()

destroy(This :: wxIconBundle()) -> ok
Destructor.

addIcon(This, File) -> ok
addIcon(This, Icon) -> ok
Types:

This = wxIconBundle()
Icon = wxIcon:wxIcon()

Adds the icon to the collection; if the collection already contains an icon with the same width and height, it is replaced
by the new one.

addIcon(This, File, Type) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 341

href

wxIconBundle

This = wxIconBundle()
File = unicode:chardata()
Type = wx:wx_enum()

getIcon(This) -> wxIcon:wxIcon()
Types:

This = wxIconBundle()

getIcon(This, Size) -> wxIcon:wxIcon()
getIcon(This, Size :: [Option]) -> wxIcon:wxIcon()
Types:

This = wxIconBundle()
Option = {size, integer()} | {flags, integer()}

Same as.

.

getIcon(This, Size, Options :: [Option]) -> wxIcon:wxIcon()
Types:

This = wxIconBundle()
Size = {W :: integer(), H :: integer()}
Option = {flags, integer()}

Returns the icon with the given size.

If size is ?wxDefaultSize, it is interpreted as the standard system icon size, i.e. the size returned by
wxSystemSettings:getMetric/2 for wxSYS_ICON_X and wxSYS_ICON_Y.

If the bundle contains an icon with exactly the requested size, it's always returned. Otherwise, the behaviour depends
on the flags. If only wxIconBundle::FALLBACK_NONE (not implemented in wx) is given, the function returns
an invalid icon. If wxIconBundle::FALLBACK_SYSTEM (not implemented in wx) is given, it tries to find the
icon of standard system size, regardless of the size passed as parameter. Otherwise, or if the icon system size is not
found neither, but wxIconBundle::FALLBACK_NEAREST_LARGER (not implemented in wx) flag is specified,
the function returns the smallest icon of the size larger than the requested one or, if this fails too, just the icon closest
to the specified size.

The flags parameter is available only since wxWidgets 2.9.4.

342 | Ericsson AB. All Rights Reserved.: wxErlang

wxIconizeEvent

wxIconizeEvent
Erlang module

An event being sent when the frame is iconized (minimized) or restored.

See: Overview events, wxTopLevelWindow:iconize/2, wxTopLevelWindow:isIconized/1

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxIconizeEvent

Events
Use wxEvtHandler:connect/3 with wxIconizeEventType to subscribe to events of this type.

Data Types
wxIconizeEvent() = wx:wx_object()
wxIconize() =
 #wxIconize{type = wxIconizeEvent:wxIconizeEventType(),
 iconized = boolean()}
wxIconizeEventType() = iconize

Exports

isIconized(This) -> boolean()
Types:

This = wxIconizeEvent()
Returns true if the frame has been iconized, false if it has been restored.

Ericsson AB. All Rights Reserved.: wxErlang | 343

href
href

wxIcon

wxIcon
Erlang module

An icon is a small rectangular bitmap usually used for denoting a minimized application.

It differs from a wxBitmap in always having a mask associated with it for transparent drawing. On some platforms,
icons and bitmaps are implemented identically, since there is no real distinction between a wxBitmap with a mask
and an icon; and there is no specific icon format on some platforms (X-based applications usually standardize on
XPMs for small bitmaps and icons). However, some platforms (such as Windows) make the distinction, so a separate
class is provided.

Remark: It is usually desirable to associate a pertinent icon with a frame. Icons can also be used for other purposes,
for example with wxTreeCtrl and wxListCtrl. Icons have different formats on different platforms therefore
separate icons will usually be created for the different environments. Platform-specific methods for creating a wxIcon
structure are catered for, and this is an occasion where conditional compilation will probably be required. Note that
a new icon must be created for every time the icon is to be used for a new window. In Windows, the icon will not
be reloaded if it has already been used. An icon allocated to a frame will be deleted when the frame is deleted. For
more information please see overview_bitmap.

Predefined objects (include wx.hrl): ?wxNullIcon

See: Overview bitmap, Overview bitmap, wxIconBundle, wxDC:drawIcon/3, wxCursor

This class is derived (and can use functions) from: wxBitmap

wxWidgets docs: wxIcon

Data Types
wxIcon() = wx:wx_object()

Exports

new() -> wxIcon()
Default ctor.

Constructs an icon object with no data; an assignment or another member function such as wxBitmap:loadFile/3
must be called subsequently.

new(Name) -> wxIcon()
new(Icon) -> wxIcon()
Types:

Icon = wxIcon()
Copy ctor.

new(Name, Options :: [Option]) -> wxIcon()
Types:

Name = unicode:chardata()
Option =
 {type, wx:wx_enum()} |
 {desiredWidth, integer()} |

344 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxIcon

 {desiredHeight, integer()}
Loads an icon from a file or resource.

See: wxBitmap:loadFile/3

copyFromBitmap(This, Bmp) -> ok
Types:

This = wxIcon()
Bmp = wxBitmap:wxBitmap()

Copies bmp bitmap to this icon.

Under MS Windows the bitmap must have mask colour set.

See: wxBitmap:loadFile/3

destroy(This :: wxIcon()) -> ok
Destructor.

See overview_refcount_destruct for more info.

If the application omits to delete the icon explicitly, the icon will be destroyed automatically by wxWidgets when
the application exits.

Warning: Do not delete an icon that is selected into a memory device context.

Ericsson AB. All Rights Reserved.: wxErlang | 345

wxIdleEvent

wxIdleEvent
Erlang module

This class is used for idle events, which are generated when the system becomes idle. Note that, unless you do
something specifically, the idle events are not sent if the system remains idle once it has become it, e.g. only a single
idle event will be generated until something else resulting in more normal events happens and only then is the next
idle event sent again.

If you need to ensure a continuous stream of idle events, you can either use requestMore/2 method in your handler
or call ?wxWakeUpIdle() periodically (for example from a timer event handler), but note that both of these approaches
(and especially the first one) increase the system load and so should be avoided if possible.

By default, idle events are sent to all windows, including even the hidden ones because they may be shown if some
condition is met from their wxEVT_IDLE (or related wxEVT_UPDATE_UI) handler. The children of hidden windows
do not receive idle events however as they can't change their state in any way noticeable by the user. Finally, the
global wxApp (not implemented in wx) object also receives these events, as usual, so it can be used for any global
idle time processing.

If sending idle events to all windows is causing a significant overhead in your application, you can call setMode/1
with the value wxIDLE_PROCESS_SPECIFIED, and set the wxWS_EX_PROCESS_IDLE extra window style for
every window which should receive idle events, all the other ones will not receive them in this case.

Delayed Action Mechanism

wxIdleEvent can be used to perform some action "at slightly later time". This can be necessary in several
circumstances when, for whatever reason, something can't be done in the current event handler. For example, if a
mouse event handler is called with the mouse button pressed, the mouse can be currently captured and some operations
with it - notably capturing it again - might be impossible or lead to undesirable results. If you still want to capture it,
you can do it from wxEVT_IDLE handler when it is called the next time instead of doing it immediately.

This can be achieved in two different ways: when using static event tables, you will need a flag indicating to the
(always connected) idle event handler whether the desired action should be performed. The originally called handler
would then set it to indicate that it should indeed be done and the idle handler itself would reset it to prevent it from
doing the same action again.

Using dynamically connected event handlers things are even simpler as the original event handler can simply
wxEvtHandler::Connect() (not implemented in wx) or wxEvtHandler::Bind() (not implemented in
wx) the idle event handler which would only be executed then and could wxEvtHandler::Disconnect() (not
implemented in wx) or wxEvtHandler::Unbind() (not implemented in wx) itself.

See: Overview events, wxUpdateUIEvent, wxWindow::OnInternalIdle (not implemented in wx)

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxIdleEvent

Events
Use wxEvtHandler:connect/3 with wxIdleEventType to subscribe to events of this type.

346 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxIdleEvent

Data Types
wxIdleEvent() = wx:wx_object()
wxIdle() = #wxIdle{type = wxIdleEvent:wxIdleEventType()}
wxIdleEventType() = idle

Exports

getMode() -> wx:wx_enum()
Static function returning a value specifying how wxWidgets will send idle events: to all windows, or only to those
which specify that they will process the events.

See: setMode/1

requestMore(This) -> ok
Types:

This = wxIdleEvent()

requestMore(This, Options :: [Option]) -> ok
Types:

This = wxIdleEvent()
Option = {needMore, boolean()}

Tells wxWidgets that more processing is required.

This function can be called by an OnIdle handler for a window or window event handler to indicate that wxApp::OnIdle
should forward the OnIdle event once more to the application windows.

If no window calls this function during OnIdle, then the application will remain in a passive event loop (not calling
OnIdle) until a new event is posted to the application by the windowing system.

See: moreRequested/1

moreRequested(This) -> boolean()
Types:

This = wxIdleEvent()
Returns true if the OnIdle function processing this event requested more processing time.

See: requestMore/2

setMode(Mode) -> ok
Types:

Mode = wx:wx_enum()
Static function for specifying how wxWidgets will send idle events: to all windows, or only to those which specify
that they will process the events.

Ericsson AB. All Rights Reserved.: wxErlang | 347

wxImageList

wxImageList
Erlang module

A wxImageList contains a list of images, which are stored in an unspecified form. Images can have masks for
transparent drawing, and can be made from a variety of sources including bitmaps and icons.

wxImageList is used principally in conjunction with wxTreeCtrl and wxListCtrl classes.

See: wxTreeCtrl, wxListCtrl

wxWidgets docs: wxImageList

Data Types
wxImageList() = wx:wx_object()

Exports

new() -> wxImageList()
Default ctor.

new(Width, Height) -> wxImageList()
Types:

Width = Height = integer()

new(Width, Height, Options :: [Option]) -> wxImageList()
Types:

Width = Height = integer()
Option = {mask, boolean()} | {initialCount, integer()}

Constructor specifying the image size, whether image masks should be created, and the initial size of the list.

See: create/4

add(This, Icon) -> integer()
Types:

This = wxImageList()
Icon = wxIcon:wxIcon() | wxBitmap:wxBitmap()

Adds a new image using an icon.

Return: The new zero-based image index.

Remark: The original bitmap or icon is not affected by the add/3 operation, and can be deleted afterwards. If the
bitmap is wider than the images in the list, then the bitmap will automatically be split into smaller images, each
matching the dimensions of the image list. This does not apply when adding icons.

Only for:wxmsw,wxosx

348 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxImageList

add(This, Bitmap, Mask) -> integer()
add(This, Bitmap, MaskColour) -> integer()
Types:

This = wxImageList()
Bitmap = wxBitmap:wxBitmap()
MaskColour = wx:wx_colour()

Adds a new image or images using a bitmap and mask colour.

Return: The new zero-based image index.

Remark: The original bitmap or icon is not affected by the add/3 operation, and can be deleted afterwards. If the
bitmap is wider than the images in the list, then the bitmap will automatically be split into smaller images, each
matching the dimensions of the image list. This does not apply when adding icons.

create(This, Width, Height) -> boolean()
Types:

This = wxImageList()
Width = Height = integer()

create(This, Width, Height, Options :: [Option]) -> boolean()
Types:

This = wxImageList()
Width = Height = integer()
Option = {mask, boolean()} | {initialCount, integer()}

Initializes the list.

See new/3 for details.

draw(This, Index, Dc, X, Y) -> boolean()
Types:

This = wxImageList()
Index = integer()
Dc = wxDC:wxDC()
X = Y = integer()

draw(This, Index, Dc, X, Y, Options :: [Option]) -> boolean()
Types:

This = wxImageList()
Index = integer()
Dc = wxDC:wxDC()
X = Y = integer()
Option = {flags, integer()} | {solidBackground, boolean()}

Draws a specified image onto a device context.

getBitmap(This, Index) -> wxBitmap:wxBitmap()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 349

wxImageList

This = wxImageList()
Index = integer()

Returns the bitmap corresponding to the given index.

getIcon(This, Index) -> wxIcon:wxIcon()
Types:

This = wxImageList()
Index = integer()

Returns the icon corresponding to the given index.

getImageCount(This) -> integer()
Types:

This = wxImageList()
Returns the number of images in the list.

getSize(This, Index) -> Result
Types:

Result =
 {Res :: boolean(), Width :: integer(), Height :: integer()}
This = wxImageList()
Index = integer()

Retrieves the size of the images in the list.

Currently, the index parameter is ignored as all images in the list have the same size.

Return: true if the function succeeded, false if it failed (for example, if the image list was not yet initialized).

remove(This, Index) -> boolean()
Types:

This = wxImageList()
Index = integer()

Removes the image at the given position.

removeAll(This) -> boolean()
Types:

This = wxImageList()
Removes all the images in the list.

replace(This, Index, Icon) -> boolean()
Types:

This = wxImageList()
Index = integer()
Icon = wxIcon:wxIcon() | wxBitmap:wxBitmap()

Replaces the existing image with the new image.

350 | Ericsson AB. All Rights Reserved.: wxErlang

wxImageList

Return: true if the replacement was successful, false otherwise.

Remark: The original bitmap or icon is not affected by the replace/4 operation, and can be deleted afterwards.

Only for:wxmsw,wxosx

replace(This, Index, Bitmap, Mask) -> boolean()
Types:

This = wxImageList()
Index = integer()
Bitmap = Mask = wxBitmap:wxBitmap()

Replaces the existing image with the new image.

Windows only.

Return: true if the replacement was successful, false otherwise.

Remark: The original bitmap or icon is not affected by the replace/4 operation, and can be deleted afterwards.

destroy(This :: wxImageList()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 351

wxImage

wxImage
Erlang module

This class encapsulates a platform-independent image.

An image can be created from data, or using wxBitmap:convertToImage/1. An image can be loaded from a
file in a variety of formats, and is extensible to new formats via image format handlers. Functions are available to set
and get image bits, so it can be used for basic image manipulation.

A wxImage cannot (currently) be drawn directly to a wxDC. Instead, a platform-specific wxBitmap object must be
created from it using the wxBitmap::wxBitmap(wxImage,int depth) constructor. This bitmap can then be drawn in a
device context, using wxDC:drawBitmap/4.

More on the difference between wxImage and wxBitmap: wxImage is just a buffer of RGB bytes with an optional
buffer for the alpha bytes. It is all generic, platform independent and image file format independent code. It includes
generic code for scaling, resizing, clipping, and other manipulations of the image data. OTOH, wxBitmap is intended
to be a wrapper of whatever is the native image format that is quickest/easiest to draw to a DC or to be the target of the
drawing operations performed on a wxMemoryDC. By splitting the responsibilities between wxImage/wxBitmap like
this then it's easier to use generic code shared by all platforms and image types for generic operations and platform
specific code where performance or compatibility is needed.

One colour value of the image may be used as a mask colour which will lead to the automatic creation of a wxMask
object associated to the bitmap object.

Alpha channel support

Starting from wxWidgets 2.5.0 wxImage supports alpha channel data, that is in addition to a byte for the red, green
and blue colour components for each pixel it also stores a byte representing the pixel opacity.

An alpha value of 0 corresponds to a transparent pixel (null opacity) while a value of 255 means that the pixel is 100%
opaque. The constants ?wxIMAGE_ALPHA_TRANSPARENT and ?wxIMAGE_ALPHA_OPAQUE can be used to
indicate those values in a more readable form.

While all images have RGB data, not all images have an alpha channel. Before using getAlpha/3 you should check
if this image contains an alpha channel with hasAlpha/1. Currently the BMP, PNG, TGA, and TIFF format handlers
have full alpha channel support for loading so if you want to use alpha you have to use one of these formats. If you
initialize the image alpha channel yourself using setAlpha/4, you should save it in either PNG, TGA, or TIFF
format to avoid losing it as these are the only handlers that currently support saving with alpha.

Available image handlers

The following image handlers are available. wxBMPHandler is always installed by default. To use other image
formats, install the appropriate handler with wxImage::AddHandler (not implemented in wx) or call ?
wxInitAllImageHandlers().

When saving in PCX format, wxPCXHandler (not implemented in wx) will count the number of different colours
in the image; if there are 256 or less colours, it will save as 8 bit, else it will save as 24 bit.

Loading PNMs only works for ASCII or raw RGB images. When saving in PNM format, wxPNMHandler (not
implemented in wx) will always save as raw RGB.

Saving GIFs requires images of maximum 8 bpp (see wxQuantize (not implemented in wx)), and the alpha channel
converted to a mask (see convertAlphaToMask/5). Saving an animated GIF requires images of the same size
(see wxGIFHandler::SaveAnimation (not implemented in wx))

Predefined objects (include wx.hrl): ?wxNullImage

See: wxBitmap, ?wxInitAllImageHandlers(), wxPixelData (not implemented in wx)

352 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

wxWidgets docs: wxImage

Data Types
wxImage() = wx:wx_object()

Exports

new() -> wxImage()
Creates an empty wxImage object without an alpha channel.

new(Name) -> wxImage()
new(Sz) -> wxImage()
Types:

Sz = {W :: integer(), H :: integer()}

new(Width, Height) -> wxImage()
new(Name, Height :: [Option]) -> wxImage()
new(Sz, Data) -> wxImage()
new(Sz, Height :: [Option]) -> wxImage()
Types:

Sz = {W :: integer(), H :: integer()}
Option = {clear, boolean()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

new(Width, Height, Data) -> wxImage()
new(Width, Height, Data :: [Option]) -> wxImage()
new(Name, Mimetype, Data :: [Option]) -> wxImage()
new(Sz, Data, Alpha) -> wxImage()
Types:

Sz = {W :: integer(), H :: integer()}
Data = Alpha = binary()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

new(Width, Height, Data, Alpha) -> wxImage()
Types:

Width = Height = integer()
Data = Alpha = binary()

Creates an image from data in memory.

If static_data is false then the wxImage will take ownership of the data and free it afterwards. For this, it has
to be allocated with malloc.

Ericsson AB. All Rights Reserved.: wxErlang | 353

href

wxImage

destroy(This :: wxImage()) -> ok
Destructor.

See reference-counted object destruction for more info.

blur(This, BlurRadius) -> wxImage()
Types:

This = wxImage()
BlurRadius = integer()

Blurs the image in both horizontal and vertical directions by the specified pixel blurRadius.

This should not be used when using a single mask colour for transparency.

See: blurHorizontal/2, blurVertical/2

blurHorizontal(This, BlurRadius) -> wxImage()
Types:

This = wxImage()
BlurRadius = integer()

Blurs the image in the horizontal direction only.

This should not be used when using a single mask colour for transparency.

See: blur/2, blurVertical/2

blurVertical(This, BlurRadius) -> wxImage()
Types:

This = wxImage()
BlurRadius = integer()

Blurs the image in the vertical direction only.

This should not be used when using a single mask colour for transparency.

See: blur/2, blurHorizontal/2

convertAlphaToMask(This) -> boolean()
Types:

This = wxImage()

convertAlphaToMask(This, Options :: [Option]) -> boolean()
Types:

This = wxImage()
Option = {threshold, integer()}

If the image has alpha channel, this method converts it to mask.

If the image has an alpha channel, all pixels with alpha value less than threshold are replaced with the mask colour
and the alpha channel is removed. Otherwise nothing is done.

The mask colour is chosen automatically using findFirstUnusedColour/2, see the overload below if this is
not appropriate.

Return: Returns true on success, false on error.

354 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

convertAlphaToMask(This, Mr, Mg, Mb) -> boolean()
Types:

This = wxImage()
Mr = Mg = Mb = integer()

convertAlphaToMask(This, Mr, Mg, Mb, Options :: [Option]) ->
 boolean()
Types:

This = wxImage()
Mr = Mg = Mb = integer()
Option = {threshold, integer()}

If the image has alpha channel, this method converts it to mask using the specified colour as the mask colour.

If the image has an alpha channel, all pixels with alpha value less than threshold are replaced with the mask colour
and the alpha channel is removed. Otherwise nothing is done.

Since: 2.9.0

Return: Returns true on success, false on error.

convertToGreyscale(This) -> wxImage()
Types:

This = wxImage()
Returns a greyscale version of the image.

Since: 2.9.0

convertToGreyscale(This, Weight_r, Weight_g, Weight_b) ->
 wxImage()
Types:

This = wxImage()
Weight_r = Weight_g = Weight_b = number()

Returns a greyscale version of the image.

The returned image uses the luminance component of the original to calculate the greyscale. Defaults to using the
standard ITU-T BT.601 when converting to YUV, where every pixel equals (R * weight_r) + (G * weight_g)
+ (B * weight_b).

convertToMono(This, R, G, B) -> wxImage()
Types:

This = wxImage()
R = G = B = integer()

Returns monochromatic version of the image.

The returned image has white colour where the original has (r,g,b) colour and black colour everywhere else.

copy(This) -> wxImage()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 355

wxImage

This = wxImage()
Returns an identical copy of this image.

create(This, Sz) -> boolean()
Types:

This = wxImage()
Sz = {W :: integer(), H :: integer()}

create(This, Width, Height) -> boolean()
create(This, Sz, Data) -> boolean()
create(This, Sz, Height :: [Option]) -> boolean()
Types:

This = wxImage()
Sz = {W :: integer(), H :: integer()}
Option = {clear, boolean()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

create(This, Width, Height, Data) -> boolean()
create(This, Width, Height, Data :: [Option]) -> boolean()
create(This, Sz, Data, Alpha) -> boolean()
Types:

This = wxImage()
Sz = {W :: integer(), H :: integer()}
Data = Alpha = binary()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

create(This, Width, Height, Data, Alpha) -> boolean()
Types:

This = wxImage()
Width = Height = integer()
Data = Alpha = binary()

Creates a fresh image.

See new/4 for more info.

Return: true if the call succeeded, false otherwise.

'Destroy'(This) -> ok
Types:

This = wxImage()
Destroys the image data.

356 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

findFirstUnusedColour(This) -> Result
Types:

Result =
 {Res :: boolean(),
 R :: integer(),
 G :: integer(),
 B :: integer()}
This = wxImage()

findFirstUnusedColour(This, Options :: [Option]) -> Result
Types:

Result =
 {Res :: boolean(),
 R :: integer(),
 G :: integer(),
 B :: integer()}
This = wxImage()
Option =
 {startR, integer()} |
 {startG, integer()} |
 {startB, integer()}

Finds the first colour that is never used in the image.

The search begins at given initial colour and continues by increasing R, G and B components (in this order) by 1 until
an unused colour is found or the colour space exhausted.

The parameters r, g, b are pointers to variables to save the colour.

The parameters startR, startG, startB define the initial values of the colour. The returned colour will have
RGB values equal to or greater than these.

Return: Returns false if there is no unused colour left, true on success.

Note: This method involves computing the histogram, which is a computationally intensive operation.

getImageExtWildcard() -> unicode:charlist()
Iterates all registered wxImageHandler (not implemented in wx) objects, and returns a string containing file
extension masks suitable for passing to file open/save dialog boxes.

Return: The format of the returned string is "(*.ext1;*.ext2)|*.ext1;*.ext2". It is usually a good idea
to prepend a description before passing the result to the dialog. Example:

See: wxImageHandler (not implemented in wx)

getAlpha(This) -> binary()
Types:

This = wxImage()
Returns pointer to the array storing the alpha values for this image.

This pointer is NULL for the images without the alpha channel. If the image does have it, this pointer may be used to
directly manipulate the alpha values which are stored as the RGB ones.

Ericsson AB. All Rights Reserved.: wxErlang | 357

wxImage

getAlpha(This, X, Y) -> integer()
Types:

This = wxImage()
X = Y = integer()

Return alpha value at given pixel location.

getBlue(This, X, Y) -> integer()
Types:

This = wxImage()
X = Y = integer()

Returns the blue intensity at the given coordinate.

getData(This) -> binary()
Types:

This = wxImage()
Returns the image data as an array.

This is most often used when doing direct image manipulation. The return value points to an array of characters in
RGBRGBRGB... format in the top-to-bottom, left-to-right order, that is the first RGB triplet corresponds to the first
pixel of the first row, the second one - to the second pixel of the first row and so on until the end of the first row,
with second row following after it and so on.

You should not delete the returned pointer nor pass it to setData/4.

getGreen(This, X, Y) -> integer()
Types:

This = wxImage()
X = Y = integer()

Returns the green intensity at the given coordinate.

getImageCount(Filename) -> integer()
Types:

Filename = unicode:chardata()

getImageCount(Filename, Options :: [Option]) -> integer()
Types:

Filename = unicode:chardata()
Option = {type, wx:wx_enum()}

If the image file contains more than one image and the image handler is capable of retrieving these individually, this
function will return the number of available images.

For the overload taking the parameter filename, that's the name of the file to query. For the overload taking the
parameter stream, that's the opened input stream with image data.

See wxImageHandler::GetImageCount() (not implemented in wx) for more info.

The parameter type may be one of the following values:

358 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

Return: Number of available images. For most image handlers, this is 1 (exceptions are TIFF and ICO formats as well
as animated GIFs for which this function returns the number of frames in the animation).

getHeight(This) -> integer()
Types:

This = wxImage()
Gets the height of the image in pixels.

See: getWidth/1, GetSize() (not implemented in wx)

getMaskBlue(This) -> integer()
Types:

This = wxImage()
Gets the blue value of the mask colour.

getMaskGreen(This) -> integer()
Types:

This = wxImage()
Gets the green value of the mask colour.

getMaskRed(This) -> integer()
Types:

This = wxImage()
Gets the red value of the mask colour.

getOrFindMaskColour(This) -> Result
Types:

Result =
 {Res :: boolean(),
 R :: integer(),
 G :: integer(),
 B :: integer()}
This = wxImage()

Get the current mask colour or find a suitable unused colour that could be used as a mask colour.

Returns true if the image currently has a mask.

getPalette(This) -> wxPalette:wxPalette()
Types:

This = wxImage()
Returns the palette associated with the image.

Currently the palette is only used when converting to wxBitmap under Windows.

Some of the wxImage handlers have been modified to set the palette if one exists in the image file (usually 256 or
less colour images in GIF or PNG format).

Ericsson AB. All Rights Reserved.: wxErlang | 359

wxImage

getRed(This, X, Y) -> integer()
Types:

This = wxImage()
X = Y = integer()

Returns the red intensity at the given coordinate.

getSubImage(This, Rect) -> wxImage()
Types:

This = wxImage()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

Returns a sub image of the current one as long as the rect belongs entirely to the image.

getWidth(This) -> integer()
Types:

This = wxImage()
Gets the width of the image in pixels.

See: getHeight/1, GetSize() (not implemented in wx)

hasAlpha(This) -> boolean()
Types:

This = wxImage()
Returns true if this image has alpha channel, false otherwise.

See: getAlpha/3, setAlpha/4

hasMask(This) -> boolean()
Types:

This = wxImage()
Returns true if there is a mask active, false otherwise.

getOption(This, Name) -> unicode:charlist()
Types:

This = wxImage()
Name = unicode:chardata()

Gets a user-defined string-valued option.

Generic options:

Options specific to wxGIFHandler (not implemented in wx):

Return: The value of the option or an empty string if not found. Use hasOption/2 if an empty string can be a valid
option value.

360 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

See: setOption/3, getOptionInt/2, hasOption/2

getOptionInt(This, Name) -> integer()
Types:

This = wxImage()
Name = unicode:chardata()

Gets a user-defined integer-valued option.

The function is case-insensitive to name. If the given option is not present, the function returns 0. Use hasOption/2
if 0 is a possibly valid value for the option.

Generic options:

Since: 2.9.3

Options specific to wxPNGHandler (not implemented in wx):

Options specific to wxTIFFHandler (not implemented in wx):

Options specific to wxGIFHandler (not implemented in wx):

Note: Be careful when combining the options wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL,
wxIMAGE_OPTION_TIFF_BITSPERSAMPLE, and wxIMAGE_OPTION_TIFF_PHOTOMETRIC. While some
measures are taken to prevent illegal combinations and/or values, it is still easy to abuse them and come up with invalid
results in the form of either corrupted images or crashes.

Return: The value of the option or 0 if not found. Use hasOption/2 if 0 can be a valid option value.

See: setOption/3, getOption/2

hasOption(This, Name) -> boolean()
Types:

This = wxImage()
Name = unicode:chardata()

Returns true if the given option is present.

The function is case-insensitive to name.

The lists of the currently supported options are in getOption/2 and getOptionInt/2 function docs.

See: setOption/3, getOption/2, getOptionInt/2

initAlpha(This) -> ok
Types:

This = wxImage()
Initializes the image alpha channel data.

It is an error to call it if the image already has alpha data. If it doesn't, alpha data will be by default initialized to all
pixels being fully opaque. But if the image has a mask colour, all mask pixels will be completely transparent.

initStandardHandlers() -> ok
Internal use only.

Adds standard image format handlers. It only install wxBMPHandler for the time being, which is used by wxBitmap.

This function is called by wxWidgets on startup, and shouldn't be called by the user.

Ericsson AB. All Rights Reserved.: wxErlang | 361

wxImage

See: wxImageHandler (not implemented in wx), ?wxInitAllImageHandlers(), wxQuantize (not implemented in
wx)

isTransparent(This, X, Y) -> boolean()
Types:

This = wxImage()
X = Y = integer()

isTransparent(This, X, Y, Options :: [Option]) -> boolean()
Types:

This = wxImage()
X = Y = integer()
Option = {threshold, integer()}

Returns true if the given pixel is transparent, i.e. either has the mask colour if this image has a mask or if this image
has alpha channel and alpha value of this pixel is strictly less than threshold.

loadFile(This, Name) -> boolean()
Types:

This = wxImage()
Name = unicode:chardata()

loadFile(This, Name, Options :: [Option]) -> boolean()
Types:

This = wxImage()
Name = unicode:chardata()
Option = {type, wx:wx_enum()} | {index, integer()}

Loads an image from a file.

If no handler type is provided, the library will try to autodetect the format.

loadFile(This, Name, Mimetype, Options :: [Option]) -> boolean()
Types:

This = wxImage()
Name = Mimetype = unicode:chardata()
Option = {index, integer()}

Loads an image from a file.

If no handler type is provided, the library will try to autodetect the format.

ok(This) -> boolean()
Types:

This = wxImage()
See: isOk/1.

362 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

isOk(This) -> boolean()
Types:

This = wxImage()
Returns true if image data is present.

removeHandler(Name) -> boolean()
Types:

Name = unicode:chardata()
Finds the handler with the given name, and removes it.

The handler is also deleted.

Return: true if the handler was found and removed, false otherwise.

See: wxImageHandler (not implemented in wx)

mirror(This) -> wxImage()
Types:

This = wxImage()

mirror(This, Options :: [Option]) -> wxImage()
Types:

This = wxImage()
Option = {horizontally, boolean()}

Returns a mirrored copy of the image.

The parameter horizontally indicates the orientation.

replace(This, R1, G1, B1, R2, G2, B2) -> ok
Types:

This = wxImage()
R1 = G1 = B1 = R2 = G2 = B2 = integer()

Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

rescale(This, Width, Height) -> wxImage()
Types:

This = wxImage()
Width = Height = integer()

rescale(This, Width, Height, Options :: [Option]) -> wxImage()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 363

wxImage

This = wxImage()
Width = Height = integer()
Option = {quality, wx:wx_enum()}

Changes the size of the image in-place by scaling it: after a call to this function,the image will have the given width
and height.

For a description of the quality parameter, see the scale/4 function. Returns the (modified) image itself.

See: scale/4

resize(This, Size, Pos) -> wxImage()
Types:

This = wxImage()
Size = {W :: integer(), H :: integer()}
Pos = {X :: integer(), Y :: integer()}

resize(This, Size, Pos, Options :: [Option]) -> wxImage()
Types:

This = wxImage()
Size = {W :: integer(), H :: integer()}
Pos = {X :: integer(), Y :: integer()}
Option = {r, integer()} | {g, integer()} | {b, integer()}

Changes the size of the image in-place without scaling it by adding either a border with the given colour or cropping
as necessary.

The image is pasted into a new image with the given size and background colour at the position pos relative to
the upper left of the new image.

If red = green = blue = -1 then use either the current mask colour if set or find, use, and set a suitable mask colour
for any newly exposed areas.

Return: The (modified) image itself.

See: size/4

rotate(This, Angle, RotationCentre) -> wxImage()
Types:

This = wxImage()
Angle = number()
RotationCentre = {X :: integer(), Y :: integer()}

rotate(This, Angle, RotationCentre, Options :: [Option]) ->
 wxImage()
Types:

This = wxImage()
Angle = number()
RotationCentre = {X :: integer(), Y :: integer()}
Option =
 {interpolating, boolean()} |

364 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

 {offset_after_rotation, {X :: integer(), Y :: integer()}}
Rotates the image about the given point, by angle radians.

Passing true to interpolating results in better image quality, but is slower.

If the image has a mask, then the mask colour is used for the uncovered pixels in the rotated image background. Else,
black (rgb 0, 0, 0) will be used.

Returns the rotated image, leaving this image intact.

rotateHue(This, Angle) -> ok
Types:

This = wxImage()
Angle = number()

Rotates the hue of each pixel in the image by angle, which is a double in the range of -1.0 to +1.0, where -1.0
corresponds to -360 degrees and +1.0 corresponds to +360 degrees.

rotate90(This) -> wxImage()
Types:

This = wxImage()

rotate90(This, Options :: [Option]) -> wxImage()
Types:

This = wxImage()
Option = {clockwise, boolean()}

Returns a copy of the image rotated 90 degrees in the direction indicated by clockwise.

saveFile(This, Name) -> boolean()
Types:

This = wxImage()
Name = unicode:chardata()

Saves an image in the named file.

File type is determined from the extension of the file name. Note that this function may fail if the extension is not
recognized! You can use one of the forms above to save images to files with non-standard extensions.

saveFile(This, Name, Type) -> boolean()
saveFile(This, Name, Mimetype) -> boolean()
Types:

This = wxImage()
Name = Mimetype = unicode:chardata()

Saves an image in the named file.

scale(This, Width, Height) -> wxImage()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 365

wxImage

This = wxImage()
Width = Height = integer()

scale(This, Width, Height, Options :: [Option]) -> wxImage()
Types:

This = wxImage()
Width = Height = integer()
Option = {quality, wx:wx_enum()}

Returns a scaled version of the image.

This is also useful for scaling bitmaps in general as the only other way to scale bitmaps is to blit a wxMemoryDC
into another wxMemoryDC.

The parameter quality determines what method to use for resampling the image, see wxImageResizeQuality
documentation.

It should be noted that although using wxIMAGE_QUALITY_HIGH produces much nicer looking results it is a slower
method. Downsampling will use the box averaging method which seems to operate very fast. If you are upsampling
larger images using this method you will most likely notice that it is a bit slower and in extreme cases it will be quite
substantially slower as the bicubic algorithm has to process a lot of data.

It should also be noted that the high quality scaling may not work as expected when using a single mask colour for
transparency, as the scaling will blur the image and will therefore remove the mask partially. Using the alpha channel
will work.

Example:

See: rescale/4

size(This, Size, Pos) -> wxImage()
Types:

This = wxImage()
Size = {W :: integer(), H :: integer()}
Pos = {X :: integer(), Y :: integer()}

size(This, Size, Pos, Options :: [Option]) -> wxImage()
Types:

This = wxImage()
Size = {W :: integer(), H :: integer()}
Pos = {X :: integer(), Y :: integer()}
Option = {r, integer()} | {g, integer()} | {b, integer()}

Returns a resized version of this image without scaling it by adding either a border with the given colour or cropping
as necessary.

The image is pasted into a new image with the given size and background colour at the position pos relative to
the upper left of the new image.

If red = green = blue = -1 then the areas of the larger image not covered by this image are made transparent by filling
them with the image mask colour (which will be allocated automatically if it isn't currently set).

Otherwise, the areas will be filled with the colour with the specified RGB components.

See: resize/4

366 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

setAlpha(This, Alpha) -> ok
Types:

This = wxImage()
Alpha = binary()

This function is similar to setData/4 and has similar restrictions.

The pointer passed to it may however be NULL in which case the function will allocate the alpha array internally -
this is useful to add alpha channel data to an image which doesn't have any.

If the pointer is not NULL, it must have one byte for each image pixel and be allocated with malloc(). wxImage
takes ownership of the pointer and will free it unless static_data parameter is set to true - in this case the caller
should do it.

setAlpha(This, X, Y, Alpha) -> ok
Types:

This = wxImage()
X = Y = Alpha = integer()

Sets the alpha value for the given pixel.

This function should only be called if the image has alpha channel data, use hasAlpha/1 to check for this.

setData(This, Data) -> ok
Types:

This = wxImage()
Data = binary()

Sets the image data without performing checks.

The data given must have the size (width*height*3) or results will be unexpected. Don't use this method if you aren't
sure you know what you are doing.

The data must have been allocated with malloc(), NOT with operator new.

If static_data is false, after this call the pointer to the data is owned by the wxImage object, that will be
responsible for deleting it. Do not pass to this function a pointer obtained through getData/1.

setData(This, Data, New_width, New_height) -> ok
Types:

This = wxImage()
Data = binary()
New_width = New_height = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setMask(This) -> ok
Types:

This = wxImage()

setMask(This, Options :: [Option]) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 367

wxImage

This = wxImage()
Option = {mask, boolean()}

Specifies whether there is a mask or not.

The area of the mask is determined by the current mask colour.

setMaskColour(This, Red, Green, Blue) -> ok
Types:

This = wxImage()
Red = Green = Blue = integer()

Sets the mask colour for this image (and tells the image to use the mask).

setMaskFromImage(This, Mask, Mr, Mg, Mb) -> boolean()
Types:

This = Mask = wxImage()
Mr = Mg = Mb = integer()

Sets image's mask so that the pixels that have RGB value of mr,mg,mb in mask will be masked in the image.

This is done by first finding an unused colour in the image, setting this colour as the mask colour and then using this
colour to draw all pixels in the image who corresponding pixel in mask has given RGB value.

The parameter mask is the mask image to extract mask shape from. It must have the same dimensions as the image.

The parameters mr, mg, mb are the RGB values of the pixels in mask that will be used to create the mask.

Return: Returns false if mask does not have same dimensions as the image or if there is no unused colour left. Returns
true if the mask was successfully applied.

Note: Note that this method involves computing the histogram, which is a computationally intensive operation.

setOption(This, Name, Value) -> ok
setOption(This, Name, Value) -> ok
Types:

This = wxImage()
Name = Value = unicode:chardata()

Sets a user-defined option.

The function is case-insensitive to name.

For example, when saving as a JPEG file, the option quality is used, which is a number between 0 and 100 (0 is
terrible, 100 is very good).

The lists of the currently supported options are in getOption/2 and getOptionInt/2 function docs.

See: getOption/2, getOptionInt/2, hasOption/2

setPalette(This, Palette) -> ok
Types:

This = wxImage()
Palette = wxPalette:wxPalette()

Associates a palette with the image.

368 | Ericsson AB. All Rights Reserved.: wxErlang

wxImage

The palette may be used when converting wxImage to wxBitmap (MSW only at present) or in file save operations
(none as yet).

setRGB(This, Rect, Red, Green, Blue) -> ok
Types:

This = wxImage()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Red = Green = Blue = integer()

Sets the colour of the pixels within the given rectangle.

This routine performs bounds-checks for the coordinate so it can be considered a safe way to manipulate the data.

setRGB(This, X, Y, R, G, B) -> ok
Types:

This = wxImage()
X = Y = R = G = B = integer()

Set the color of the pixel at the given x and y coordinate.

Ericsson AB. All Rights Reserved.: wxErlang | 369

wxInitDialogEvent

wxInitDialogEvent
Erlang module

A wxInitDialogEvent is sent as a dialog or panel is being initialised. Handlers for this event can transfer data
to the window.

The default handler calls wxWindow:transferDataToWindow/1.

See: Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxInitDialogEvent

Events
Use wxEvtHandler:connect/3 with wxInitDialogEventType to subscribe to events of this type.

Data Types
wxInitDialogEvent() = wx:wx_object()
wxInitDialog() =
 #wxInitDialog{type =
 wxInitDialogEvent:wxInitDialogEventType()}
wxInitDialogEventType() = init_dialog

370 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxJoystickEvent

wxJoystickEvent
Erlang module

This event class contains information about joystick events, particularly events received by windows.

See: wxJoystick (not implemented in wx)

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxJoystickEvent

Events
Use wxEvtHandler:connect/3 with wxJoystickEventType to subscribe to events of this type.

Data Types
wxJoystickEvent() = wx:wx_object()
wxJoystick() =
 #wxJoystick{type = wxJoystickEvent:wxJoystickEventType(),
 pos = {X :: integer(), Y :: integer()},
 zPosition = integer(),
 buttonChange = integer(),
 buttonState = integer(),
 joyStick = integer()}
wxJoystickEventType() =
 joy_button_down | joy_button_up | joy_move | joy_zmove

Exports

buttonDown(This) -> boolean()
Types:

This = wxJoystickEvent()

buttonDown(This, Options :: [Option]) -> boolean()
Types:

This = wxJoystickEvent()
Option = {but, integer()}

Returns true if the event was a down event from the specified button (or any button).

buttonIsDown(This) -> boolean()
Types:

This = wxJoystickEvent()

buttonIsDown(This, Options :: [Option]) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 371

href

wxJoystickEvent

This = wxJoystickEvent()
Option = {but, integer()}

Returns true if the specified button (or any button) was in a down state.

buttonUp(This) -> boolean()
Types:

This = wxJoystickEvent()

buttonUp(This, Options :: [Option]) -> boolean()
Types:

This = wxJoystickEvent()
Option = {but, integer()}

Returns true if the event was an up event from the specified button (or any button).

getButtonChange(This) -> integer()
Types:

This = wxJoystickEvent()
Returns the identifier of the button changing state.

The return value is where n is the index of the button changing state, which can also be retrieved using
GetButtonOrdinal() (not implemented in wx).

Note that for n equal to 1, 2, 3 or 4 there are predefined wxJOY_BUTTONn constants which can be used for more
clarity, however these constants are not defined for the buttons beyond the first four.

getButtonState(This) -> integer()
Types:

This = wxJoystickEvent()
Returns the down state of the buttons.

This is a wxJOY_BUTTONn identifier, where n is one of 1, 2, 3, 4.

getJoystick(This) -> integer()
Types:

This = wxJoystickEvent()
Returns the identifier of the joystick generating the event - one of wxJOYSTICK1 and wxJOYSTICK2.

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxJoystickEvent()
Returns the x, y position of the joystick event.

These coordinates are valid for all the events except wxEVT_JOY_ZMOVE.

getZPosition(This) -> integer()
Types:

372 | Ericsson AB. All Rights Reserved.: wxErlang

wxJoystickEvent

This = wxJoystickEvent()
Returns the z position of the joystick event.

This method can only be used for wxEVT_JOY_ZMOVE events.

isButton(This) -> boolean()
Types:

This = wxJoystickEvent()
Returns true if this was a button up or down event (not 'is any button down?').

isMove(This) -> boolean()
Types:

This = wxJoystickEvent()
Returns true if this was an x, y move event.

isZMove(This) -> boolean()
Types:

This = wxJoystickEvent()
Returns true if this was a z move event.

Ericsson AB. All Rights Reserved.: wxErlang | 373

wxKeyEvent

wxKeyEvent
Erlang module

This event class contains information about key press and release events.

The main information carried by this event is the key being pressed or released. It can be accessed using either
getKeyCode/1 function or getUnicodeKey/1. For the printable characters, the latter should be used as it
works for any keys, including non-Latin-1 characters that can be entered when using national keyboard layouts.
getKeyCode/1 should be used to handle special characters (such as cursor arrows keys or HOME or INS and so
on) which correspond to ?wxKeyCode enum elements above the WXK_START constant. While getKeyCode/1 also
returns the character code for Latin-1 keys for compatibility, it doesn't work for Unicode characters in general and will
return WXK_NONE for any non-Latin-1 ones. For this reason, it's recommended to always use getUnicodeKey/1
and only fall back to getKeyCode/1 if getUnicodeKey/1 returned WXK_NONE meaning that the event
corresponds to a non-printable special keys.

While both of these functions can be used with the events of wxEVT_KEY_DOWN, wxEVT_KEY_UP and
wxEVT_CHAR types, the values returned by them are different for the first two events and the last one. For the latter,
the key returned corresponds to the character that would appear in e.g. a text zone if the user pressed the key in it. As
such, its value depends on the current state of the Shift key and, for the letters, on the state of Caps Lock modifier. For
example, if A key is pressed without Shift being held down, wxKeyEvent of type wxEVT_CHAR generated for this
key press will return (from either getKeyCode/1 or getUnicodeKey/1 as their meanings coincide for ASCII
characters) key code of 97 corresponding the ASCII value of a. And if the same key is pressed but with Shift being
held (or Caps Lock being active), then the key could would be 65, i.e. ASCII value of capital A.

However for the key down and up events the returned key code will instead be A independently of the state of the
modifier keys i.e. it depends only on physical key being pressed and is not translated to its logical representation using
the current keyboard state. Such untranslated key codes are defined as follows:

Notice that the first rule applies to all Unicode letters, not just the usual Latin-1 ones. However for non-Latin-1 letters
only getUnicodeKey/1 can be used to retrieve the key code as getKeyCode/1 just returns WXK_NONE in this
case.

To summarize: you should handle wxEVT_CHAR if you need the translated key and wxEVT_KEY_DOWN if you only
need the value of the key itself, independent of the current keyboard state.

Note: Not all key down events may be generated by the user. As an example, wxEVT_KEY_DOWN with = key code
can be generated using the standard US keyboard layout but not using the German one because the = key corresponds
to Shift-0 key combination in this layout and the key code for it is 0, not =. Because of this you should avoid requiring
your users to type key events that might be impossible to enter on their keyboard.

Another difference between key and char events is that another kind of translation is done for the latter ones when the
Control key is pressed: char events for ASCII letters in this case carry codes corresponding to the ASCII value of Ctrl-
Latter, i.e. 1 for Ctrl-A, 2 for Ctrl-B and so on until 26 for Ctrl-Z. This is convenient for terminal-like applications
and can be completely ignored by all the other ones (if you need to handle Ctrl-A it is probably a better idea to use the
key event rather than the char one). Notice that currently no translation is done for the presses of [, \,], ^ and _ keys
which might be mapped to ASCII values from 27 to 31. Since version 2.9.2, the enum values WXK_CONTROL_A -
WXK_CONTROL_Z can be used instead of the non-descriptive constant values 1-26.

Finally, modifier keys only generate key events but no char events at all. The modifiers keys are WXK_SHIFT,
WXK_CONTROL, WXK_ALT and various WXK_WINDOWS_XXX from ?wxKeyCode enum.

Modifier keys events are special in one additional aspect: usually the keyboard state associated with a key press is
well defined, e.g. shiftDown/1 returns true only if the Shift key was held pressed when the key that generated
this event itself was pressed. There is an ambiguity for the key press events for Shift key itself however. By
convention, it is considered to be already pressed when it is pressed and already released when it is released. In

374 | Ericsson AB. All Rights Reserved.: wxErlang

wxKeyEvent

other words, wxEVT_KEY_DOWN event for the Shift key itself will have wxMOD_SHIFT in getModifiers/1 and
shiftDown/1 will return true while the wxEVT_KEY_UP event for Shift itself will not have wxMOD_SHIFT in its
modifiers and shiftDown/1 will return false.

Tip: You may discover the key codes and modifiers generated by all the keys on your system interactively by running
the page_samples_keyboard wxWidgets sample and pressing some keys in it.

Note: If a key down (EVT_KEY_DOWN) event is caught and the event handler does not call event.Skip() then
the corresponding char event (EVT_CHAR) will not happen. This is by design and enables the programs that handle
both types of events to avoid processing the same key twice. As a consequence, if you do not want to suppress the
wxEVT_CHAR events for the keys you handle, always call event.Skip() in your wxEVT_KEY_DOWN handler.
Not doing may also prevent accelerators defined using this key from working.

Note: If a key is maintained in a pressed state, you will typically get a lot of (automatically generated) key down
events but only one key up one at the end when the key is released so it is wrong to assume that there is one up event
corresponding to each down one.

Note: For Windows programmers: The key and char events in wxWidgets are similar to but slightly different
from Windows WM_KEYDOWN and WM_CHAR events. In particular, Alt-x combination will generate a char event in
wxWidgets (unless it is used as an accelerator) and almost all keys, including ones without ASCII equivalents, generate
char events too.

See: wxKeyboardState (not implemented in wx)

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxKeyEvent

Events
Use wxEvtHandler:connect/3 with wxKeyEventType to subscribe to events of this type.

Data Types
wxKeyEvent() = wx:wx_object()
wxKey() =
 #wxKey{type = wxKeyEvent:wxKeyEventType(),
 x = integer(),
 y = integer(),
 keyCode = integer(),
 controlDown = boolean(),
 shiftDown = boolean(),
 altDown = boolean(),
 metaDown = boolean(),
 uniChar = integer(),
 rawCode = integer(),
 rawFlags = integer()}
wxKeyEventType() = char | char_hook | key_down | key_up

Exports

altDown(This) -> boolean()
Types:

This = wxKeyEvent()
Returns true if the Alt key is pressed.

Ericsson AB. All Rights Reserved.: wxErlang | 375

href

wxKeyEvent

Notice that getModifiers/1 should usually be used instead of this one.

cmdDown(This) -> boolean()
Types:

This = wxKeyEvent()
Returns true if the key used for command accelerators is pressed.

Same as controlDown/1. Deprecated.

Notice that getModifiers/1 should usually be used instead of this one.

controlDown(This) -> boolean()
Types:

This = wxKeyEvent()
Returns true if the Control key or Apple/Command key under macOS is pressed.

This function doesn't distinguish between right and left control keys.

Notice that getModifiers/1 should usually be used instead of this one.

getKeyCode(This) -> integer()
Types:

This = wxKeyEvent()
Returns the key code of the key that generated this event.

ASCII symbols return normal ASCII values, while events from special keys such as "left cursor arrow" (WXK_LEFT)
return values outside of the ASCII range. See ?wxKeyCode for a full list of the virtual key codes.

Note that this method returns a meaningful value only for special non-alphanumeric keys or if the user entered a Latin-1
character (this includes ASCII and the accented letters found in Western European languages but not letters of other
alphabets such as e.g. Cyrillic). Otherwise it simply method returns WXK_NONE and getUnicodeKey/1 should be
used to obtain the corresponding Unicode character.

Using getUnicodeKey/1 is in general the right thing to do if you are interested in the characters typed by the
user, getKeyCode/1 should be only used for special keys (for which getUnicodeKey/1 returns WXK_NONE).
To handle both kinds of keys you might write:

getModifiers(This) -> integer()
Types:

This = wxKeyEvent()
Return the bit mask of all pressed modifier keys.

The return value is a combination of wxMOD_ALT, wxMOD_CONTROL, wxMOD_SHIFT and wxMOD_META bit masks.
Additionally, wxMOD_NONE is defined as 0, i.e. corresponds to no modifiers (see HasAnyModifiers() (not
implemented in wx)) and wxMOD_CMD is either wxMOD_CONTROL (MSW and Unix) or wxMOD_META (Mac), see
cmdDown/1. See ?wxKeyModifier for the full list of modifiers.

Notice that this function is easier to use correctly than, for example, controlDown/1 because when using the latter
you also have to remember to test that none of the other modifiers is pressed:

and forgetting to do it can result in serious program bugs (e.g. program not working with European keyboard layout
where AltGr key which is seen by the program as combination of CTRL and ALT is used). On the other hand, you
can simply write:

376 | Ericsson AB. All Rights Reserved.: wxErlang

wxKeyEvent

with this function.

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxKeyEvent()
Obtains the position (in client coordinates) at which the key was pressed.

Notice that under most platforms this position is simply the current mouse pointer position and has no special
relationship to the key event itself.

x and y may be NULL if the corresponding coordinate is not needed.

getRawKeyCode(This) -> integer()
Types:

This = wxKeyEvent()
Returns the raw key code for this event.

The flags are platform-dependent and should only be used if the functionality provided by other wxKeyEvent
methods is insufficient.

Under MSW, the raw key code is the value of wParam parameter of the corresponding message.

Under GTK, the raw key code is the keyval field of the corresponding GDK event.

Under macOS, the raw key code is the keyCode field of the corresponding NSEvent.

Note: Currently the raw key codes are not supported by all ports, use #ifdef wxHAS_RAW_KEY_CODES to determine
if this feature is available.

getRawKeyFlags(This) -> integer()
Types:

This = wxKeyEvent()
Returns the low level key flags for this event.

The flags are platform-dependent and should only be used if the functionality provided by other wxKeyEvent
methods is insufficient.

Under MSW, the raw flags are just the value of lParam parameter of the corresponding message.

Under GTK, the raw flags contain the hardware_keycode field of the corresponding GDK event.

Under macOS, the raw flags contain the modifiers state.

Note: Currently the raw key flags are not supported by all ports, use #ifdef wxHAS_RAW_KEY_CODES to determine
if this feature is available.

getUnicodeKey(This) -> integer()
Types:

This = wxKeyEvent()
Returns the Unicode character corresponding to this key event.

If the key pressed doesn't have any character value (e.g. a cursor key) this method will return WXK_NONE. In this case
you should use getKeyCode/1 to retrieve the value of the key.

This function is only available in Unicode build, i.e. when wxUSE_UNICODE is 1.

Ericsson AB. All Rights Reserved.: wxErlang | 377

wxKeyEvent

getX(This) -> integer()
Types:

This = wxKeyEvent()
Returns the X position (in client coordinates) of the event.

See: getPosition/1

getY(This) -> integer()
Types:

This = wxKeyEvent()
Returns the Y position (in client coordinates) of the event.

See: getPosition/1

hasModifiers(This) -> boolean()
Types:

This = wxKeyEvent()
Returns true if Control or Alt are pressed.

Checks if Control, Alt or, under macOS only, Command key are pressed (notice that the real Control key is still taken
into account under OS X too).

This method returns false if only Shift is pressed for compatibility reasons and also because pressing Shift usually
doesn't change the interpretation of key events, see HasAnyModifiers() (not implemented in wx) if you want to
take Shift into account as well.

metaDown(This) -> boolean()
Types:

This = wxKeyEvent()
Returns true if the Meta/Windows/Apple key is pressed.

This function tests the state of the key traditionally called Meta under Unix systems, Windows keys under MSW Notice
that getModifiers/1 should usually be used instead of this one.

See: cmdDown/1

shiftDown(This) -> boolean()
Types:

This = wxKeyEvent()
Returns true if the Shift key is pressed.

This function doesn't distinguish between right and left shift keys.

Notice that getModifiers/1 should usually be used instead of this one.

378 | Ericsson AB. All Rights Reserved.: wxErlang

wxLayoutAlgorithm

wxLayoutAlgorithm
Erlang module

wxLayoutAlgorithm implements layout of subwindows in MDI or SDI frames. It sends a
wxCalculateLayoutEvent (not implemented in wx) event to children of the frame, asking them for information
about their size. For MDI parent frames, the algorithm allocates the remaining space to the MDI client window (which
contains the MDI child frames).

For SDI (normal) frames, a 'main' window is specified as taking up the remaining space.

Because the event system is used, this technique can be applied to any windows, which are not necessarily 'aware' of
the layout classes (no virtual functions in wxWindow refer to wxLayoutAlgorithm or its events). However, you
may wish to use wxSashLayoutWindow for your subwindows since this class provides handlers for the required
events, and accessors to specify the desired size of the window. The sash behaviour in the base class can be used,
optionally, to make the windows user-resizable.

wxLayoutAlgorithm is typically used in IDE (integrated development environment) applications, where there are
several resizable windows in addition to the MDI client window, or other primary editing window. Resizable windows
might include toolbars, a project window, and a window for displaying error and warning messages.

When a window receives an OnCalculateLayout event, it should call SetRect in the given event object, to be the
old supplied rectangle minus whatever space the window takes up. It should also set its own size accordingly.
wxSashLayoutWindow::OnCalculateLayout (not implemented in wx) generates an OnQueryLayoutInfo
event which it sends to itself to determine the orientation, alignment and size of the window, which it gets from internal
member variables set by the application.

The algorithm works by starting off with a rectangle equal to the whole frame client area. It iterates
through the frame children, generating wxLayoutAlgorithm::OnCalculateLayout events which subtract the
window size and return the remaining rectangle for the next window to process. It is assumed (by
wxSashLayoutWindow::OnCalculateLayout (not implemented in wx)) that a window stretches the full
dimension of the frame client, according to the orientation it specifies. For example, a horizontal window will stretch
the full width of the remaining portion of the frame client area. In the other orientation, the window will be fixed to
whatever size was specified by wxLayoutAlgorithm::OnQueryLayoutInfo. An alignment setting will make the window
'stick' to the left, top, right or bottom of the remaining client area. This scheme implies that order of window creation
is important. Say you wish to have an extra toolbar at the top of the frame, a project window to the left of the MDI
client window, and an output window above the status bar. You should therefore create the windows in this order:
toolbar, output window, project window. This ensures that the toolbar and output window take up space at the top and
bottom, and then the remaining height in-between is used for the project window.

wxLayoutAlgorithm is quite independent of the way in which wxLayoutAlgorithm::OnCalculateLayout chooses
to interpret a window's size and alignment. Therefore you could implement a different window class with a new
wxLayoutAlgorithm::OnCalculateLayout event handler, that has a more sophisticated way of laying out the windows.
It might allow specification of whether stretching occurs in the specified orientation, for example, rather than always
assuming stretching. (This could, and probably should, be added to the existing implementation).

Note: wxLayoutAlgorithm has nothing to do with wxLayoutConstraints (not implemented in wx). It is an
alternative way of specifying layouts for which the normal constraint system is unsuitable.

See: wxSashEvent, wxSashLayoutWindow, Overview events

wxWidgets docs: wxLayoutAlgorithm

Ericsson AB. All Rights Reserved.: wxErlang | 379

href
href

wxLayoutAlgorithm

Data Types
wxLayoutAlgorithm() = wx:wx_object()

Exports

new() -> wxLayoutAlgorithm()
Default constructor.

destroy(This :: wxLayoutAlgorithm()) -> ok
Destructor.

layoutFrame(This, Frame) -> boolean()
Types:

This = wxLayoutAlgorithm()
Frame = wxFrame:wxFrame()

layoutFrame(This, Frame, Options :: [Option]) -> boolean()
Types:

This = wxLayoutAlgorithm()
Frame = wxFrame:wxFrame()
Option = {mainWindow, wxWindow:wxWindow()}

Lays out the children of a normal frame.

mainWindow is set to occupy the remaining space. This function simply calls layoutWindow/3.

layoutMDIFrame(This, Frame) -> boolean()
Types:

This = wxLayoutAlgorithm()
Frame = wxMDIParentFrame:wxMDIParentFrame()

layoutMDIFrame(This, Frame, Options :: [Option]) -> boolean()
Types:

This = wxLayoutAlgorithm()
Frame = wxMDIParentFrame:wxMDIParentFrame()
Option =
 {rect,
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}

Lays out the children of an MDI parent frame.

If rect is non-NULL, the given rectangle will be used as a starting point instead of the frame's client area. The MDI
client window is set to occupy the remaining space.

380 | Ericsson AB. All Rights Reserved.: wxErlang

wxLayoutAlgorithm

layoutWindow(This, Parent) -> boolean()
Types:

This = wxLayoutAlgorithm()
Parent = wxWindow:wxWindow()

layoutWindow(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxLayoutAlgorithm()
Parent = wxWindow:wxWindow()
Option = {mainWindow, wxWindow:wxWindow()}

Lays out the children of a normal frame or other window.

mainWindow is set to occupy the remaining space. If this is not specified, then the last window that responds to a
calculate layout event in query mode will get the remaining space (that is, a non-query OnCalculateLayout event will
not be sent to this window and the window will be set to the remaining size).

Ericsson AB. All Rights Reserved.: wxErlang | 381

wxListbook

wxListbook
Erlang module

wxListbook is a class similar to wxNotebook but which uses a wxListCtrl to show the labels instead of the
tabs.

The underlying wxListCtrl displays page labels in a one-column report view by default. Calling
wxBookCtrl::SetImageList will implicitly switch the control to use an icon view.

For usage documentation of this class, please refer to the base abstract class wxBookCtrl. You can also use the
page_samples_notebook to see wxListbook in action.

Styles

This class supports the following styles:

See: ?wxBookCtrl, wxNotebook, Examples

This class is derived (and can use functions) from: wxBookCtrlBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxListbook

Events
Event types emitted from this class: listbook_page_changed, listbook_page_changing

Data Types
wxListbook() = wx:wx_object()

Exports

new() -> wxListbook()
Default ctor.

new(Parent, Id) -> wxListbook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxListbook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructs a listbook control.

382 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxListbook

addPage(This, Page, Text) -> boolean()
Types:

This = wxListbook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

addPage(This, Page, Text, Options :: [Option]) -> boolean()
Types:

This = wxListbook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Adds a new page.

The page must have the book control itself as the parent and must not have been added to this control previously.

The call to this function will generate the page changing and page changed events if select is true, but not when
inserting the very first page (as there is no previous page selection to switch from in this case and so it wouldn't make
sense to e.g. veto such event).

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: insertPage/5

advanceSelection(This) -> ok
Types:

This = wxListbook()

advanceSelection(This, Options :: [Option]) -> ok
Types:

This = wxListbook()
Option = {forward, boolean()}

Cycles through the tabs.

The call to this function generates the page changing events.

assignImageList(This, ImageList) -> ok
Types:

This = wxListbook()
ImageList = wxImageList:wxImageList()

Sets the image list for the page control and takes ownership of the list.

See: wxImageList, setImageList/2

create(This, Parent, Id) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 383

wxListbook

This = wxListbook()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxListbook()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Create the list book control that has already been constructed with the default constructor.

deleteAllPages(This) -> boolean()
Types:

This = wxListbook()
Deletes all pages.

getCurrentPage(This) -> wxWindow:wxWindow()
Types:

This = wxListbook()
Returns the currently selected page or NULL.

getImageList(This) -> wxImageList:wxImageList()
Types:

This = wxListbook()
Returns the associated image list, may be NULL.

See: wxImageList, setImageList/2

getPage(This, Page) -> wxWindow:wxWindow()
Types:

This = wxListbook()
Page = integer()

Returns the window at the given page position.

getPageCount(This) -> integer()
Types:

This = wxListbook()
Returns the number of pages in the control.

384 | Ericsson AB. All Rights Reserved.: wxErlang

wxListbook

getPageImage(This, NPage) -> integer()
Types:

This = wxListbook()
NPage = integer()

Returns the image index for the given page.

getPageText(This, NPage) -> unicode:charlist()
Types:

This = wxListbook()
NPage = integer()

Returns the string for the given page.

getSelection(This) -> integer()
Types:

This = wxListbook()
Returns the currently selected page, or wxNOT_FOUND if none was selected.

Note that this method may return either the previously or newly selected page when
called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so
wxBookCtrlEvent:getSelection/1 should be used instead in this case.

hitTest(This, Pt) -> Result
Types:

Result = {Res :: integer(), Flags :: integer()}
This = wxListbook()
Pt = {X :: integer(), Y :: integer()}

Returns the index of the tab at the specified position or wxNOT_FOUND if none.

If flags parameter is non-NULL, the position of the point inside the tab is returned as well.

Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the specified position.

insertPage(This, Index, Page, Text) -> boolean()
Types:

This = wxListbook()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

insertPage(This, Index, Page, Text, Options :: [Option]) ->
 boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 385

wxListbook

This = wxListbook()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Inserts a new page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: addPage/4

setImageList(This, ImageList) -> ok
Types:

This = wxListbook()
ImageList = wxImageList:wxImageList()

Sets the image list to use.

It does not take ownership of the image list, you must delete it yourself.

See: wxImageList, assignImageList/2

setPageSize(This, Size) -> ok
Types:

This = wxListbook()
Size = {W :: integer(), H :: integer()}

Sets the width and height of the pages.

Note: This method is currently not implemented for wxGTK.

setPageImage(This, Page, Image) -> boolean()
Types:

This = wxListbook()
Page = Image = integer()

Sets the image index for the given page.

image is an index into the image list which was set with setImageList/2.

setPageText(This, Page, Text) -> boolean()
Types:

This = wxListbook()
Page = integer()
Text = unicode:chardata()

Sets the text for the given page.

setSelection(This, Page) -> integer()
Types:

386 | Ericsson AB. All Rights Reserved.: wxErlang

wxListbook

This = wxListbook()
Page = integer()

Sets the selection to the given page, returning the previous selection.

Notice that the call to this function generates the page changing events, use the changeSelection/2 function if
you don't want these events to be generated.

See: getSelection/1

changeSelection(This, Page) -> integer()
Types:

This = wxListbook()
Page = integer()

Changes the selection to the given page, returning the previous selection.

This function behaves as setSelection/2 but does not generate the page changing events.

See overview_events_prog for more information.

destroy(This :: wxListbook()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 387

wxListBox

wxListBox
Erlang module

A listbox is used to select one or more of a list of strings.

The strings are displayed in a scrolling box, with the selected string(s) marked in reverse video. A listbox can be single
selection (if an item is selected, the previous selection is removed) or multiple selection (clicking an item toggles the
item on or off independently of other selections).

List box elements are numbered from zero and while the maximal number of elements is unlimited, it is usually better
to use a virtual control, not requiring to add all the items to it at once, such as wxDataViewCtrl (not implemented in
wx) or wxListCtrl with wxLC_VIRTUAL style, once more than a few hundreds items need to be displayed because
this control is not optimized, neither from performance nor from user interface point of view, for large number of items.

Notice that the list box doesn't support control characters other than TAB.

Styles

This class supports the following styles:

See: wxEditableListBox (not implemented in wx), wxChoice, wxComboBox, wxListCtrl,
wxCommandEvent

This class is derived (and can use functions) from: wxControlWithItems wxControl wxWindow
wxEvtHandler

wxWidgets docs: wxListBox

Events
Event types emitted from this class: command_listbox_selected, command_listbox_doubleclicked

Data Types
wxListBox() = wx:wx_object()

Exports

new() -> wxListBox()
Default constructor.

new(Parent, Id) -> wxListBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxListBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |

388 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxListBox

 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a list box.

See the other new/3 constructor; the only difference is that this overload takes a wxArrayString (not implemented
in wx) instead of a pointer to an array of wxString (not implemented in wx).

destroy(This :: wxListBox()) -> ok
Destructor, destroying the list box.

create(This, Parent, Id, Pos, Size, Choices) -> boolean()
Types:

This = wxListBox()
Parent = wxWindow:wxWindow()
Id = integer()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]

create(This, Parent, Id, Pos, Size, Choices, Options :: [Option]) ->
 boolean()
Types:

This = wxListBox()
Parent = wxWindow:wxWindow()
Id = integer()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]
Option = {style, integer()} | {validator, wx:wx_object()}

deselect(This, N) -> ok
Types:

This = wxListBox()
N = integer()

Deselects an item in the list box.

Remark: This applies to multiple selection listboxes only.

getSelections(This) -> Result
Types:

Result = {Res :: integer(), Selections :: [integer()]}
This = wxListBox()

Fill an array of ints with the positions of the currently selected items.

Return: The number of selections.

Ericsson AB. All Rights Reserved.: wxErlang | 389

wxListBox

Remark: Use this with a multiple selection listbox.

See: wxControlWithItems:getSelection/1, wxControlWithItems:getStringSelection/1,
wxControlWithItems:setSelection/2

insertItems(This, Items, Pos) -> ok
Types:

This = wxListBox()
Items = [unicode:chardata()]
Pos = integer()

Insert the given number of strings before the specified position.

isSelected(This, N) -> boolean()
Types:

This = wxListBox()
N = integer()

Determines whether an item is selected.

Return: true if the given item is selected, false otherwise.

set(This, Items) -> ok
Types:

This = wxListBox()
Items = [unicode:chardata()]

Replaces the current control contents with the given items.

Notice that calling this method is usually much faster than appending them one by one if you need to add a lot of items.

hitTest(This, Point) -> integer()
Types:

This = wxListBox()
Point = {X :: integer(), Y :: integer()}

Returns the item located at point, or wxNOT_FOUND if there is no item located at point.

It is currently implemented for wxMSW, wxMac and wxGTK2 ports.

Return: Item located at point, or wxNOT_FOUND if unimplemented or the item does not exist.

Since: 2.7.0

hitTest(This, X, Y) -> integer()
Types:

This = wxListBox()
X = Y = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

390 | Ericsson AB. All Rights Reserved.: wxErlang

wxListBox

setFirstItem(This, N) -> ok
setFirstItem(This, String) -> ok
Types:

This = wxListBox()
String = unicode:chardata()

Set the specified item to be the first visible item.

Ericsson AB. All Rights Reserved.: wxErlang | 391

wxListCtrl

wxListCtrl
Erlang module

A list control presents lists in a number of formats: list view, report view, icon view and small icon view. In any case,
elements are numbered from zero. For all these modes, the items are stored in the control and must be added to it
using insertItem/4 method.

A special case of report view quite different from the other modes of the list control is a virtual control in which the
items data (including text, images and attributes) is managed by the main program and is requested by the control itself
only when needed which allows having controls with millions of items without consuming much memory. To use
virtual list control you must use setItemCount/2 first and override at least wxListCtrl::OnGetItemText
(not implemented in wx) (and optionally wxListCtrl::OnGetItemImage (not implemented in wx) or
wxListCtrl::OnGetItemColumnImage (not implemented in wx) and wxListCtrl::OnGetItemAttr
(not implemented in wx)) to return the information about the items when the control requests it.

Virtual list control can be used as a normal one except that no operations which can take time proportional to the
number of items in the control happen - this is required to allow having a practically infinite number of items. For
example, in a multiple selection virtual list control, the selections won't be sent when many items are selected at once
because this could mean iterating over all the items.

Using many of wxListCtrl features is shown in the corresponding sample.

To intercept events from a list control, use the event table macros described in wxListEvent.

wxMac Note: Starting with wxWidgets 2.8, wxListCtrl uses a native implementation for report mode, and uses
a generic implementation for other modes. You can use the generic implementation for report mode as well by setting
the mac.listctrl.always_use_generic system option (see wxSystemOptions) to 1.

Styles

This class supports the following styles:

Note: Under wxMSW this control uses wxSystemThemedControl (not implemented in wx) for an
explorer style appearance by default since wxWidgets 3.1.0. If this is not desired, you can call
wxSystemThemedControl::EnableSystemTheme (not implemented in wx) with false argument to
disable this.

See: Overview listctrl, wxListView, wxListBox, wxTreeCtrl, wxImageList, wxListEvent,
wxListItem, wxEditableListBox (not implemented in wx)

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxListCtrl

Events
Event types emitted from this class: command_list_begin_drag, command_list_begin_rdrag,
command_list_begin_label_edit, command_list_end_label_edit,
command_list_delete_item, command_list_delete_all_items,
command_list_item_selected, command_list_item_deselected,
command_list_item_activated, command_list_item_focused,
command_list_item_middle_click, command_list_item_right_click,
command_list_key_down, command_list_insert_item, command_list_col_click,
command_list_col_right_click, command_list_col_begin_drag,
command_list_col_dragging, command_list_col_end_drag, command_list_cache_hint

392 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxListCtrl

Data Types
wxListCtrl() = wx:wx_object()

Exports

new() -> wxListCtrl()
Default constructor.

new(Parent, Options :: [Option]) -> wxListCtrl()
Types:

Parent = wxWindow:wxWindow()
Option =
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()} |
 {onGetItemText, function()} |
 {onGetItemAttr, function()} |
 {onGetItemColumnImage, function()}

Constructor, creating and showing a list control.

See: create/3, wxValidator (not implemented in wx)

destroy(This :: wxListCtrl()) -> ok
Destructor, destroying the list control.

arrange(This) -> boolean()
Types:

This = wxListCtrl()

arrange(This, Options :: [Option]) -> boolean()
Types:

This = wxListCtrl()
Option = {flag, integer()}

Arranges the items in icon or small icon view.

This only has effect on Win32. flag is one of:

assignImageList(This, ImageList, Which) -> ok
Types:

This = wxListCtrl()
ImageList = wxImageList:wxImageList()
Which = integer()

Sets the image list associated with the control and takes ownership of it (i.e.

Ericsson AB. All Rights Reserved.: wxErlang | 393

wxListCtrl

the control will, unlike when using setImageList/3, delete the list when destroyed). which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last is unimplemented).

See: setImageList/3

clearAll(This) -> ok
Types:

This = wxListCtrl()
Deletes all items and all columns.

Note: This sends an event of type wxEVT_LIST_DELETE_ALL_ITEMS under all platforms.

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = Parent = wxWindow:wxWindow()
Option =
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()} |
 {onGetItemText, function()} |
 {onGetItemAttr, function()} |
 {onGetItemColumnImage, function()}

Creates the list control.

See new/2 for further details.

deleteAllItems(This) -> boolean()
Types:

This = wxListCtrl()
Deletes all items in the list control.

This function does not send the wxEVT_LIST_DELETE_ITEM event because deleting many items from the control
would be too slow then (unlike deleteItem/2) but it does send the special wxEVT_LIST_DELETE_ALL_ITEMS
event if the control was not empty. If it was already empty, nothing is done and no event is sent.

Return: true if the items were successfully deleted or if the control was already empty, false if an error occurred while
deleting the items.

deleteColumn(This, Col) -> boolean()
Types:

This = wxListCtrl()
Col = integer()

Deletes a column.

deleteItem(This, Item) -> boolean()
Types:

394 | Ericsson AB. All Rights Reserved.: wxErlang

wxListCtrl

This = wxListCtrl()
Item = integer()

Deletes the specified item.

This function sends the wxEVT_LIST_DELETE_ITEM event for the item being deleted.

See: deleteAllItems/1

editLabel(This, Item) -> wxTextCtrl:wxTextCtrl()
Types:

This = wxListCtrl()
Item = integer()

Starts editing the label of the given item.

This function generates a EVT_LIST_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control without changes, a
EVT_LIST_END_LABEL_EDIT event will be sent which can be vetoed as well.

ensureVisible(This, Item) -> boolean()
Types:

This = wxListCtrl()
Item = integer()

Ensures this item is visible.

findItem(This, Start, Str) -> integer()
Types:

This = wxListCtrl()
Start = integer()
Str = unicode:chardata()

findItem(This, Start, Str, Options :: [Option]) -> integer()
findItem(This, Start, Pt, Direction) -> integer()
Types:

This = wxListCtrl()
Start = integer()
Pt = {X :: integer(), Y :: integer()}
Direction = integer()

Find an item nearest this position in the specified direction, starting from start or the beginning if start is -1.

Return: The next matching item if any or -1 (wxNOT_FOUND) otherwise.

getColumn(This, Col, Item) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 395

wxListCtrl

This = wxListCtrl()
Col = integer()
Item = wxListItem:wxListItem()

Gets information about this column.

See setItem/5 for more information.

getColumnCount(This) -> integer()
Types:

This = wxListCtrl()
Returns the number of columns.

getColumnWidth(This, Col) -> integer()
Types:

This = wxListCtrl()
Col = integer()

Gets the column width (report view only).

getCountPerPage(This) -> integer()
Types:

This = wxListCtrl()
Gets the number of items that can fit vertically in the visible area of the list control (list or report view) or the total
number of items in the list control (icon or small icon view).

getEditControl(This) -> wxTextCtrl:wxTextCtrl()
Types:

This = wxListCtrl()
Returns the edit control being currently used to edit a label.

Returns NULL if no label is being edited.

Note: It is currently only implemented for wxMSW and the generic version, not for the native macOS version.

getImageList(This, Which) -> wxImageList:wxImageList()
Types:

This = wxListCtrl()
Which = integer()

Returns the specified image list.

which may be one of:

getItem(This, Info) -> boolean()
Types:

This = wxListCtrl()
Info = wxListItem:wxListItem()

Gets information about the item.

396 | Ericsson AB. All Rights Reserved.: wxErlang

wxListCtrl

See setItem/5 for more information.

You must call info.SetId() to set the ID of item you're interested in before calling this method, and
info.SetMask() with the flags indicating what fields you need to retrieve from info.

getItemBackgroundColour(This, Item) -> wx:wx_colour4()
Types:

This = wxListCtrl()
Item = integer()

Returns the colour for this item.

If the item has no specific colour, returns an invalid colour (and not the default background control of the control itself).

See: getItemTextColour/2

getItemCount(This) -> integer()
Types:

This = wxListCtrl()
Returns the number of items in the list control.

getItemData(This, Item) -> integer()
Types:

This = wxListCtrl()
Item = integer()

Gets the application-defined data associated with this item.

getItemFont(This, Item) -> wxFont:wxFont()
Types:

This = wxListCtrl()
Item = integer()

Returns the item's font.

getItemPosition(This, Item) -> Result
Types:

Result =
 {Res :: boolean(), Pos :: {X :: integer(), Y :: integer()}}
This = wxListCtrl()
Item = integer()

Returns the position of the item, in icon or small icon view.

getItemRect(This, Item) -> Result
Types:

Result =
 {Res :: boolean(),
 Rect ::
 {X :: integer(),
 Y :: integer(),

Ericsson AB. All Rights Reserved.: wxErlang | 397

wxListCtrl

 W :: integer(),
 H :: integer()}}
This = wxListCtrl()
Item = integer()

getItemRect(This, Item, Options :: [Option]) -> Result
Types:

Result =
 {Res :: boolean(),
 Rect ::
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}
This = wxListCtrl()
Item = integer()
Option = {code, integer()}

Returns the rectangle representing the item's size and position, in physical coordinates.

code is one of wxLIST_RECT_BOUNDS, wxLIST_RECT_ICON, wxLIST_RECT_LABEL.

getItemSpacing(This) -> {W :: integer(), H :: integer()}
Types:

This = wxListCtrl()
Retrieves the spacing between icons in pixels: horizontal spacing is returned as x component of the {Width,Height}
object and the vertical spacing as its y component.

getItemState(This, Item, StateMask) -> integer()
Types:

This = wxListCtrl()
Item = StateMask = integer()

Gets the item state.

For a list of state flags, see setItem/5. The stateMask indicates which state flags are of interest.

getItemText(This, Item) -> unicode:charlist()
Types:

This = wxListCtrl()
Item = integer()

getItemText(This, Item, Options :: [Option]) -> unicode:charlist()
Types:

This = wxListCtrl()
Item = integer()
Option = {col, integer()}

Gets the item text for this item.

398 | Ericsson AB. All Rights Reserved.: wxErlang

wxListCtrl

getItemTextColour(This, Item) -> wx:wx_colour4()
Types:

This = wxListCtrl()
Item = integer()

Returns the colour for this item.

If the item has no specific colour, returns an invalid colour (and not the default foreground control of the control itself
as this wouldn't allow distinguishing between items having the same colour as the current control foreground and items
with default colour which, hence, have always the same colour as the control).

getNextItem(This, Item) -> integer()
Types:

This = wxListCtrl()
Item = integer()

getNextItem(This, Item, Options :: [Option]) -> integer()
Types:

This = wxListCtrl()
Item = integer()
Option = {geometry, integer()} | {state, integer()}

Searches for an item with the given geometry or state, starting from item but excluding the item itself.

If item is -1, the first item that matches the specified flags will be returned. Returns the first item with given state
following item or -1 if no such item found. This function may be used to find all selected items in the control like this:

geometry can be one of:

Note: this parameter is only supported by wxMSW currently and ignored on other platforms.

state can be a bitlist of the following:

getSelectedItemCount(This) -> integer()
Types:

This = wxListCtrl()
Returns the number of selected items in the list control.

getTextColour(This) -> wx:wx_colour4()
Types:

This = wxListCtrl()
Gets the text colour of the list control.

getTopItem(This) -> integer()
Types:

This = wxListCtrl()
Gets the index of the topmost visible item when in list or report view.

getViewRect(This) ->
 {X :: integer(),

Ericsson AB. All Rights Reserved.: wxErlang | 399

wxListCtrl

 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxListCtrl()
Returns the rectangle taken by all items in the control.

In other words, if the controls client size were equal to the size of this rectangle, no scrollbars would be needed and
no free space would be left.

Note that this function only works in the icon and small icon views, not in list or report views (this is a limitation of
the native Win32 control).

hitTest(This, Point) -> Result
Types:

Result =
 {Res :: integer(),
 Flags :: integer(),
 PtrSubItem :: integer()}
This = wxListCtrl()
Point = {X :: integer(), Y :: integer()}

Determines which item (if any) is at the specified point, giving details in flags.

Returns index of the item or wxNOT_FOUND if no item is at the specified point.

flags will be a combination of the following flags:

If ptrSubItem is not NULL and the wxListCtrl is in the report mode the subitem (or column) number will
also be provided. This feature is only available in version 2.7.0 or higher and is currently only implemented under
wxMSW and requires at least comctl32.dll of version 4.70 on the host system or the value stored in ptrSubItem
will be always -1. To compile this feature into wxWidgets library you need to have access to commctrl.h of version
4.70 that is provided by Microsoft.

insertColumn(This, Col, Heading) -> integer()
insertColumn(This, Col, Info) -> integer()
Types:

This = wxListCtrl()
Col = integer()
Info = wxListItem:wxListItem()

For report view mode (only), inserts a column.

For more details, see setItem/5. Also see insertColumn/4 overload for a usually more convenient alternative
to this method and the description of how the item width is interpreted by this method.

insertColumn(This, Col, Heading, Options :: [Option]) -> integer()
Types:

400 | Ericsson AB. All Rights Reserved.: wxErlang

wxListCtrl

This = wxListCtrl()
Col = integer()
Heading = unicode:chardata()
Option = {format, integer()} | {width, integer()}

For report view mode (only), inserts a column.

Insert a new column in the list control in report view mode at the given position specifying its most common attributes.

Notice that to set the image for the column you need to use insertColumn/4 overload and specify ?
wxLIST_MASK_IMAGE in the item mask.

Return: The index of the inserted column or -1 if adding it failed.

insertItem(This, Info) -> integer()
Types:

This = wxListCtrl()
Info = wxListItem:wxListItem()

Inserts an item, returning the index of the new item if successful, -1 otherwise.

insertItem(This, Index, ImageIndex) -> integer()
insertItem(This, Index, Label) -> integer()
Types:

This = wxListCtrl()
Index = integer()
Label = unicode:chardata()

Insert a string item.

insertItem(This, Index, Label, ImageIndex) -> integer()
Types:

This = wxListCtrl()
Index = integer()
Label = unicode:chardata()
ImageIndex = integer()

Insert an image/string item.

refreshItem(This, Item) -> ok
Types:

This = wxListCtrl()
Item = integer()

Redraws the given item.

This is only useful for the virtual list controls as without calling this function the displayed value of the item doesn't
change even when the underlying data does change.

See: refreshItems/3

Ericsson AB. All Rights Reserved.: wxErlang | 401

wxListCtrl

refreshItems(This, ItemFrom, ItemTo) -> ok
Types:

This = wxListCtrl()
ItemFrom = ItemTo = integer()

Redraws the items between itemFrom and itemTo.

The starting item must be less than or equal to the ending one.

Just as refreshItem/2 this is only useful for virtual list controls.

scrollList(This, Dx, Dy) -> boolean()
Types:

This = wxListCtrl()
Dx = Dy = integer()

Scrolls the list control.

If in icon, small icon or report view mode, dx specifies the number of pixels to scroll. If in list view mode, dx specifies
the number of columns to scroll. dy always specifies the number of pixels to scroll vertically.

Note: This method is currently only implemented in the Windows version.

setBackgroundColour(This, Col) -> boolean()
Types:

This = wxListCtrl()
Col = wx:wx_colour()

Sets the background colour.

Note that the wxWindow:getBackgroundColour/1 function of wxWindow base class can be used to retrieve
the current background colour.

setColumn(This, Col, Item) -> boolean()
Types:

This = wxListCtrl()
Col = integer()
Item = wxListItem:wxListItem()

Sets information about this column.

See setItem/5 for more information.

setColumnWidth(This, Col, Width) -> boolean()
Types:

This = wxListCtrl()
Col = Width = integer()

Sets the column width.

width can be a width in pixels or wxLIST_AUTOSIZE (-1) or wxLIST_AUTOSIZE_USEHEADER (-2).

wxLIST_AUTOSIZE will resize the column to the length of its longest item.

402 | Ericsson AB. All Rights Reserved.: wxErlang

wxListCtrl

wxLIST_AUTOSIZE_USEHEADER will resize the column to the length of the header (Win32) or 80 pixels (other
platforms).

In small or normal icon view, col must be -1, and the column width is set for all columns.

setImageList(This, ImageList, Which) -> ok
Types:

This = wxListCtrl()
ImageList = wxImageList:wxImageList()
Which = integer()

Sets the image list associated with the control.

which is one of wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last is
unimplemented).

This method does not take ownership of the image list, you have to delete it yourself.

See: assignImageList/3

setItem(This, Info) -> boolean()
Types:

This = wxListCtrl()
Info = wxListItem:wxListItem()

Sets the data of an item.

Using the wxListItem's mask and state mask, you can change only selected attributes of a wxListCtrl item.

Return: true if the item was successfully updated or false if the update failed for some reason (e.g. an invalid item
index).

setItem(This, Index, Column, Label) -> boolean()
Types:

This = wxListCtrl()
Index = Column = integer()
Label = unicode:chardata()

setItem(This, Index, Column, Label, Options :: [Option]) ->
 boolean()
Types:

This = wxListCtrl()
Index = Column = integer()
Label = unicode:chardata()
Option = {imageId, integer()}

Sets an item string field at a particular column.

Return: true if the item was successfully updated or false if the update failed for some reason (e.g. an invalid item
index).

setItemBackgroundColour(This, Item, Col) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 403

wxListCtrl

This = wxListCtrl()
Item = integer()
Col = wx:wx_colour()

Sets the background colour for this item.

This function only works in report view mode. The colour can be retrieved using getItemBackgroundColour/2.

setItemCount(This, Count) -> ok
Types:

This = wxListCtrl()
Count = integer()

This method can only be used with virtual list controls.

It is used to indicate to the control the number of items it contains. After calling it, the main program should be ready
to handle calls to various item callbacks (such as wxListCtrl::OnGetItemText (not implemented in wx)) for
all items in the range from 0 to count.

Notice that the control is not necessarily redrawn after this call as it may be undesirable if an item which is not visible
on the screen anyhow was added to or removed from a control displaying many items, if you do need to refresh the
display you can just call wxWindow:refresh/2 manually.

setItemData(This, Item, Data) -> boolean()
Types:

This = wxListCtrl()
Item = Data = integer()

Associates application-defined data with this item.

Notice that this function cannot be used to associate pointers with the control items, use SetItemPtrData() (not
implemented in wx) instead.

setItemFont(This, Item, Font) -> ok
Types:

This = wxListCtrl()
Item = integer()
Font = wxFont:wxFont()

Sets the item's font.

setItemImage(This, Item, Image) -> boolean()
Types:

This = wxListCtrl()
Item = Image = integer()

setItemImage(This, Item, Image, Options :: [Option]) -> boolean()
Types:

404 | Ericsson AB. All Rights Reserved.: wxErlang

wxListCtrl

This = wxListCtrl()
Item = Image = integer()
Option = {selImage, integer()}

Sets the unselected and selected images associated with the item.

The images are indices into the image list associated with the list control.

setItemColumnImage(This, Item, Column, Image) -> boolean()
Types:

This = wxListCtrl()
Item = Column = Image = integer()

Sets the image associated with the item.

In report view, you can specify the column. The image is an index into the image list associated with the list control.

setItemPosition(This, Item, Pos) -> boolean()
Types:

This = wxListCtrl()
Item = integer()
Pos = {X :: integer(), Y :: integer()}

Sets the position of the item, in icon or small icon view.

Windows only.

setItemState(This, Item, State, StateMask) -> boolean()
Types:

This = wxListCtrl()
Item = State = StateMask = integer()

Sets the item state.

The stateMask is a combination of wxLIST_STATE_XXX constants described in wxListItem documentation.
For each of the bits specified in stateMask, the corresponding state is set or cleared depending on whether state
argument contains the same bit or not.

So to select an item you can use while to deselect it you should use

Consider using wxListView if possible to avoid dealing with this error-prone and confusing method.

Also notice that contrary to the usual rule that only user actions generate events, this method does generate
wxEVT_LIST_ITEM_SELECTED event when it is used to select an item.

setItemText(This, Item, Text) -> ok
Types:

This = wxListCtrl()
Item = integer()
Text = unicode:chardata()

Sets the item text for this item.

Ericsson AB. All Rights Reserved.: wxErlang | 405

wxListCtrl

setItemTextColour(This, Item, Col) -> ok
Types:

This = wxListCtrl()
Item = integer()
Col = wx:wx_colour()

Sets the colour for this item.

This function only works in report view. The colour can be retrieved using getItemTextColour/2.

setSingleStyle(This, Style) -> ok
Types:

This = wxListCtrl()
Style = integer()

setSingleStyle(This, Style, Options :: [Option]) -> ok
Types:

This = wxListCtrl()
Style = integer()
Option = {add, boolean()}

Adds or removes a single window style.

setTextColour(This, Col) -> ok
Types:

This = wxListCtrl()
Col = wx:wx_colour()

Sets the text colour of the list control.

setWindowStyleFlag(This, Style) -> ok
Types:

This = wxListCtrl()
Style = integer()

Sets the whole window style, deleting all items.

sortItems(This :: wxListCtrl(), SortCallBack) -> boolean()
Types:

SortCallBack = fun((integer(), integer()) -> integer())
Sort the items in the list control.

Sorts the items with supplied SortCallBack fun.

SortCallBack receives the client data associated with two items to compare (NOT the the index), and should return
0 if the items are equal, a negative value if the first item is less than the second one and a positive value if the first
item is greater than the second one.

Remark: Notice that the control may only be sorted on client data associated with the items, so you must use
SetItemData if you want to be able to sort the items in the control.

The callback may not call other (wx) processes.

406 | Ericsson AB. All Rights Reserved.: wxErlang

wxListEvent

wxListEvent
Erlang module

A list event holds information about events associated with wxListCtrl objects.

See: wxListCtrl

This class is derived (and can use functions) from: wxNotifyEvent wxCommandEvent wxEvent

wxWidgets docs: wxListEvent

Events
Use wxEvtHandler:connect/3 with wxListEventType to subscribe to events of this type.

Data Types
wxListEvent() = wx:wx_object()
wxList() =
 #wxList{type = wxListEvent:wxListEventType(),
 code = integer(),
 oldItemIndex = integer(),
 itemIndex = integer(),
 col = integer(),
 pointDrag = {X :: integer(), Y :: integer()}}
wxListEventType() =
 command_list_begin_drag | command_list_begin_rdrag |
 command_list_begin_label_edit | command_list_end_label_edit |
 command_list_delete_item | command_list_delete_all_items |
 command_list_key_down | command_list_insert_item |
 command_list_col_click | command_list_col_right_click |
 command_list_col_begin_drag | command_list_col_dragging |
 command_list_col_end_drag | command_list_item_selected |
 command_list_item_deselected | command_list_item_right_click |
 command_list_item_middle_click | command_list_item_activated |
 command_list_item_focused | command_list_cache_hint

Exports

getCacheFrom(This) -> integer()
Types:

This = wxListEvent()
For EVT_LIST_CACHE_HINT event only: return the first item which the list control advises us to cache.

getCacheTo(This) -> integer()
Types:

This = wxListEvent()
For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the list control advises us to cache.

Ericsson AB. All Rights Reserved.: wxErlang | 407

href

wxListEvent

getKeyCode(This) -> integer()
Types:

This = wxListEvent()
Key code if the event is a keypress event.

getIndex(This) -> integer()
Types:

This = wxListEvent()
The item index.

getColumn(This) -> integer()
Types:

This = wxListEvent()
The column position: it is only used with COL events.

For the column dragging events, it is the column to the left of the divider being dragged, for the column click events
it may be -1 if the user clicked in the list control header outside any column.

getPoint(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxListEvent()
The position of the mouse pointer if the event is a drag event.

getLabel(This) -> unicode:charlist()
Types:

This = wxListEvent()
The (new) item label for EVT_LIST_END_LABEL_EDIT event.

getText(This) -> unicode:charlist()
Types:

This = wxListEvent()
The text.

getImage(This) -> integer()
Types:

This = wxListEvent()
The image.

getData(This) -> integer()
Types:

This = wxListEvent()
The data.

408 | Ericsson AB. All Rights Reserved.: wxErlang

wxListEvent

getMask(This) -> integer()
Types:

This = wxListEvent()
The mask.

getItem(This) -> wxListItem:wxListItem()
Types:

This = wxListEvent()
An item object, used by some events.

See also wxListCtrl:setItem/5.

isEditCancelled(This) -> boolean()
Types:

This = wxListEvent()
This method only makes sense for EVT_LIST_END_LABEL_EDIT message and returns true if it the label editing
has been cancelled by the user (getLabel/1 returns an empty string in this case but it doesn't allow the application
to distinguish between really cancelling the edit and the admittedly rare case when the user wants to rename it to an
empty string).

Ericsson AB. All Rights Reserved.: wxErlang | 409

wxListItemAttr

wxListItemAttr
Erlang module

wxWidgets docs: wxListItemAttr

Data Types
wxListItemAttr() = wx:wx_object()

Exports

new() -> wxListItemAttr()

new(ColText, ColBack, Font) -> wxListItemAttr()
Types:

ColText = ColBack = wx:wx_colour()
Font = wxFont:wxFont()

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxListItemAttr()

getFont(This) -> wxFont:wxFont()
Types:

This = wxListItemAttr()

getTextColour(This) -> wx:wx_colour4()
Types:

This = wxListItemAttr()

hasBackgroundColour(This) -> boolean()
Types:

This = wxListItemAttr()

hasFont(This) -> boolean()
Types:

This = wxListItemAttr()

hasTextColour(This) -> boolean()
Types:

This = wxListItemAttr()

setBackgroundColour(This, ColBack) -> ok
Types:

410 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxListItemAttr

This = wxListItemAttr()
ColBack = wx:wx_colour()

setFont(This, Font) -> ok
Types:

This = wxListItemAttr()
Font = wxFont:wxFont()

setTextColour(This, ColText) -> ok
Types:

This = wxListItemAttr()
ColText = wx:wx_colour()

destroy(This :: wxListItemAttr()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 411

wxListItem

wxListItem
Erlang module

This class stores information about a wxListCtrl item or column.

wxListItem is a class which contains information about:

The wxListItem object can also contain item-specific colour and font information: for this you need to call one of
setTextColour/2, setBackgroundColour/2 or setFont/2 functions on it passing it the colour/font to
use. If the colour/font is not specified, the default list control colour/font is used.

See: wxListCtrl

wxWidgets docs: wxListItem

Data Types
wxListItem() = wx:wx_object()

Exports

new() -> wxListItem()
Constructor.

new(Item) -> wxListItem()
Types:

Item = wxListItem()

clear(This) -> ok
Types:

This = wxListItem()
Resets the item state to the default.

getAlign(This) -> wx:wx_enum()
Types:

This = wxListItem()
Returns the alignment for this item.

Can be one of wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or wxLIST_FORMAT_CENTRE.

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxListItem()
Returns the background colour for this item.

getColumn(This) -> integer()
Types:

412 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxListItem

This = wxListItem()
Returns the zero-based column; meaningful only in report mode.

getFont(This) -> wxFont:wxFont()
Types:

This = wxListItem()
Returns the font used to display the item.

getId(This) -> integer()
Types:

This = wxListItem()
Returns the zero-based item position.

getImage(This) -> integer()
Types:

This = wxListItem()
Returns the zero-based index of the image associated with the item into the image list.

getMask(This) -> integer()
Types:

This = wxListItem()
Returns a bit mask indicating which fields of the structure are valid.

Can be any combination of the following values:

getState(This) -> integer()
Types:

This = wxListItem()
Returns a bit field representing the state of the item.

Can be any combination of:

getText(This) -> unicode:charlist()
Types:

This = wxListItem()
Returns the label/header text.

getTextColour(This) -> wx:wx_colour4()
Types:

This = wxListItem()
Returns the text colour.

getWidth(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 413

wxListItem

This = wxListItem()
Meaningful only for column headers in report mode.

Returns the column width.

setAlign(This, Align) -> ok
Types:

This = wxListItem()
Align = wx:wx_enum()

Sets the alignment for the item.

See also getAlign/1

setBackgroundColour(This, ColBack) -> ok
Types:

This = wxListItem()
ColBack = wx:wx_colour()

Sets the background colour for the item.

setColumn(This, Col) -> ok
Types:

This = wxListItem()
Col = integer()

Sets the zero-based column.

Meaningful only in report mode.

setFont(This, Font) -> ok
Types:

This = wxListItem()
Font = wxFont:wxFont()

Sets the font for the item.

setId(This, Id) -> ok
Types:

This = wxListItem()
Id = integer()

Sets the zero-based item position.

setImage(This, Image) -> ok
Types:

This = wxListItem()
Image = integer()

Sets the zero-based index of the image associated with the item into the image list.

414 | Ericsson AB. All Rights Reserved.: wxErlang

wxListItem

setMask(This, Mask) -> ok
Types:

This = wxListItem()
Mask = integer()

Sets the mask of valid fields.

See getMask/1.

setState(This, State) -> ok
Types:

This = wxListItem()
State = integer()

Sets the item state flags (note that the valid state flags are influenced by the value of the state mask, see
setStateMask/2).

See getState/1 for valid flag values.

setStateMask(This, StateMask) -> ok
Types:

This = wxListItem()
StateMask = integer()

Sets the bitmask that is used to determine which of the state flags are to be set.

See also setState/2.

setText(This, Text) -> ok
Types:

This = wxListItem()
Text = unicode:chardata()

Sets the text label for the item.

setTextColour(This, ColText) -> ok
Types:

This = wxListItem()
ColText = wx:wx_colour()

Sets the text colour for the item.

setWidth(This, Width) -> ok
Types:

This = wxListItem()
Width = integer()

Meaningful only for column headers in report mode.

Sets the column width.

Ericsson AB. All Rights Reserved.: wxErlang | 415

wxListItem

destroy(This :: wxListItem()) -> ok
Destroys the object.

416 | Ericsson AB. All Rights Reserved.: wxErlang

wxListView

wxListView
Erlang module

This class currently simply presents a simpler to use interface for the wxListCtrl - it can be thought of as a façade
for that complicated class.

Using it is preferable to using wxListCtrl directly whenever possible because in the future some ports might
implement wxListView but not the full set of wxListCtrl features.

Other than different interface, this class is identical to wxListCtrl. In particular, it uses the same events, same
window styles and so on.

See: setColumnImage/3

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxListView

Data Types
wxListView() = wx:wx_object()

Exports

clearColumnImage(This, Col) -> ok
Types:

This = wxListView()
Col = integer()

Resets the column image - after calling this function, no image will be shown.

See: setColumnImage/3

focus(This, Index) -> ok
Types:

This = wxListView()
Index = integer()

Sets focus to the item with the given index.

getFirstSelected(This) -> integer()
Types:

This = wxListView()
Returns the first selected item in a (presumably) multiple selection control.

Together with getNextSelected/2 it can be used to iterate over all selected items in the control.

Return: The first selected item, if any, -1 otherwise.

getFocusedItem(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 417

href

wxListView

This = wxListView()
Returns the currently focused item or -1 if none.

See: isSelected/2, focus/2

getNextSelected(This, Item) -> integer()
Types:

This = wxListView()
Item = integer()

Used together with getFirstSelected/1 to iterate over all selected items in the control.

Return: Returns the next selected item or -1 if there are no more of them.

isSelected(This, Index) -> boolean()
Types:

This = wxListView()
Index = integer()

Returns true if the item with the given index is selected, false otherwise.

See: getFirstSelected/1, getNextSelected/2

select(This, N) -> ok
Types:

This = wxListView()
N = integer()

select(This, N, Options :: [Option]) -> ok
Types:

This = wxListView()
N = integer()
Option = {on, boolean()}

Selects or unselects the given item.

Notice that this method inherits the unusual behaviour of wxListCtrl:setItemState/4 which sends a
wxEVT_LIST_ITEM_SELECTED event when it is used to select an item, contrary to the usual rule that only the user
actions result in selection.

setColumnImage(This, Col, Image) -> ok
Types:

This = wxListView()
Col = Image = integer()

Sets the column image for the specified column.

To use the column images, the control must have a valid image list with at least one image.

418 | Ericsson AB. All Rights Reserved.: wxErlang

wxLocale

wxLocale
Erlang module

wxLocale class encapsulates all language-dependent settings and is a generalization of the C locale concept.

In wxWidgets this class manages current locale. It also initializes and activates wxTranslations (not implemented
in wx) object that manages message catalogs.

For a list of the supported languages, please see ?wxLanguage enum values. These constants may be used to specify
the language in init/3 and are returned by getSystemLanguage/0.

See: Overview i18n, Examples, wxXLocale (not implemented in wx), wxTranslations (not implemented in
wx)

wxWidgets docs: wxLocale

Data Types
wxLocale() = wx:wx_object()

Exports

new() -> wxLocale()
This is the default constructor and it does nothing to initialize the object: init/3 must be used to do that.

new(Language) -> wxLocale()
new(Name) -> wxLocale()
Types:

Name = unicode:chardata()

new(Language, Options :: [Option]) -> wxLocale()
new(Name, Options :: [Option]) -> wxLocale()
Types:

Name = unicode:chardata()
Option =
 {shortName, unicode:chardata()} |
 {locale, unicode:chardata()} |
 {bLoadDefault, boolean()}

See init/3 for parameters description.

The call of this function has several global side effects which you should understand: first of all, the application locale
is changed - note that this will affect many of standard C library functions such as printf() or strftime(). Second,
this wxLocale object becomes the new current global locale for the application and so all subsequent calls to ?
wxGetTranslation() will try to translate the messages using the message catalogs for this locale.

destroy(This :: wxLocale()) -> ok
The destructor, like the constructor, also has global side effects: the previously set locale is restored and so the changes
described in init/3 documentation are rolled back.

Ericsson AB. All Rights Reserved.: wxErlang | 419

href
href
href

wxLocale

init(This) -> boolean()
Types:

This = wxLocale()

init(This, Options :: [Option]) -> boolean()
Types:

This = wxLocale()
Option = {language, integer()} | {flags, integer()}

Initializes the wxLocale instance.

The call of this function has several global side effects which you should understand: first of all, the application locale
is changed - note that this will affect many of standard C library functions such as printf() or strftime(). Second,
this wxLocale object becomes the new current global locale for the application and so all subsequent calls to ?
wxGetTranslation() will try to translate the messages using the message catalogs for this locale.

Return: true on success or false if the given locale couldn't be set.

init(This, Name, Options :: [Option]) -> boolean()
Types:

This = wxLocale()
Name = unicode:chardata()
Option =
 {shortName, unicode:chardata()} |
 {locale, unicode:chardata()} |
 {bLoadDefault, boolean()}

Deprecated: This form is deprecated, use the other one unless you know what you are doing.

addCatalog(This, Domain) -> boolean()
Types:

This = wxLocale()
Domain = unicode:chardata()

Calls wxTranslations::AddCatalog(const wxString&).

addCatalog(This, Domain, MsgIdLanguage) -> boolean()
Types:

This = wxLocale()
Domain = unicode:chardata()
MsgIdLanguage = wx:wx_enum()

Calls wxTranslations::AddCatalog(const wxString&, wxLanguage) (not implemented in wx).

addCatalog(This, Domain, MsgIdLanguage, MsgIdCharset) -> boolean()
Types:

420 | Ericsson AB. All Rights Reserved.: wxErlang

wxLocale

This = wxLocale()
Domain = unicode:chardata()
MsgIdLanguage = wx:wx_enum()
MsgIdCharset = unicode:chardata()

Calls wxTranslations::AddCatalog(const wxString&, wxLanguage, const wxString&) (not
implemented in wx).

addCatalogLookupPathPrefix(Prefix) -> ok
Types:

Prefix = unicode:chardata()
Calls wxFileTranslationsLoader::AddCatalogLookupPathPrefix() (not implemented in wx).

getCanonicalName(This) -> unicode:charlist()
Types:

This = wxLocale()
Returns the canonical form of current locale name.

Canonical form is the one that is used on UNIX systems: it is a two- or five-letter string in xx or xx_YY format, where
xx is ISO 639 code of language and YY is ISO 3166 code of the country. Examples are "en", "en_GB", "en_US" or
"fr_FR". This form is internally used when looking up message catalogs. Compare getSysName/1.

getLanguage(This) -> integer()
Types:

This = wxLocale()
Returns the ?wxLanguage constant of current language.

Note that you can call this function only if you used the form of init/3 that takes ?wxLanguage argument.

getLanguageName(Lang) -> unicode:charlist()
Types:

Lang = integer()
Returns English name of the given language or empty string if this language is unknown.

See GetLanguageInfo() (not implemented in wx) for a remark about special meaning of
wxLANGUAGE_DEFAULT.

getLocale(This) -> unicode:charlist()
Types:

This = wxLocale()
Returns the locale name as passed to the constructor or init/3.

This is a full, human-readable name, e.g. "English" or "French".

getName(This) -> unicode:charlist()
Types:

This = wxLocale()
Returns the current short name for the locale (as given to the constructor or the init/3 function).

Ericsson AB. All Rights Reserved.: wxErlang | 421

wxLocale

getString(This, OrigString) -> unicode:charlist()
Types:

This = wxLocale()
OrigString = unicode:chardata()

getString(This, OrigString, Options :: [Option]) ->
 unicode:charlist()
Types:

This = wxLocale()
OrigString = unicode:chardata()
Option = {szDomain, unicode:chardata()}

Calls wxGetTranslation(const wxString&, const wxString&).

getString(This, OrigString, OrigString2, N) -> unicode:charlist()
Types:

This = wxLocale()
OrigString = OrigString2 = unicode:chardata()
N = integer()

getString(This, OrigString, OrigString2, N, Options :: [Option]) ->
 unicode:charlist()
Types:

This = wxLocale()
OrigString = OrigString2 = unicode:chardata()
N = integer()
Option = {szDomain, unicode:chardata()}

Calls wxGetTranslation(const wxString&, const wxString&, unsigned, const wxString&).

getHeaderValue(This, Header) -> unicode:charlist()
Types:

This = wxLocale()
Header = unicode:chardata()

getHeaderValue(This, Header, Options :: [Option]) ->
 unicode:charlist()
Types:

This = wxLocale()
Header = unicode:chardata()
Option = {szDomain, unicode:chardata()}

Calls wxTranslations::GetHeaderValue() (not implemented in wx).

getSysName(This) -> unicode:charlist()
Types:

422 | Ericsson AB. All Rights Reserved.: wxErlang

wxLocale

This = wxLocale()
Returns current platform-specific locale name as passed to setlocale().

Compare getCanonicalName/1.

getSystemEncoding() -> wx:wx_enum()
Tries to detect the user's default font encoding.

Returns ?wxFontEncoding() value or wxFONTENCODING_SYSTEM if it couldn't be determined.

getSystemEncodingName() -> unicode:charlist()
Tries to detect the name of the user's default font encoding.

This string isn't particularly useful for the application as its form is platform-dependent and so you should probably
use getSystemEncoding/0 instead.

Returns a user-readable string value or an empty string if it couldn't be determined.

getSystemLanguage() -> integer()
Tries to detect the user's default locale setting.

Returns the ?wxLanguage value or wxLANGUAGE_UNKNOWN if the language-guessing algorithm failed.

Note: This function works with locales and returns the user's default locale. This may be, and usually is, the same
as their preferred UI language, but it's not the same thing. Use wxTranslation to obtain language information.

See: wxTranslations::GetBestTranslation() (not implemented in wx)

isLoaded(This, Domain) -> boolean()
Types:

This = wxLocale()
Domain = unicode:chardata()

Calls wxTranslations::IsLoaded() (not implemented in wx).

isOk(This) -> boolean()
Types:

This = wxLocale()
Returns true if the locale could be set successfully.

Ericsson AB. All Rights Reserved.: wxErlang | 423

wxLogNull

wxLogNull
Erlang module

This class allows you to temporarily suspend logging. All calls to the log functions during the life time of an object
of this class are just ignored.

In particular, it can be used to suppress the log messages given by wxWidgets itself but it should be noted that it is
rarely the best way to cope with this problem as all log messages are suppressed, even if they indicate a completely
different error than the one the programmer wanted to suppress.

For instance, the example of the overview:

would be better written as:

wxWidgets docs: wxLogNull

Data Types
wxLogNull() = wx:wx_object()

Exports

new() -> wxLogNull()
Suspends logging.

destroy(This :: wxLogNull()) -> ok
Resumes logging.

424 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxMask

wxMask
Erlang module

This class encapsulates a monochrome mask bitmap, where the masked area is black and the unmasked area is white.

When associated with a bitmap and drawn in a device context, the unmasked area of the bitmap will be drawn, and
the masked area will not be drawn.

Note: A mask can be associated also with a bitmap with an alpha channel but drawing such bitmaps under wxMSW
may be slow so using them should be avoided if drawing performance is an important factor.

See: wxBitmap, wxDC:blit/6, wxMemoryDC

wxWidgets docs: wxMask

Data Types
wxMask() = wx:wx_object()

Exports

new() -> wxMask()
Default constructor.

new(Bitmap) -> wxMask()
Types:

Bitmap = wxBitmap:wxBitmap()
Constructs a mask from a monochrome bitmap.

new(Bitmap, Index) -> wxMask()
new(Bitmap, Colour) -> wxMask()
Types:

Bitmap = wxBitmap:wxBitmap()
Colour = wx:wx_colour()

Constructs a mask from a bitmap and a colour that indicates the background.

destroy(This :: wxMask()) -> ok
Destroys the wxMask object and the underlying bitmap data.

create(This, Bitmap) -> boolean()
Types:

This = wxMask()
Bitmap = wxBitmap:wxBitmap()

Constructs a mask from a monochrome bitmap.

Ericsson AB. All Rights Reserved.: wxErlang | 425

href

wxMask

create(This, Bitmap, Index) -> boolean()
create(This, Bitmap, Colour) -> boolean()
Types:

This = wxMask()
Bitmap = wxBitmap:wxBitmap()
Colour = wx:wx_colour()

Constructs a mask from a bitmap and a colour that indicates the background.

426 | Ericsson AB. All Rights Reserved.: wxErlang

wxMaximizeEvent

wxMaximizeEvent
Erlang module

An event being sent when a top level window is maximized. Notice that it is not sent when the window is restored to
its original size after it had been maximized, only a normal wxSizeEvent is generated in this case.

Currently this event is only generated in wxMSW, wxGTK and wxOSX/Cocoa ports so portable programs should only
rely on receiving wxEVT_SIZE and not necessarily this event when the window is maximized.

See: Overview events, wxTopLevelWindow:maximize/2, wxTopLevelWindow:isMaximized/1

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxMaximizeEvent

Events
Use wxEvtHandler:connect/3 with wxMaximizeEventType to subscribe to events of this type.

Data Types
wxMaximizeEvent() = wx:wx_object()
wxMaximize() =
 #wxMaximize{type = wxMaximizeEvent:wxMaximizeEventType()}
wxMaximizeEventType() = maximize

Ericsson AB. All Rights Reserved.: wxErlang | 427

href
href

wxMDIChildFrame

wxMDIChildFrame
Erlang module

An MDI child frame is a frame that can only exist inside a wxMDIClientWindow, which is itself a child of
wxMDIParentFrame.

Styles

This class supports the following styles:

All of the standard wxFrame styles can be used but most of them are ignored by TDI-based MDI implementations.

Remark: Although internally an MDI child frame is a child of the MDI client window, in wxWidgets you create it as
a child of wxMDIParentFrame. In fact, you can usually forget that the client window exists. MDI child frames are
clipped to the area of the MDI client window, and may be iconized on the client window. You can associate a menubar
with a child frame as usual, although an MDI child doesn't display its menubar under its own title bar. The MDI parent
frame's menubar will be changed to reflect the currently active child frame. If there are currently no children, the parent
frame's own menubar will be displayed.

See: wxMDIClientWindow, wxMDIParentFrame, wxFrame

This class is derived (and can use functions) from: wxFrame wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxMDIChildFrame

Data Types
wxMDIChildFrame() = wx:wx_object()

Exports

new() -> wxMDIChildFrame()
Default constructor.

new(Parent, Id, Title) -> wxMDIChildFrame()
Types:

Parent = wxMDIParentFrame:wxMDIParentFrame()
Id = integer()
Title = unicode:chardata()

new(Parent, Id, Title, Options :: [Option]) -> wxMDIChildFrame()
Types:

Parent = wxMDIParentFrame:wxMDIParentFrame()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating the window.

428 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxMDIChildFrame

See: create/5

destroy(This :: wxMDIChildFrame()) -> ok
Destructor.

Destroys all child windows and menu bar if present.

activate(This) -> ok
Types:

This = wxMDIChildFrame()
Activates this MDI child frame.

See: maximize/2, restore/1

create(This, Parent, Id, Title) -> boolean()
Types:

This = wxMDIChildFrame()
Parent = wxMDIParentFrame:wxMDIParentFrame()
Id = integer()
Title = unicode:chardata()

create(This, Parent, Id, Title, Options :: [Option]) -> boolean()
Types:

This = wxMDIChildFrame()
Parent = wxMDIParentFrame:wxMDIParentFrame()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Used in two-step frame construction.

See new/4 for further details.

maximize(This) -> ok
Types:

This = wxMDIChildFrame()

maximize(This, Options :: [Option]) -> ok
Types:

This = wxMDIChildFrame()
Option = {maximize, boolean()}

Maximizes this MDI child frame.

This function doesn't do anything if IsAlwaysMaximized() (not implemented in wx) returns true.

See: activate/1, restore/1

Ericsson AB. All Rights Reserved.: wxErlang | 429

wxMDIChildFrame

restore(This) -> ok
Types:

This = wxMDIChildFrame()
Restores this MDI child frame (unmaximizes).

This function doesn't do anything if IsAlwaysMaximized() (not implemented in wx) returns true.

See: activate/1, maximize/2

430 | Ericsson AB. All Rights Reserved.: wxErlang

wxMDIClientWindow

wxMDIClientWindow
Erlang module

An MDI client window is a child of wxMDIParentFrame, and manages zero or more wxMDIChildFrame objects.

The client window is the area where MDI child windows exist. It doesn't have to cover the whole parent frame; other
windows such as toolbars and a help window might coexist with it. There can be scrollbars on a client window, which
are controlled by the parent window style.

The wxMDIClientWindow class is usually adequate without further derivation, and it is created automatically
when the MDI parent frame is created. If the application needs to derive a new class, the function
wxMDIParentFrame::OnCreateClient() (not implemented in wx) must be overridden in order to give an
opportunity to use a different class of client window.

Under wxMSW, the client window will automatically have a sunken border style when the active child is not
maximized, and no border style when a child is maximized.

See: wxMDIChildFrame, wxMDIParentFrame, wxFrame

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxMDIClientWindow

Data Types
wxMDIClientWindow() = wx:wx_object()

Exports

new() -> wxMDIClientWindow()
Default constructor.

Objects of this class are only created by wxMDIParentFrame which uses the default constructor and calls
createClient/3 immediately afterwards.

createClient(This, Parent) -> boolean()
Types:

This = wxMDIClientWindow()
Parent = wxMDIParentFrame:wxMDIParentFrame()

createClient(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxMDIClientWindow()
Parent = wxMDIParentFrame:wxMDIParentFrame()
Option = {style, integer()}

Called by wxMDIParentFrame immediately after creating the client window.

This function may be overridden in the derived class but the base class version must usually be called first to really
create the window.

Ericsson AB. All Rights Reserved.: wxErlang | 431

href

wxMDIClientWindow

destroy(This :: wxMDIClientWindow()) -> ok
Destroys the object.

432 | Ericsson AB. All Rights Reserved.: wxErlang

wxMDIParentFrame

wxMDIParentFrame
Erlang module

An MDI (Multiple Document Interface) parent frame is a window which can contain MDI child frames in its client
area which emulates the full desktop.

MDI is a user-interface model in which all the window reside inside the single parent window as opposed to being
separate from each other. It remains popular despite dire warnings from Microsoft itself (which popularized this model
in the first model) that MDI is obsolete.

An MDI parent frame always has a wxMDIClientWindow associated with it, which is the parent for MDI child
frames. In the simplest case, the client window takes up the entire parent frame area but it is also possible to resize
it to be smaller in order to have other windows in the frame, a typical example is using a sidebar along one of the
window edges.

The appearance of MDI applications differs between different ports. The classic MDI model, with child windows
which can be independently moved, resized etc, is only available under MSW, which provides native support for it. In
Mac ports, multiple top level windows are used for the MDI children too and the MDI parent frame itself is invisible, to
accommodate the native look and feel requirements. In all the other ports, a tab-based MDI implementation (sometimes
called TDI) is used and so at most one MDI child is visible at any moment (child frames are always maximized).

Although it is possible to have multiple MDI parent frames, a typical MDI application has a single MDI parent frame
window inside which multiple MDI child frames, i.e. objects of class wxMDIChildFrame, can be created.

Styles

This class supports the following styles:

There are no special styles for this class, all wxFrame styles apply to it in the usual way. The only exception is that
wxHSCROLL and wxVSCROLL styles apply not to the frame itself but to the client window, so that using them
enables horizontal and vertical scrollbars for this window and not the frame.

See: wxMDIChildFrame, wxMDIClientWindow, wxFrame, wxDialog

This class is derived (and can use functions) from: wxFrame wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxMDIParentFrame

Data Types
wxMDIParentFrame() = wx:wx_object()

Exports

new() -> wxMDIParentFrame()
Default constructor.

Use create/5 for the objects created using this constructor.

new(Parent, Id, Title) -> wxMDIParentFrame()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 433

href

wxMDIParentFrame

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

new(Parent, Id, Title, Options :: [Option]) -> wxMDIParentFrame()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating the window.

Notice that if you override virtual OnCreateClient() (not implemented in wx) method you shouldn't be using
this constructor but the default constructor and create/5 as otherwise your overridden method is never going to be
called because of the usual C++ virtual call resolution rules.

Under wxMSW, the client window will automatically have a sunken border style when the active child is not
maximized, and no border style when a child is maximized.

See: create/5, OnCreateClient() (not implemented in wx)

destroy(This :: wxMDIParentFrame()) -> ok
Destructor.

Destroys all child windows and menu bar if present.

activateNext(This) -> ok
Types:

This = wxMDIParentFrame()
Activates the MDI child following the currently active one.

The MDI children are maintained in an ordered list and this function switches to the next element in this list, wrapping
around the end of it if the currently active child is the last one.

See: activatePrevious/1

activatePrevious(This) -> ok
Types:

This = wxMDIParentFrame()
Activates the MDI child preceding the currently active one.

See: activateNext/1

arrangeIcons(This) -> ok
Types:

This = wxMDIParentFrame()
Arranges any iconized (minimized) MDI child windows.

434 | Ericsson AB. All Rights Reserved.: wxErlang

wxMDIParentFrame

This method is only implemented in MSW MDI implementation and does nothing under the other platforms.

See: cascade/1, tile/2

cascade(This) -> ok
Types:

This = wxMDIParentFrame()
Arranges the MDI child windows in a cascade.

This method is only implemented in MSW MDI implementation and does nothing under the other platforms.

See: tile/2, arrangeIcons/1

create(This, Parent, Id, Title) -> boolean()
Types:

This = wxMDIParentFrame()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

create(This, Parent, Id, Title, Options :: [Option]) -> boolean()
Types:

This = wxMDIParentFrame()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Used in two-step frame construction.

See new/4 for further details.

getActiveChild(This) -> wxMDIChildFrame:wxMDIChildFrame()
Types:

This = wxMDIParentFrame()
Returns a pointer to the active MDI child, if there is one.

If there are any children at all this function returns a non-NULL pointer.

getClientWindow(This) -> wxMDIClientWindow:wxMDIClientWindow()
Types:

This = wxMDIParentFrame()
Returns a pointer to the client window.

See: OnCreateClient() (not implemented in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 435

wxMDIParentFrame

tile(This) -> ok
Types:

This = wxMDIParentFrame()

tile(This, Options :: [Option]) -> ok
Types:

This = wxMDIParentFrame()
Option = {orient, wx:wx_enum()}

Tiles the MDI child windows either horizontally or vertically depending on whether orient is wxHORIZONTAL
or wxVERTICAL.

This method is only implemented in MSW MDI implementation and does nothing under the other platforms.

436 | Ericsson AB. All Rights Reserved.: wxErlang

wxMemoryDC

wxMemoryDC
Erlang module

A memory device context provides a means to draw graphics onto a bitmap. When drawing in to a mono-bitmap,
using wxWHITE, wxWHITE_PEN and wxWHITE_BRUSH will draw the background colour (i.e. 0) whereas all other
colours will draw the foreground colour (i.e. 1).

A bitmap must be selected into the new memory DC before it may be used for anything. Typical usage is as follows:

Note that the memory DC must be deleted (or the bitmap selected out of it) before a bitmap can be reselected into
another memory DC.

And, before performing any other operations on the bitmap data, the bitmap must be selected out of the memory DC:

This happens automatically when wxMemoryDC object goes out of scope.

See: wxBitmap, wxDC

This class is derived (and can use functions) from: wxDC

wxWidgets docs: wxMemoryDC

Data Types
wxMemoryDC() = wx:wx_object()

Exports

new() -> wxMemoryDC()
Constructs a new memory device context.

Use the wxDC:isOk/1 member to test whether the constructor was successful in creating a usable device context.
Don't forget to select a bitmap into the DC before drawing on it.

new(Dc) -> wxMemoryDC()
Types:

Dc = wxDC:wxDC() | wxBitmap:wxBitmap()
Constructs a new memory device context having the same characteristics as the given existing device context.

This constructor creates a memory device context compatible with dc in wxMSW, the argument is ignored in the
other ports. If dc is NULL, a device context compatible with the screen is created, just as with the default constructor.

selectObject(This, Bitmap) -> ok
Types:

This = wxMemoryDC()
Bitmap = wxBitmap:wxBitmap()

Works exactly like selectObjectAsSource/2 but this is the function you should use when you select a bitmap
because you want to modify it, e.g.

drawing on this DC.

Using selectObjectAsSource/2 when modifying the bitmap may incur some problems related to wxBitmap
being a reference counted object (see overview_refcount).

Ericsson AB. All Rights Reserved.: wxErlang | 437

href

wxMemoryDC

Before using the updated bitmap data, make sure to select it out of context first either by selecting ?wxNullBitmap
into the device context or destroying the device context entirely.

If the bitmap is already selected in this device context, nothing is done. If it is selected in another context, the function
asserts and drawing on the bitmap won't work correctly.

See: wxDC:drawBitmap/4

selectObjectAsSource(This, Bitmap) -> ok
Types:

This = wxMemoryDC()
Bitmap = wxBitmap:wxBitmap()

Selects the given bitmap into the device context, to use as the memory bitmap.

Selecting the bitmap into a memory DC allows you to draw into the DC (and therefore the bitmap) and also to use
wxDC:blit/6 to copy the bitmap to a window. For this purpose, you may find wxDC:drawIcon/3 easier to use
instead.

If the argument is ?wxNullBitmap (or some other uninitialised wxBitmap) the current bitmap is selected out of the
device context, and the original bitmap restored, allowing the current bitmap to be destroyed safely.

destroy(This :: wxMemoryDC()) -> ok
Destroys the object.

438 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenuBar

wxMenuBar
Erlang module

A menu bar is a series of menus accessible from the top of a frame.

Remark: To respond to a menu selection, provide a handler for EVT_MENU, in the frame that contains the menu bar.

If you have a toolbar which uses the same identifiers as your EVT_MENU entries, events from the toolbar will also
be processed by your EVT_MENU event handlers.

Tip: under Windows, if you discover that menu shortcuts (for example, Alt-F to show the file menu) are not working,
check any EVT_CHAR events you are handling in child windows. If you are not calling event.Skip() for events that
you don't process in these event handlers, menu shortcuts may cease to work.

See: wxMenu, Overview events

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxMenuBar

Data Types
wxMenuBar() = wx:wx_object()

Exports

new() -> wxMenuBar()
Construct an empty menu bar.

new(Style) -> wxMenuBar()
Types:

Style = integer()

destroy(This :: wxMenuBar()) -> ok
Destructor, destroying the menu bar and removing it from the parent frame (if any).

append(This, Menu, Title) -> boolean()
Types:

This = wxMenuBar()
Menu = wxMenu:wxMenu()
Title = unicode:chardata()

Adds the item to the end of the menu bar.

Return: true on success, false if an error occurred.

See: insert/4

check(This, Id, Check) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 439

href
href

wxMenuBar

This = wxMenuBar()
Id = integer()
Check = boolean()

Checks or unchecks a menu item.

Remark: Only use this when the menu bar has been associated with a frame; otherwise, use the wxMenu equivalent call.

enable(This, Id, Enable) -> ok
Types:

This = wxMenuBar()
Id = integer()
Enable = boolean()

Enables or disables (greys out) a menu item.

Remark: Only use this when the menu bar has been associated with a frame; otherwise, use the wxMenu equivalent call.

enableTop(This, Pos, Enable) -> ok
Types:

This = wxMenuBar()
Pos = integer()
Enable = boolean()

Enables or disables a whole menu.

Remark: Only use this when the menu bar has been associated with a frame.

findMenu(This, Title) -> integer()
Types:

This = wxMenuBar()
Title = unicode:chardata()

Returns the index of the menu with the given title or wxNOT_FOUND if no such menu exists in this menubar.

The title parameter may specify either the menu title (with accelerator characters, i.e. "&File") or just the menu
label ("File") indifferently.

findMenuItem(This, MenuString, ItemString) -> integer()
Types:

This = wxMenuBar()
MenuString = ItemString = unicode:chardata()

Finds the menu item id for a menu name/menu item string pair.

Return: The menu item identifier, or wxNOT_FOUND if none was found.

Remark: Any special menu codes are stripped out of source and target strings before matching.

findItem(This, Id) -> wxMenuItem:wxMenuItem()
Types:

440 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenuBar

This = wxMenuBar()
Id = integer()

Finds the menu item object associated with the given menu item identifier.

Return: The found menu item object, or NULL if one was not found.

getHelpString(This, Id) -> unicode:charlist()
Types:

This = wxMenuBar()
Id = integer()

Gets the help string associated with the menu item identifier.

Return: The help string, or the empty string if there was no help string or the menu item was not found.

See: setHelpString/3

getLabel(This, Id) -> unicode:charlist()
Types:

This = wxMenuBar()
Id = integer()

Gets the label associated with a menu item.

Return: The menu item label, or the empty string if the item was not found.

Remark: Use only after the menubar has been associated with a frame.

getLabelTop(This, Pos) -> unicode:charlist()
Types:

This = wxMenuBar()
Pos = integer()

See: getMenuLabel/2.

getMenuLabel(This, Pos) -> unicode:charlist()
Types:

This = wxMenuBar()
Pos = integer()

Returns the label of a top-level menu.

Note that the returned string includes the accelerator characters that have been specified in the menu title string during
its construction.

Return: The menu label, or the empty string if the menu was not found.

Remark: Use only after the menubar has been associated with a frame.

See: getMenuLabelText/2, setMenuLabel/3

getMenuLabelText(This, Pos) -> unicode:charlist()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 441

wxMenuBar

This = wxMenuBar()
Pos = integer()

Returns the label of a top-level menu.

Note that the returned string does not include any accelerator characters that may have been specified in the menu
title string during its construction.

Return: The menu label, or the empty string if the menu was not found.

Remark: Use only after the menubar has been associated with a frame.

See: getMenuLabel/2, setMenuLabel/3

getMenu(This, MenuIndex) -> wxMenu:wxMenu()
Types:

This = wxMenuBar()
MenuIndex = integer()

Returns the menu at menuIndex (zero-based).

getMenuCount(This) -> integer()
Types:

This = wxMenuBar()
Returns the number of menus in this menubar.

insert(This, Pos, Menu, Title) -> boolean()
Types:

This = wxMenuBar()
Pos = integer()
Menu = wxMenu:wxMenu()
Title = unicode:chardata()

Inserts the menu at the given position into the menu bar.

Inserting menu at position 0 will insert it in the very beginning of it, inserting at position getMenuCount/1 is the
same as calling append/3.

Return: true on success, false if an error occurred.

See: append/3

isChecked(This, Id) -> boolean()
Types:

This = wxMenuBar()
Id = integer()

Determines whether an item is checked.

Return: true if the item was found and is checked, false otherwise.

setAutoWindowMenu(Enable) -> ok
Types:

442 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenuBar

Enable = boolean()

getAutoWindowMenu() -> boolean()

oSXGetAppleMenu(This) -> wxMenu:wxMenu()
Types:

This = wxMenuBar()
Returns the Apple menu.

This is the leftmost menu with application's name as its title. You shouldn't remove any items from it, but it is safe
to insert extra menu items or submenus into it.

Only for:wxosx

Since: 3.0.1

macGetCommonMenuBar() -> wxMenuBar()
Enables you to get the global menubar on Mac, that is, the menubar displayed when the app is running without any
frames open.

Return: The global menubar.

Remark: Only exists on Mac, other platforms do not have this method.

Only for:wxosx

macSetCommonMenuBar(Menubar) -> ok
Types:

Menubar = wxMenuBar()
Enables you to set the global menubar on Mac, that is, the menubar displayed when the app is running without any
frames open.

Remark: Only exists on Mac, other platforms do not have this method.

Only for:wxosx

isEnabled(This, Id) -> boolean()
Types:

This = wxMenuBar()
Id = integer()

Determines whether an item is enabled.

Return: true if the item was found and is enabled, false otherwise.

remove(This, Pos) -> wxMenu:wxMenu()
Types:

This = wxMenuBar()
Pos = integer()

Removes the menu from the menu bar and returns the menu object - the caller is responsible for deleting it.

This function may be used together with insert/4 to change the menubar dynamically.

See: replace/4

Ericsson AB. All Rights Reserved.: wxErlang | 443

wxMenuBar

replace(This, Pos, Menu, Title) -> wxMenu:wxMenu()
Types:

This = wxMenuBar()
Pos = integer()
Menu = wxMenu:wxMenu()
Title = unicode:chardata()

Replaces the menu at the given position with another one.

Return: The menu which was previously at position pos. The caller is responsible for deleting it.

See: insert/4, remove/2

setHelpString(This, Id, HelpString) -> ok
Types:

This = wxMenuBar()
Id = integer()
HelpString = unicode:chardata()

Sets the help string associated with a menu item.

See: getHelpString/2

setLabel(This, Id, Label) -> ok
Types:

This = wxMenuBar()
Id = integer()
Label = unicode:chardata()

Sets the label of a menu item.

Remark: Use only after the menubar has been associated with a frame.

See: getLabel/2

setLabelTop(This, Pos, Label) -> ok
Types:

This = wxMenuBar()
Pos = integer()
Label = unicode:chardata()

See: setMenuLabel/3.

setMenuLabel(This, Pos, Label) -> ok
Types:

This = wxMenuBar()
Pos = integer()
Label = unicode:chardata()

Sets the label of a top-level menu.

Remark: Use only after the menubar has been associated with a frame.

444 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenuEvent

wxMenuEvent
Erlang module

This class is used for a variety of menu-related events. Note that these do not include menu command events, which
are handled using wxCommandEvent objects.

Events of this class are generated by both menus that are part of a wxMenuBar, attached to wxFrame, and popup
menus shown by wxWindow:popupMenu/4. They are sent to the following objects until one of them handles the
event: -# The menu object itself, as returned by GetMenu(), if any. -# The wxMenuBar
to which this menu is attached, if any. -# The window associated with the menu,
e.g. the one calling PopupMenu() for the popup menus. -# The top level parent
of that window if it's different from the window itself.

This is similar to command events generated by the menu items, but, unlike them, wxMenuEvent are only sent to
the window itself and its top level parent but not any intermediate windows in the hierarchy.

The default handler for wxEVT_MENU_HIGHLIGHT in wxFrame displays help text in the status bar, see
wxFrame:setStatusBarPane/2.

See: wxCommandEvent, Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxMenuEvent

Events
Use wxEvtHandler:connect/3 with wxMenuEventType to subscribe to events of this type.

Data Types
wxMenuEvent() = wx:wx_object()
wxMenu() =
 #wxMenu{type = wxMenuEvent:wxMenuEventType(),
 menuId = integer(),
 menu = wxMenu:wxMenu()}
wxMenuEventType() = menu_open | menu_close | menu_highlight

Exports

getMenu(This) -> wxMenu:wxMenu()
Types:

This = wxMenuEvent()
Returns the menu which is being opened or closed, or the menu containing the highlighted item.

Note that the returned value can be NULL if the menu being opened doesn't have a corresponding wxMenu, e.g. this
happens when opening the system menu in wxMSW port.

Remark: Since 3.1.3 this function can be used with OPEN, CLOSE and HIGHLIGHT events. Before 3.1.3, this method
can only be used with the OPEN and CLOSE events.

getMenuId(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 445

href
href

wxMenuEvent

This = wxMenuEvent()
Returns the menu identifier associated with the event.

This method should be only used with the HIGHLIGHT events.

isPopup(This) -> boolean()
Types:

This = wxMenuEvent()
Returns true if the menu which is being opened or closed is a popup menu, false if it is a normal one.

This method should only be used with the OPEN and CLOSE events.

446 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenuItem

wxMenuItem
Erlang module

A menu item represents an item in a menu.

Note that you usually don't have to deal with it directly as wxMenu methods usually construct an object of this class
for you.

Also please note that the methods related to fonts and bitmaps are currently only implemented for Windows, Mac
and GTK+.

See: wxMenuBar, wxMenu

wxWidgets docs: wxMenuItem

Events
Event types emitted from this class: menu_open, menu_close, menu_highlight

Data Types
wxMenuItem() = wx:wx_object()

Exports

new() -> wxMenuItem()

new(Options :: [Option]) -> wxMenuItem()
Types:

Option =
 {parentMenu, wxMenu:wxMenu()} |
 {id, integer()} |
 {text, unicode:chardata()} |
 {help, unicode:chardata()} |
 {kind, wx:wx_enum()} |
 {subMenu, wxMenu:wxMenu()}

Constructs a wxMenuItem object.

Menu items can be standard, or "stock menu items", or custom. For the standard menu items (such as commands to
open a file, exit the program and so on, see page_stockitems for the full list) it is enough to specify just the stock ID and
leave text and help string empty. Some platforms (currently wxGTK only, and see the remark in setBitmap/2
documentation) will also show standard bitmaps for stock menu items.

Leaving at least text empty for the stock menu items is actually strongly recommended as they will have appearance
and keyboard interface (including standard accelerators) familiar to the user.

For the custom (non-stock) menu items, text must be specified and while help string may be left empty, it's
recommended to pass the item description (which is automatically shown by the library in the status bar when the
menu item is selected) in this parameter.

Finally note that you can e.g. use a stock menu label without using its stock help string:

that is, stock properties are set independently one from the other.

Ericsson AB. All Rights Reserved.: wxErlang | 447

href

wxMenuItem

destroy(This :: wxMenuItem()) -> ok
Destructor.

check(This) -> ok
Types:

This = wxMenuItem()

check(This, Options :: [Option]) -> ok
Types:

This = wxMenuItem()
Option = {check, boolean()}

Checks or unchecks the menu item.

Note that this only works when the item is already appended to a menu.

enable(This) -> ok
Types:

This = wxMenuItem()

enable(This, Options :: [Option]) -> ok
Types:

This = wxMenuItem()
Option = {enable, boolean()}

Enables or disables the menu item.

getBitmap(This) -> wxBitmap:wxBitmap()
Types:

This = wxMenuItem()
Returns the checked or unchecked bitmap.

Only for:wxmsw

getHelp(This) -> unicode:charlist()
Types:

This = wxMenuItem()
Returns the help string associated with the menu item.

getId(This) -> integer()
Types:

This = wxMenuItem()
Returns the menu item identifier.

getKind(This) -> wx:wx_enum()
Types:

448 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenuItem

This = wxMenuItem()
Returns the item kind, one of wxITEM_SEPARATOR, wxITEM_NORMAL, wxITEM_CHECK or wxITEM_RADIO.

getLabelFromText(Text) -> unicode:charlist()
Types:

Text = unicode:chardata()
See: getLabelText/1.

getLabelText(Text) -> unicode:charlist()
Types:

Text = unicode:chardata()
Strips all accelerator characters and mnemonics from the given text.

For example:

will return just "Hello".

See: getItemLabelText/1, getItemLabel/1

getText(This) -> unicode:charlist()
Types:

This = wxMenuItem()
See: getItemLabel/1.

getItemLabel(This) -> unicode:charlist()
Types:

This = wxMenuItem()
Returns the text associated with the menu item including any accelerator characters that were passed to the constructor
or setItemLabel/2.

See: getItemLabelText/1, getLabelText/1

getLabel(This) -> unicode:charlist()
Types:

This = wxMenuItem()
See: getItemLabelText/1.

getItemLabelText(This) -> unicode:charlist()
Types:

This = wxMenuItem()
Returns the text associated with the menu item, without any accelerator characters.

See: getItemLabel/1, getLabelText/1

getMenu(This) -> wxMenu:wxMenu()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 449

wxMenuItem

This = wxMenuItem()
Returns the menu this menu item is in, or NULL if this menu item is not attached.

getSubMenu(This) -> wxMenu:wxMenu()
Types:

This = wxMenuItem()
Returns the submenu associated with the menu item, or NULL if there isn't one.

isCheckable(This) -> boolean()
Types:

This = wxMenuItem()
Returns true if the item is checkable.

Notice that the radio buttons are considered to be checkable as well, so this method returns true for them too. Use
IsCheck() (not implemented in wx) if you want to test for the check items only.

isChecked(This) -> boolean()
Types:

This = wxMenuItem()
Returns true if the item is checked.

isEnabled(This) -> boolean()
Types:

This = wxMenuItem()
Returns true if the item is enabled.

isSeparator(This) -> boolean()
Types:

This = wxMenuItem()
Returns true if the item is a separator.

isSubMenu(This) -> boolean()
Types:

This = wxMenuItem()
Returns true if the item is a submenu.

setBitmap(This, Bmp) -> ok
Types:

This = wxMenuItem()
Bmp = wxBitmap:wxBitmap()

Sets the bitmap for the menu item.

It is equivalent to wxMenuItem::SetBitmaps(bmp, wxNullBitmap) if checked is true (default value) or
SetBitmaps(wxNullBitmap, bmp) otherwise.

450 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenuItem

setBitmap/2 must be called before the item is appended to the menu, i.e. appending the item without a bitmap and
setting one later is not guaranteed to work. But the bitmap can be changed or reset later if it had been set up initially.

Notice that GTK+ uses a global setting called gtk-menu-images to determine if the images should be shown in
the menus at all. If it is off (which is the case in e.g. Gnome 2.28 by default), no images will be shown, consistently
with the native behaviour.

Only for:wxmsw,wxosx,wxgtk

setHelp(This, HelpString) -> ok
Types:

This = wxMenuItem()
HelpString = unicode:chardata()

Sets the help string.

setMenu(This, Menu) -> ok
Types:

This = wxMenuItem()
Menu = wxMenu:wxMenu()

Sets the parent menu which will contain this menu item.

setSubMenu(This, Menu) -> ok
Types:

This = wxMenuItem()
Menu = wxMenu:wxMenu()

Sets the submenu of this menu item.

setText(This, Label) -> ok
Types:

This = wxMenuItem()
Label = unicode:chardata()

See: setItemLabel/2.

setItemLabel(This, Label) -> ok
Types:

This = wxMenuItem()
Label = unicode:chardata()

Sets the label associated with the menu item.

Note that if the ID of this menu item corresponds to a stock ID, then it is not necessary to specify a label: wxWidgets
will automatically use the stock item label associated with that ID. See the new/1 for more info.

The label string for the normal menu items (not separators) may include the accelerator which can be used to activate
the menu item from keyboard. An accelerator key can be specified using the ampersand & character. In order to embed
an ampersand character in the menu item text, the ampersand must be doubled.

Optionally you can specify also an accelerator string appending a tab character \t followed by a valid key combination
(e.g. CTRL+V). Its general syntax is any combination of "CTRL", "RAWCTRL", "ALT" and "SHIFT" strings (case

Ericsson AB. All Rights Reserved.: wxErlang | 451

wxMenuItem

doesn't matter) separated by either '-' or '+' characters and followed by the accelerator itself. Notice that CTRL
corresponds to the "Ctrl" key on most platforms but not under macOS where it is mapped to "Cmd" key on Mac
keyboard. Usually this is exactly what you want in portable code but if you really need to use the (rarely used for
this purpose) "Ctrl" key even under Mac, you may use RAWCTRL to prevent this mapping. Under the other platforms
RAWCTRL is the same as plain CTRL.

The accelerator may be any alphanumeric character, any function key (from F1 to F12), any numpad digit key
using KP_ prefix (i.e. from KP_0 to KP_9) or one of the special strings listed below (again, case doesn't matter)
corresponding to the specified key code:

Examples:

Note: In wxGTK using "SHIFT" with non-alphabetic characters currently doesn't work, even in combination with
other modifiers, due to GTK+ limitation. E.g. Shift+Ctrl+A works but Shift+Ctrl+1 or Shift+/ do not, so
avoid using accelerators of this form in portable code.

Note: In wxGTk, the left/right/up/down arrow keys do not work as accelerator keys for a menu item unless a modifier
key is used. Additionally, the following keycodes are not supported as menu accelerator keys:

See: getItemLabel/1, getItemLabelText/1

452 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenu

wxMenu
Erlang module

A menu is a popup (or pull down) list of items, one of which may be selected before the menu goes away (clicking
elsewhere dismisses the menu). Menus may be used to construct either menu bars or popup menus.

A menu item has an integer ID associated with it which can be used to identify the selection, or to change the menu
item in some way. A menu item with a special identifier wxID_SEPARATOR is a separator item and doesn't have an
associated command but just makes a separator line appear in the menu.

Note: Please note that wxID_ABOUT and wxID_EXIT are predefined by wxWidgets and have a special meaning
since entries using these IDs will be taken out of the normal menus under macOS and will be inserted into the system
menu (following the appropriate macOS interface guideline).

Menu items may be either normal items, check items or radio items. Normal items don't have any special
properties while the check items have a boolean flag associated to them and they show a checkmark in the menu when
the flag is set. wxWidgets automatically toggles the flag value when the item is clicked and its value may be retrieved
using either isChecked/2 method of wxMenu or wxMenuBar itself or by using wxEvent::IsChecked when you
get the menu notification for the item in question.

The radio items are similar to the check items except that all the other items in the same radio group are unchecked
when a radio item is checked. The radio group is formed by a contiguous range of radio items, i.e. it starts at the first
item of this kind and ends with the first item of a different kind (or the end of the menu). Notice that because the radio
groups are defined in terms of the item positions inserting or removing the items in the menu containing the radio
items risks to not work correctly.

Allocation strategy

All menus must be created on the heap because all menus attached to a menubar or to another menu will be
deleted by their parent when it is deleted. The only exception to this rule are the popup menus (i.e. menus used with
wxWindow:popupMenu/4) as wxWidgets does not destroy them to allow reusing the same menu more than once.
But the exception applies only to the menus themselves and not to any submenus of popup menus which are still
destroyed by wxWidgets as usual and so must be heap-allocated.

As the frame menubar is deleted by the frame itself, it means that normally all menus used are deleted automatically.

Event handling

Event handlers for the commands generated by the menu items can be connected directly to the menu object itself
using wxEvtHandler::Bind() (not implemented in wx). If this menu is a submenu of another one, the events
from its items can also be processed in the parent menu and so on, recursively.

If the menu is part of a menu bar, then events can also be handled in wxMenuBar object.

Finally, menu events can also be handled in the associated window, which is either the wxFrame associated with the
menu bar this menu belongs to or the window for which wxWindow:popupMenu/4 was called for the popup menus.

See overview_events_bind for how to bind event handlers to the various objects.

See: wxMenuBar, wxWindow:popupMenu/4, Overview events, wxFileHistory (not implemented in wx)

This class is derived (and can use functions) from: wxEvtHandler

wxWidgets docs: wxMenu

Ericsson AB. All Rights Reserved.: wxErlang | 453

href
href

wxMenu

Data Types
wxMenu() = wx:wx_object()

Exports

new() -> wxMenu()
Constructs a wxMenu object.

new(Options :: [Option]) -> wxMenu()
Types:

Option = {style, integer()}
Constructs a wxMenu object.

new(Title, Options :: [Option]) -> wxMenu()
Types:

Title = unicode:chardata()
Option = {style, integer()}

Constructs a wxMenu object with a title.

destroy(This :: wxMenu()) -> ok
Destructor, destroying the menu.

Note: Under Motif, a popup menu must have a valid parent (the window it was last popped up on) when being destroyed.
Therefore, make sure you delete or re-use the popup menu before destroying the parent window. Re-use in this
context means popping up the menu on a different window from last time, which causes an implicit destruction and
recreation of internal data structures.

append(This, MenuItem) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
MenuItem = wxMenuItem:wxMenuItem()

Adds a menu item object.

This is the most generic variant of append/5 method because it may be used for both items (including separators) and
submenus and because you can also specify various extra properties of a menu item this way, such as bitmaps and fonts.

Remark: See the remarks for the other append/5 overloads.

See: appendSeparator/1, appendCheckItem/4, appendRadioItem/4, AppendSubMenu() (not
implemented in wx), insert/6, setLabel/3, getHelpString/2, setHelpString/3, wxMenuItem

append(This, Id, Item) -> wxMenuItem:wxMenuItem()
Types:

454 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenu

This = wxMenu()
Id = integer()
Item = unicode:chardata()

append(This, Id, Item, SubMenu) -> wxMenuItem:wxMenuItem()
append(This, Id, Item, SubMenu :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()
Option = {help, unicode:chardata()} | {kind, wx:wx_enum()}

Adds a menu item.

Example:

or even better for stock menu items (see wxMenuItem:new/1):

Remark: This command can be used after the menu has been shown, as well as on initial creation of a menu or menubar.

See: appendSeparator/1, appendCheckItem/4, appendRadioItem/4, AppendSubMenu() (not
implemented in wx), insert/6, setLabel/3, getHelpString/2, setHelpString/3, wxMenuItem

append(This, Id, Item, SubMenu, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()
SubMenu = wxMenu()
Option = {help, unicode:chardata()}

Adds a submenu.

Deprecated: This function is deprecated, use AppendSubMenu() (not implemented in wx) instead.

See: appendSeparator/1, appendCheckItem/4, appendRadioItem/4, AppendSubMenu() (not
implemented in wx), insert/6, setLabel/3, getHelpString/2, setHelpString/3, wxMenuItem

appendCheckItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()

appendCheckItem(This, Id, Item, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 455

wxMenu

This = wxMenu()
Id = integer()
Item = unicode:chardata()
Option = {help, unicode:chardata()}

Adds a checkable item to the end of the menu.

See: append/5, insertCheckItem/5

appendRadioItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()

appendRadioItem(This, Id, Item, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()
Option = {help, unicode:chardata()}

Adds a radio item to the end of the menu.

All consequent radio items form a group and when an item in the group is checked, all the others are automatically
unchecked.

Note: Radio items are not supported under wxMotif.

See: append/5, insertRadioItem/5

appendSeparator(This) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Adds a separator to the end of the menu.

See: append/5, insertSeparator/2

break(This) -> ok
Types:

This = wxMenu()
Inserts a break in a menu, causing the next appended item to appear in a new column.

This function only actually inserts a break in wxMSW and does nothing under the other platforms.

check(This, Id, Check) -> ok
Types:

456 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenu

This = wxMenu()
Id = integer()
Check = boolean()

Checks or unchecks the menu item.

See: isChecked/2

delete(This, Id) -> boolean()
delete(This, Item) -> boolean()
Types:

This = wxMenu()
Item = wxMenuItem:wxMenuItem()

Deletes the menu item from the menu.

If the item is a submenu, it will not be deleted. Use 'Destroy'/2 if you want to delete a submenu.

See: findItem/2, 'Destroy'/2, remove/2

'Destroy'(This, Id) -> boolean()
'Destroy'(This, Item) -> boolean()
Types:

This = wxMenu()
Item = wxMenuItem:wxMenuItem()

Deletes the menu item from the menu.

If the item is a submenu, it will be deleted. Use remove/2 if you want to keep the submenu (for example, to reuse
it later).

See: findItem/2, delete/2, remove/2

enable(This, Id, Enable) -> ok
Types:

This = wxMenu()
Id = integer()
Enable = boolean()

Enables or disables (greys out) a menu item.

See: isEnabled/2

findItem(This, Id) -> wxMenuItem:wxMenuItem()
findItem(This, ItemString) -> integer()
Types:

This = wxMenu()
ItemString = unicode:chardata()

Finds the menu id for a menu item string.

Return: Menu item identifier, or wxNOT_FOUND if none is found.

Remark: Any special menu codes are stripped out of source and target strings before matching.

Ericsson AB. All Rights Reserved.: wxErlang | 457

wxMenu

findItemByPosition(This, Position) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Position = integer()

Returns the wxMenuItem given a position in the menu.

getHelpString(This, Id) -> unicode:charlist()
Types:

This = wxMenu()
Id = integer()

Returns the help string associated with a menu item.

Return: The help string, or the empty string if there is no help string or the item was not found.

See: setHelpString/3, append/5

getLabel(This, Id) -> unicode:charlist()
Types:

This = wxMenu()
Id = integer()

Returns a menu item label.

Return: The item label, or the empty string if the item was not found.

See: GetLabelText() (not implemented in wx), setLabel/3

getMenuItemCount(This) -> integer()
Types:

This = wxMenu()
Returns the number of items in the menu.

getMenuItems(This) -> [wxMenuItem:wxMenuItem()]
Types:

This = wxMenu()

getTitle(This) -> unicode:charlist()
Types:

This = wxMenu()
Returns the title of the menu.

See: setTitle/2

insert(This, Pos, Id) -> wxMenuItem:wxMenuItem()
insert(This, Pos, MenuItem) -> wxMenuItem:wxMenuItem()
Types:

458 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenu

This = wxMenu()
Pos = integer()
MenuItem = wxMenuItem:wxMenuItem()

Inserts the given item before the position pos.

Inserting the item at position getMenuItemCount/1 is the same as appending it.

See: append/5, prepend/5

insert(This, Pos, Id, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Pos = Id = integer()
Option =
 {text, unicode:chardata()} |
 {help, unicode:chardata()} |
 {kind, wx:wx_enum()}

Inserts the given item before the position pos.

Inserting the item at position getMenuItemCount/1 is the same as appending it.

See: append/5, prepend/5

insert(This, Pos, Id, Text, Submenu) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Pos = Id = integer()
Text = unicode:chardata()
Submenu = wxMenu()

insert(This, Pos, Id, Text, Submenu, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Pos = Id = integer()
Text = unicode:chardata()
Submenu = wxMenu()
Option = {help, unicode:chardata()}

Inserts the given submenu before the position pos.

text is the text shown in the menu for it and help is the help string shown in the status bar when the submenu
item is selected.

See: AppendSubMenu() (not implemented in wx), prepend/5

insertCheckItem(This, Pos, Id, Item) -> wxMenuItem:wxMenuItem()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 459

wxMenu

This = wxMenu()
Pos = Id = integer()
Item = unicode:chardata()

insertCheckItem(This, Pos, Id, Item, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Pos = Id = integer()
Item = unicode:chardata()
Option = {help, unicode:chardata()}

Inserts a checkable item at the given position.

See: insert/6, appendCheckItem/4

insertRadioItem(This, Pos, Id, Item) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Pos = Id = integer()
Item = unicode:chardata()

insertRadioItem(This, Pos, Id, Item, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Pos = Id = integer()
Item = unicode:chardata()
Option = {help, unicode:chardata()}

Inserts a radio item at the given position.

See: insert/6, appendRadioItem/4

insertSeparator(This, Pos) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Pos = integer()

Inserts a separator at the given position.

See: insert/6, appendSeparator/1

isChecked(This, Id) -> boolean()
Types:

This = wxMenu()
Id = integer()

Determines whether a menu item is checked.

Return: true if the menu item is checked, false otherwise.

460 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenu

See: check/3

isEnabled(This, Id) -> boolean()
Types:

This = wxMenu()
Id = integer()

Determines whether a menu item is enabled.

Return: true if the menu item is enabled, false otherwise.

See: enable/3

prepend(This, Id) -> wxMenuItem:wxMenuItem()
prepend(This, Item) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Item = wxMenuItem:wxMenuItem()

Inserts the given item at position 0, i.e. before all the other existing items.

See: append/5, insert/6

prepend(This, Id, Options :: [Option]) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Option =
 {text, unicode:chardata()} |
 {help, unicode:chardata()} |
 {kind, wx:wx_enum()}

Inserts the given item at position 0, i.e. before all the other existing items.

See: append/5, insert/6

prepend(This, Id, Text, Submenu) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Text = unicode:chardata()
Submenu = wxMenu()

prepend(This, Id, Text, Submenu, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 461

wxMenu

This = wxMenu()
Id = integer()
Text = unicode:chardata()
Submenu = wxMenu()
Option = {help, unicode:chardata()}

Inserts the given submenu at position 0.

See: AppendSubMenu() (not implemented in wx), insert/6

prependCheckItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()

prependCheckItem(This, Id, Item, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()
Option = {help, unicode:chardata()}

Inserts a checkable item at position 0.

See: prepend/5, appendCheckItem/4

prependRadioItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()

prependRadioItem(This, Id, Item, Options :: [Option]) ->
 wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Id = integer()
Item = unicode:chardata()
Option = {help, unicode:chardata()}

Inserts a radio item at position 0.

See: prepend/5, appendRadioItem/4

prependSeparator(This) -> wxMenuItem:wxMenuItem()
Types:

462 | Ericsson AB. All Rights Reserved.: wxErlang

wxMenu

This = wxMenu()
Inserts a separator at position 0.

See: prepend/5, appendSeparator/1

remove(This, Id) -> wxMenuItem:wxMenuItem()
remove(This, Item) -> wxMenuItem:wxMenuItem()
Types:

This = wxMenu()
Item = wxMenuItem:wxMenuItem()

Removes the menu item from the menu but doesn't delete the associated C++ object.

This allows you to reuse the same item later by adding it back to the menu (especially useful with submenus).

Return: A pointer to the item which was detached from the menu.

setHelpString(This, Id, HelpString) -> ok
Types:

This = wxMenu()
Id = integer()
HelpString = unicode:chardata()

Sets an item's help string.

See: getHelpString/2

setLabel(This, Id, Label) -> ok
Types:

This = wxMenu()
Id = integer()
Label = unicode:chardata()

Sets the label of a menu item.

See: append/5, getLabel/2

setTitle(This, Title) -> ok
Types:

This = wxMenu()
Title = unicode:chardata()

Sets the title of the menu.

Remark: Notice that you can only call this method directly for the popup menus, to change the title of a menu that is
part of a menu bar you need to use wxMenuBar:setLabelTop/3.

See: getTitle/1

Ericsson AB. All Rights Reserved.: wxErlang | 463

wxMessageDialog

wxMessageDialog
Erlang module

This class represents a dialog that shows a single or multi-line message, with a choice of OK, Yes, No and Cancel
buttons.

Styles

This class supports the following styles:

See: Overview cmndlg

See: wxRichMessageDialog (not implemented in wx)

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxMessageDialog

Data Types
wxMessageDialog() = wx:wx_object()

Exports

new(Parent, Message) -> wxMessageDialog()
Types:

Parent = wxWindow:wxWindow()
Message = unicode:chardata()

new(Parent, Message, Options :: [Option]) -> wxMessageDialog()
Types:

Parent = wxWindow:wxWindow()
Message = unicode:chardata()
Option =
 {caption, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}

Constructor specifying the message box properties.

Use wxDialog:showModal/1 to show the dialog.

style may be a bit list of the identifiers described above.

Notice that not all styles are compatible: only one of wxOK and wxYES_NO may be specified (and one of them must
be specified) and at most one default button style can be used and it is only valid if the corresponding button is shown
in the message box.

destroy(This :: wxMessageDialog()) -> ok
Destroys the object.

464 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxMiniFrame

wxMiniFrame
Erlang module

A miniframe is a frame with a small title bar. It is suitable for floating toolbars that must not take up too much screen
area.

An example of mini frame can be seen in the page_samples_dialogs using the "Mini frame" command of the "Generic
dialogs" submenu.

Styles

This class supports the following styles:

Remark: This class has miniframe functionality under Windows and GTK, i.e. the presence of mini frame will not be
noted in the task bar and focus behaviour is different. On other platforms, it behaves like a normal frame.

See: wxMDIParentFrame, wxMDIChildFrame, wxFrame, wxDialog

This class is derived (and can use functions) from: wxFrame wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxMiniFrame

Data Types
wxMiniFrame() = wx:wx_object()

Exports

new() -> wxMiniFrame()
Default ctor.

new(Parent, Id, Title) -> wxMiniFrame()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

new(Parent, Id, Title, Options :: [Option]) -> wxMiniFrame()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating the window.

Remark: The frame behaves like a normal frame on non-Windows platforms.

See: create/5

Ericsson AB. All Rights Reserved.: wxErlang | 465

href

wxMiniFrame

destroy(This :: wxMiniFrame()) -> ok
Destructor.

Destroys all child windows and menu bar if present.

create(This, Parent, Id, Title) -> boolean()
Types:

This = wxMiniFrame()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()

create(This, Parent, Id, Title, Options :: [Option]) -> boolean()
Types:

This = wxMiniFrame()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Used in two-step frame construction.

See new/4 for further details.

466 | Ericsson AB. All Rights Reserved.: wxErlang

wxMirrorDC

wxMirrorDC
Erlang module

wxMirrorDC is a simple wrapper class which is always associated with a real wxDC object and either forwards all
of its operations to it without changes (no mirroring takes place) or exchanges x and y coordinates which makes it
possible to reuse the same code to draw a figure and its mirror - i.e. reflection related to the diagonal line x == y.

Since: 2.5.0

This class is derived (and can use functions) from: wxDC

wxWidgets docs: wxMirrorDC

Data Types
wxMirrorDC() = wx:wx_object()

Exports

new(Dc, Mirror) -> wxMirrorDC()
Types:

Dc = wxDC:wxDC()
Mirror = boolean()

Creates a (maybe) mirrored DC associated with the real dc.

Everything drawn on wxMirrorDC will appear (and maybe mirrored) on dc.

mirror specifies if we do mirror (if it is true) or not (if it is false).

destroy(This :: wxMirrorDC()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 467

href

wxMouseCaptureChangedEvent

wxMouseCaptureChangedEvent
Erlang module

An mouse capture changed event is sent to a window that loses its mouse capture. This is called even if
wxWindow:releaseMouse/1 was called by the application code. Handling this event allows an application to
cater for unexpected capture releases which might otherwise confuse mouse handling code.

Only for:wxmsw

See: wxMouseCaptureLostEvent, Overview events, wxWindow:captureMouse/1,
wxWindow:releaseMouse/1, wxWindow:getCapture/0

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxMouseCaptureChangedEvent

Events
Use wxEvtHandler:connect/3 with wxMouseCaptureChangedEventType to subscribe to events of this
type.

Data Types
wxMouseCaptureChangedEvent() = wx:wx_object()
wxMouseCaptureChanged() =
 #wxMouseCaptureChanged{type =
 wxMouseCaptureChangedEvent:wxMouseCaptureChangedEventType()}
wxMouseCaptureChangedEventType() = mouse_capture_changed

Exports

getCapturedWindow(This) -> wxWindow:wxWindow()
Types:

This = wxMouseCaptureChangedEvent()
Returns the window that gained the capture, or NULL if it was a non-wxWidgets window.

468 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxMouseCaptureLostEvent

wxMouseCaptureLostEvent
Erlang module

A mouse capture lost event is sent to a window that had obtained mouse capture, which was subsequently lost due to
an "external" event (for example, when a dialog box is shown or if another application captures the mouse).

If this happens, this event is sent to all windows that are on the capture stack (i.e. called CaptureMouse, but didn't call
ReleaseMouse yet). The event is not sent if the capture changes because of a call to CaptureMouse or ReleaseMouse.

This event is currently emitted under Windows only.

Only for:wxmsw

See: wxMouseCaptureChangedEvent, Overview events, wxWindow:captureMouse/1,
wxWindow:releaseMouse/1, wxWindow:getCapture/0

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxMouseCaptureLostEvent

Events
Use wxEvtHandler:connect/3 with wxMouseCaptureLostEventType to subscribe to events of this type.

Data Types
wxMouseCaptureLostEvent() = wx:wx_object()
wxMouseCaptureLost() =
 #wxMouseCaptureLost{type =
 wxMouseCaptureLostEvent:wxMouseCaptureLostEventType()}
wxMouseCaptureLostEventType() = mouse_capture_lost

Ericsson AB. All Rights Reserved.: wxErlang | 469

href
href

wxMouseEvent

wxMouseEvent
Erlang module

This event class contains information about the events generated by the mouse: they include mouse buttons press and
release events and mouse move events.

All mouse events involving the buttons use wxMOUSE_BTN_LEFT for the left mouse button,
wxMOUSE_BTN_MIDDLE for the middle one and wxMOUSE_BTN_RIGHT for the right one. And if the system
supports more buttons, the wxMOUSE_BTN_AUX1 and wxMOUSE_BTN_AUX2 events can also be generated. Note
that not all mice have even a middle button so a portable application should avoid relying on the events from it (but
the right button click can be emulated using the left mouse button with the control key under Mac platforms with a
single button mouse).

For the wxEVT_ENTER_WINDOW and wxEVT_LEAVE_WINDOW events purposes, the mouse is considered to be
inside the window if it is in the window client area and not inside one of its children. In other words, the parent window
receives wxEVT_LEAVE_WINDOW event not only when the mouse leaves the window entirely but also when it enters
one of its children.

The position associated with a mouse event is expressed in the window coordinates of the window which generated
the event, you can use wxWindow:clientToScreen/3 to convert it to screen coordinates and possibly call
wxWindow:screenToClient/2 next to convert it to window coordinates of another window.

Note: Note the difference between methods like leftDown/1 and the inherited leftIsDown/1: the former returns
true when the event corresponds to the left mouse button click while the latter returns true if the left mouse button
is currently being pressed. For example, when the user is dragging the mouse you can use leftIsDown/1 to test
whether the left mouse button is (still) depressed. Also, by convention, if leftDown/1 returns true, leftIsDown/1
will also return true in wxWidgets whatever the underlying GUI behaviour is (which is platform-dependent). The same
applies, of course, to other mouse buttons as well.

See: wxKeyEvent

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxMouseEvent

Events
Use wxEvtHandler:connect/3 with wxMouseEventType to subscribe to events of this type.

Data Types
wxMouseEvent() = wx:wx_object()
wxMouse() =
 #wxMouse{type = wxMouseEvent:wxMouseEventType(),
 x = integer(),
 y = integer(),
 leftDown = boolean(),
 middleDown = boolean(),
 rightDown = boolean(),
 controlDown = boolean(),
 shiftDown = boolean(),
 altDown = boolean(),
 metaDown = boolean(),
 wheelRotation = integer(),
 wheelDelta = integer(),

470 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxMouseEvent

 linesPerAction = integer()}
wxMouseEventType() =
 left_down | left_up | middle_down | middle_up | right_down |
 right_up | motion | enter_window | leave_window |
 left_dclick | middle_dclick | right_dclick | mousewheel |
 aux1_down | aux1_up | aux1_dclick | aux2_down | aux2_up |
 aux2_dclick

Exports

altDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the Alt key is pressed.

Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

button(This, But) -> boolean()
Types:

This = wxMouseEvent()
But = wx:wx_enum()

Returns true if the event was generated by the specified button.

See: wxMouseState::ButtoinIsDown()

buttonDClick(This) -> boolean()
Types:

This = wxMouseEvent()

buttonDClick(This, Options :: [Option]) -> boolean()
Types:

This = wxMouseEvent()
Option = {but, wx:wx_enum()}

If the argument is omitted, this returns true if the event was a mouse double click event.

Otherwise the argument specifies which double click event was generated (see button/2 for the possible values).

buttonDown(This) -> boolean()
Types:

This = wxMouseEvent()

buttonDown(This, Options :: [Option]) -> boolean()
Types:

This = wxMouseEvent()
Option = {but, wx:wx_enum()}

If the argument is omitted, this returns true if the event was a mouse button down event.

Otherwise the argument specifies which button-down event was generated (see button/2 for the possible values).

Ericsson AB. All Rights Reserved.: wxErlang | 471

wxMouseEvent

buttonUp(This) -> boolean()
Types:

This = wxMouseEvent()

buttonUp(This, Options :: [Option]) -> boolean()
Types:

This = wxMouseEvent()
Option = {but, wx:wx_enum()}

If the argument is omitted, this returns true if the event was a mouse button up event.

Otherwise the argument specifies which button-up event was generated (see button/2 for the possible values).

cmdDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the key used for command accelerators is pressed.

Same as controlDown/1. Deprecated.

Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

controlDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the Control key or Apple/Command key under macOS is pressed.

This function doesn't distinguish between right and left control keys.

Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

dragging(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if this was a dragging event (motion while a button is depressed).

See: moving/1

entering(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the mouse was entering the window.

See: leaving/1

getButton(This) -> integer()
Types:

This = wxMouseEvent()
Returns the mouse button which generated this event or wxMOUSE_BTN_NONE if no button is involved (for mouse
move, enter or leave event, for example).

472 | Ericsson AB. All Rights Reserved.: wxErlang

wxMouseEvent

Otherwise wxMOUSE_BTN_LEFT is returned for the left button down, up and double click events,
wxMOUSE_BTN_MIDDLE and wxMOUSE_BTN_RIGHT for the same events for the middle and the right buttons
respectively.

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxMouseEvent()
Returns the physical mouse position.

getLogicalPosition(This, Dc) -> {X :: integer(), Y :: integer()}
Types:

This = wxMouseEvent()
Dc = wxDC:wxDC()

Returns the logical mouse position in pixels (i.e. translated according to the translation set for the DC, which usually
indicates that the window has been scrolled).

getLinesPerAction(This) -> integer()
Types:

This = wxMouseEvent()
Returns the configured number of lines (or whatever) to be scrolled per wheel action.

Default value under most platforms is three.

See: GetColumnsPerAction() (not implemented in wx)

getWheelRotation(This) -> integer()
Types:

This = wxMouseEvent()
Get wheel rotation, positive or negative indicates direction of rotation.

Current devices all send an event when rotation is at least +/-WheelDelta, but finer resolution devices can be created
in the future.

Because of this you shouldn't assume that one event is equal to 1 line, but you should be able to either do partial line
scrolling or wait until several events accumulate before scrolling.

getWheelDelta(This) -> integer()
Types:

This = wxMouseEvent()
Get wheel delta, normally 120.

This is the threshold for action to be taken, and one such action (for example, scrolling one increment) should occur
for each delta.

getX(This) -> integer()
Types:

This = wxMouseEvent()
Returns X coordinate of the physical mouse event position.

Ericsson AB. All Rights Reserved.: wxErlang | 473

wxMouseEvent

getY(This) -> integer()
Types:

This = wxMouseEvent()
Returns Y coordinate of the physical mouse event position.

isButton(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the event was a mouse button event (not necessarily a button down event - that may be tested using
buttonDown/2).

isPageScroll(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the system has been setup to do page scrolling with the mouse wheel instead of line scrolling.

leaving(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the mouse was leaving the window.

See: entering/1

leftDClick(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the event was a left double click.

leftDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the left mouse button changed to down.

leftIsDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the left mouse button is currently down.

leftUp(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the left mouse button changed to up.

474 | Ericsson AB. All Rights Reserved.: wxErlang

wxMouseEvent

metaDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the Meta key was down at the time of the event.

middleDClick(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the event was a middle double click.

middleDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the middle mouse button changed to down.

middleIsDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the middle mouse button is currently down.

middleUp(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the middle mouse button changed to up.

moving(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if this was a motion event and no mouse buttons were pressed.

If any mouse button is held pressed, then this method returns false and dragging/1 returns true.

rightDClick(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the event was a right double click.

rightDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the right mouse button changed to down.

rightIsDown(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 475

wxMouseEvent

This = wxMouseEvent()
Returns true if the right mouse button is currently down.

rightUp(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the right mouse button changed to up.

shiftDown(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the Shift key is pressed.

This function doesn't distinguish between right and left shift keys.

Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

getWheelAxis(This) -> wx:wx_enum()
Types:

This = wxMouseEvent()
Gets the axis the wheel operation concerns.

Usually the mouse wheel is used to scroll vertically so wxMOUSE_WHEEL_VERTICAL is returned but some mice (and
most trackpads) also allow to use the wheel to scroll horizontally in which case wxMOUSE_WHEEL_HORIZONTAL
is returned.

Notice that before wxWidgets 2.9.4 this method returned int.

aux1DClick(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the event was a first extra button double click.

aux1Down(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the first extra button mouse button changed to down.

aux1Up(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the first extra button mouse button changed to up.

aux2DClick(This) -> boolean()
Types:

476 | Ericsson AB. All Rights Reserved.: wxErlang

wxMouseEvent

This = wxMouseEvent()
Returns true if the event was a second extra button double click.

aux2Down(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the second extra button mouse button changed to down.

aux2Up(This) -> boolean()
Types:

This = wxMouseEvent()
Returns true if the second extra button mouse button changed to up.

Ericsson AB. All Rights Reserved.: wxErlang | 477

wxMoveEvent

wxMoveEvent
Erlang module

A move event holds information about window position change.

These events are currently generated for top level (see wxTopLevelWindow) windows in all ports, but are not
generated for the child windows in wxGTK.

See: {X,Y}, Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxMoveEvent

Events
Use wxEvtHandler:connect/3 with wxMoveEventType to subscribe to events of this type.

Data Types
wxMoveEvent() = wx:wx_object()
wxMove() =
 #wxMove{type = wxMoveEvent:wxMoveEventType(),
 pos = {X :: integer(), Y :: integer()},
 rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}
wxMoveEventType() = move

Exports

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxMoveEvent()
Returns the position of the window generating the move change event.

getRect(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxMoveEvent()

478 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxMultiChoiceDialog

wxMultiChoiceDialog
Erlang module

This class represents a dialog that shows a list of strings, and allows the user to select one or more.

Styles

This class supports the following styles:

See: Overview cmndlg, wxSingleChoiceDialog

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxMultiChoiceDialog

Data Types
wxMultiChoiceDialog() = wx:wx_object()

Exports

new(Parent, Message, Caption, Choices) -> wxMultiChoiceDialog()
Types:

Parent = wxWindow:wxWindow()
Message = Caption = unicode:chardata()
Choices = [unicode:chardata()]

new(Parent, Message, Caption, Choices, Options :: [Option]) ->
 wxMultiChoiceDialog()
Types:

Parent = wxWindow:wxWindow()
Message = Caption = unicode:chardata()
Choices = [unicode:chardata()]
Option =
 {style, integer()} | {pos, {X :: integer(), Y :: integer()}}

Constructor taking an array of wxString (not implemented in wx) choices.

Remark: Use wxDialog:showModal/1 to show the dialog.

getSelections(This) -> [integer()]
Types:

This = wxMultiChoiceDialog()
Returns array with indexes of selected items.

setSelections(This, Selections) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 479

href
href

wxMultiChoiceDialog

This = wxMultiChoiceDialog()
Selections = [integer()]

Sets selected items from the array of selected items' indexes.

destroy(This :: wxMultiChoiceDialog()) -> ok
Destroys the object.

480 | Ericsson AB. All Rights Reserved.: wxErlang

wxNavigationKeyEvent

wxNavigationKeyEvent
Erlang module

This event class contains information about navigation events, generated by navigation keys such as tab and page down.

This event is mainly used by wxWidgets implementations. A wxNavigationKeyEvent handler is automatically
provided by wxWidgets when you enable keyboard navigation inside a window by inheriting it from
wxNavigationEnabled<>.

See: wxWindow:navigate/2, wxWindow::NavigateIn (not implemented in wx)

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxNavigationKeyEvent

Events
Use wxEvtHandler:connect/3 with wxNavigationKeyEventType to subscribe to events of this type.

Data Types
wxNavigationKeyEvent() = wx:wx_object()
wxNavigationKey() =
 #wxNavigationKey{type =
 wxNavigationKeyEvent:wxNavigationKeyEventType(),
 dir = boolean(),
 focus = wxWindow:wxWindow()}
wxNavigationKeyEventType() = navigation_key

Exports

getDirection(This) -> boolean()
Types:

This = wxNavigationKeyEvent()
Returns true if the navigation was in the forward direction.

setDirection(This, Direction) -> ok
Types:

This = wxNavigationKeyEvent()
Direction = boolean()

Sets the direction to forward if direction is true, or backward if false.

isWindowChange(This) -> boolean()
Types:

This = wxNavigationKeyEvent()
Returns true if the navigation event represents a window change (for example, from Ctrl-Page Down in a notebook).

setWindowChange(This, WindowChange) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 481

href

wxNavigationKeyEvent

This = wxNavigationKeyEvent()
WindowChange = boolean()

Marks the event as a window change event.

isFromTab(This) -> boolean()
Types:

This = wxNavigationKeyEvent()
Returns true if the navigation event was from a tab key.

This is required for proper navigation over radio buttons.

setFromTab(This, FromTab) -> ok
Types:

This = wxNavigationKeyEvent()
FromTab = boolean()

Marks the navigation event as from a tab key.

getCurrentFocus(This) -> wxWindow:wxWindow()
Types:

This = wxNavigationKeyEvent()
Returns the child that has the focus, or NULL.

setCurrentFocus(This, CurrentFocus) -> ok
Types:

This = wxNavigationKeyEvent()
CurrentFocus = wxWindow:wxWindow()

Sets the current focus window member.

482 | Ericsson AB. All Rights Reserved.: wxErlang

wxNotebook

wxNotebook
Erlang module

This class represents a notebook control, which manages multiple windows with associated tabs.

To use the class, create a wxNotebook object and call wxBookCtrlBase:addPage/4 or
wxBookCtrlBase:insertPage/5, passing a window to be used as the page. Do not explicitly delete the window
for a page that is currently managed by wxNotebook.

wxNotebookPage is a typedef for wxWindow.

Styles

This class supports the following styles:

Page backgrounds

On Windows, the default theme paints a background on the notebook's pages. If you wish to suppress this theme, for
aesthetic or performance reasons, there are three ways of doing it. You can use wxNB_NOPAGETHEME to disable
themed drawing for a particular notebook, you can call wxSystemOptions:setOption/2 to disable it for the
whole application, or you can disable it for individual pages by using wxWindow:setBackgroundColour/2.

To disable themed pages globally:

Set the value to 1 to enable it again. To give a single page a solid background that more or less fits in with the overall
theme, use:

On platforms other than Windows, or if the application is not using Windows themes,
getThemeBackgroundColour/1 will return an uninitialised colour object, and the above code will therefore
work on all platforms.

See: ?wxBookCtrl, wxBookCtrlEvent, wxImageList, Examples

This class is derived (and can use functions) from: wxBookCtrlBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxNotebook

Events
Event types emitted from this class: command_notebook_page_changed,
command_notebook_page_changing

Data Types
wxNotebook() = wx:wx_object()

Exports

new() -> wxNotebook()
Constructs a notebook control.

new(Parent, Id) -> wxNotebook()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 483

href
href

wxNotebook

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxNotebook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructs a notebook control.

Note that sometimes you can reduce flicker by passing the wxCLIP_CHILDREN window style.

destroy(This :: wxNotebook()) -> ok
Destroys the wxNotebook object.

assignImageList(This, ImageList) -> ok
Types:

This = wxNotebook()
ImageList = wxImageList:wxImageList()

Sets the image list for the page control and takes ownership of the list.

See: wxImageList, setImageList/2

create(This, Parent, Id) -> boolean()
Types:

This = wxNotebook()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxNotebook()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creates a notebook control.

See new/3 for a description of the parameters.

getImageList(This) -> wxImageList:wxImageList()
Types:

484 | Ericsson AB. All Rights Reserved.: wxErlang

wxNotebook

This = wxNotebook()
Returns the associated image list, may be NULL.

See: wxImageList, setImageList/2

getPageImage(This, NPage) -> integer()
Types:

This = wxNotebook()
NPage = integer()

Returns the image index for the given page.

getRowCount(This) -> integer()
Types:

This = wxNotebook()
Returns the number of rows in the notebook control.

getThemeBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxNotebook()
If running under Windows and themes are enabled for the application, this function returns a suitable colour for painting
the background of a notebook page, and can be passed to wxWindow:setBackgroundColour/2.

Otherwise, an uninitialised colour will be returned.

setImageList(This, ImageList) -> ok
Types:

This = wxNotebook()
ImageList = wxImageList:wxImageList()

Sets the image list to use.

It does not take ownership of the image list, you must delete it yourself.

See: wxImageList, assignImageList/2

setPadding(This, Padding) -> ok
Types:

This = wxNotebook()
Padding = {W :: integer(), H :: integer()}

Sets the amount of space around each page's icon and label, in pixels.

Note: The vertical padding cannot be changed in wxGTK.

setPageSize(This, Size) -> ok
Types:

This = wxNotebook()
Size = {W :: integer(), H :: integer()}

Sets the width and height of the pages.

Ericsson AB. All Rights Reserved.: wxErlang | 485

wxNotebook

Note: This method is currently not implemented for wxGTK.

setPageImage(This, Page, Image) -> boolean()
Types:

This = wxNotebook()
Page = Image = integer()

Sets the image index for the given page.

image is an index into the image list which was set with setImageList/2.

486 | Ericsson AB. All Rights Reserved.: wxErlang

wxNotificationMessage

wxNotificationMessage
Erlang module

This class allows showing the user a message non intrusively.

Currently it is implemented natively for Windows, macOS, GTK and uses generic toast notifications under the other
platforms. It's not recommended but wxGenericNotificationMessage can be used instead of the native ones.
This might make sense if your application requires features not available in the native implementation.

Notice that this class is not a window and so doesn't derive from wxWindow.

Platform Notes

Par: Up to Windows 8 balloon notifications are displayed from an icon in the notification area of the taskbar. If
your application uses a wxTaskBarIcon you should call useTaskBarIcon/1 to ensure that only one icon is
shown in the notification area. Windows 10 displays all notifications as popup toasts. To suppress the additional icon
in the notification area on Windows 10 and for toast notification support on Windows 8 it is recommended to call
mSWUseToasts/1 before showing the first notification message.

Par: The macOS implementation uses Notification Center to display native notifications. In order to use actions
your notifications must use the alert style. This can be enabled by the user in system settings or by setting the
NSUserNotificationAlertStyle value in Info.plist to alert. Please note that the user always has the option
to change the notification style.

Since: 2.9.0

This class is derived (and can use functions) from: wxEvtHandler

wxWidgets docs: wxNotificationMessage

Events
Event types emitted from this class: notification_message_click,
notification_message_dismissed, notification_message_action

Data Types
wxNotificationMessage() = wx:wx_object()

Exports

new() -> wxNotificationMessage()
Default constructor, use setParent/2, setTitle/2 and setMessage/2 to initialize the object before showing
it.

new(Title) -> wxNotificationMessage()
Types:

Title = unicode:chardata()

new(Title, Options :: [Option]) -> wxNotificationMessage()
Types:

Title = unicode:chardata()
Option =

Ericsson AB. All Rights Reserved.: wxErlang | 487

href

wxNotificationMessage

 {message, unicode:chardata()} |
 {parent, wxWindow:wxWindow()} |
 {flags, integer()}

Create a notification object with the given attributes.

See setTitle/2, setMessage/2, setParent/2 and setFlags/2 for the description of the corresponding
parameters.

destroy(This :: wxNotificationMessage()) -> ok
Destructor does not hide the notification.

The notification can continue to be shown even after the C++ object was destroyed, call close/1 explicitly if it
needs to be hidden.

addAction(This, Actionid) -> boolean()
Types:

This = wxNotificationMessage()
Actionid = integer()

addAction(This, Actionid, Options :: [Option]) -> boolean()
Types:

This = wxNotificationMessage()
Actionid = integer()
Option = {label, unicode:chardata()}

Add an action to the notification.

If supported by the implementation this are usually buttons in the notification selectable by the user.

Return: false if the current implementation or OS version does not support actions in notifications.

Since: 3.1.0

close(This) -> boolean()
Types:

This = wxNotificationMessage()
Hides the notification.

Returns true if it was hidden or false if it couldn't be done (e.g. on some systems automatically hidden notifications
can't be hidden manually).

setFlags(This, Flags) -> ok
Types:

This = wxNotificationMessage()
Flags = integer()

This parameter can be currently used to specify the icon to show in the notification.

Valid values are wxICON_INFORMATION, wxICON_WARNING and wxICON_ERROR (notice that
wxICON_QUESTION is not allowed here). Some implementations of this class may not support the icons.

See: setIcon/2

488 | Ericsson AB. All Rights Reserved.: wxErlang

wxNotificationMessage

setIcon(This, Icon) -> ok
Types:

This = wxNotificationMessage()
Icon = wxIcon:wxIcon()

Specify a custom icon to be displayed in the notification.

Some implementations of this class may not support custom icons.

See: setFlags/2

Since: 3.1.0

setMessage(This, Message) -> ok
Types:

This = wxNotificationMessage()
Message = unicode:chardata()

Set the main text of the notification.

This should be a more detailed description than the title but still limited to reasonable length (not more than 256
characters).

setParent(This, Parent) -> ok
Types:

This = wxNotificationMessage()
Parent = wxWindow:wxWindow()

Set the parent for this notification: the notification will be associated with the top level parent of this window or, if
this method is not called, with the main application window by default.

setTitle(This, Title) -> ok
Types:

This = wxNotificationMessage()
Title = unicode:chardata()

Set the title, it must be a concise string (not more than 64 characters), use setMessage/2 to give the user more
details.

show(This) -> boolean()
Types:

This = wxNotificationMessage()

show(This, Options :: [Option]) -> boolean()
Types:

This = wxNotificationMessage()
Option = {timeout, integer()}

Show the notification to the user and hides it after timeout seconds are elapsed.

Special values Timeout_Auto and Timeout_Never can be used here, notice that you shouldn't rely on timeout
being exactly respected because the current platform may only support default timeout value and also because the user
may be able to close the notification.

Ericsson AB. All Rights Reserved.: wxErlang | 489

wxNotificationMessage

Note: When using native notifications in wxGTK, the timeout is ignored for the notifications with wxICON_WARNING
or wxICON_ERROR flags, they always remain shown unless they're explicitly hidden by the user, i.e. behave as if
Timeout_Auto were given.

Return: false if an error occurred.

useTaskBarIcon(Icon) -> wxTaskBarIcon:wxTaskBarIcon()
Types:

Icon = wxTaskBarIcon:wxTaskBarIcon()
If the application already uses a wxTaskBarIcon, it should be connected to notifications by using this method.

This has no effect if toast notifications are used.

Return: the task bar icon which was used previously (may be NULL)

Only for:wxmsw

mSWUseToasts() -> boolean()

mSWUseToasts(Options :: [Option]) -> boolean()
Types:

Option =
 {shortcutPath, unicode:chardata()} |
 {appId, unicode:chardata()}

Enables toast notifications available since Windows 8 and suppresses the additional icon in the notification area on
Windows 10.

Toast notifications require a shortcut to the application in the start menu. The start menu shortcut needs to contain
an Application User Model ID. It is recommended that the applications setup creates the shortcut and the application
specifies the setup created shortcut in shortcutPath. A call to this method will verify (and if necessary modify)
the shortcut before enabling toast notifications.

Return: false if toast notifications could not be enabled.

Only for:wxmsw

See: wxAppConsole::SetAppName() (not implemented in wx), wxAppConsole::SetVendorName()
(not implemented in wx)

Since: 3.1.0

490 | Ericsson AB. All Rights Reserved.: wxErlang

wxNotifyEvent

wxNotifyEvent
Erlang module

This class is not used by the event handlers by itself, but is a base class for other event classes (such as
wxBookCtrlEvent).

It (or an object of a derived class) is sent when the controls state is being changed and allows the program to veto/1
this change if it wants to prevent it from happening.

See: wxBookCtrlEvent

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxNotifyEvent

Data Types
wxNotifyEvent() = wx:wx_object()

Exports

allow(This) -> ok
Types:

This = wxNotifyEvent()
This is the opposite of veto/1: it explicitly allows the event to be processed.

For most events it is not necessary to call this method as the events are allowed anyhow but some are forbidden by
default (this will be mentioned in the corresponding event description).

isAllowed(This) -> boolean()
Types:

This = wxNotifyEvent()
Returns true if the change is allowed (veto/1 hasn't been called) or false otherwise (if it was).

veto(This) -> ok
Types:

This = wxNotifyEvent()
Prevents the change announced by this event from happening.

It is in general a good idea to notify the user about the reasons for vetoing the change because otherwise the applications
behaviour (which just refuses to do what the user wants) might be quite surprising.

Ericsson AB. All Rights Reserved.: wxErlang | 491

href

wxOverlay

wxOverlay
Erlang module

Creates an overlay over an existing window, allowing for manipulations like rubberbanding, etc. On wxOSX the
overlay is implemented with native platform APIs, on the other platforms it is simulated using wxMemoryDC.

See: wxDCOverlay, wxDC

wxWidgets docs: wxOverlay

Data Types
wxOverlay() = wx:wx_object()

Exports

new() -> wxOverlay()

destroy(This :: wxOverlay()) -> ok

reset(This) -> ok
Types:

This = wxOverlay()
Clears the overlay without restoring the former state.

To be done, for example, when the window content has been changed and repainted.

492 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxPageSetupDialogData

wxPageSetupDialogData
Erlang module

This class holds a variety of information related to wxPageSetupDialog.

It contains a wxPrintData member which is used to hold basic printer configuration data (as opposed to the user-
interface configuration settings stored by wxPageSetupDialogData).

See: Overview printing, wxPageSetupDialog

wxWidgets docs: wxPageSetupDialogData

Data Types
wxPageSetupDialogData() = wx:wx_object()

Exports

new() -> wxPageSetupDialogData()
Default constructor.

new(PrintData) -> wxPageSetupDialogData()
Types:

PrintData =
 wxPrintData:wxPrintData() |
 wxPageSetupDialogData:wxPageSetupDialogData()

Construct an object from a print data object.

destroy(This :: wxPageSetupDialogData()) -> ok
Destructor.

enableHelp(This, Flag) -> ok
Types:

This = wxPageSetupDialogData()
Flag = boolean()

Enables or disables the "Help" button (Windows only).

enableMargins(This, Flag) -> ok
Types:

This = wxPageSetupDialogData()
Flag = boolean()

Enables or disables the margin controls (Windows only).

enableOrientation(This, Flag) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 493

href
href

wxPageSetupDialogData

This = wxPageSetupDialogData()
Flag = boolean()

Enables or disables the orientation control (Windows only).

enablePaper(This, Flag) -> ok
Types:

This = wxPageSetupDialogData()
Flag = boolean()

Enables or disables the paper size control (Windows only).

enablePrinter(This, Flag) -> ok
Types:

This = wxPageSetupDialogData()
Flag = boolean()

Enables or disables the "Printer" button, which invokes a printer setup dialog.

getDefaultMinMargins(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the page setup dialog will take its minimum margin values from the currently selected printer properties
(Windows only).

getEnableMargins(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the margin controls are enabled (Windows only).

getEnableOrientation(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the orientation control is enabled (Windows only).

getEnablePaper(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the paper size control is enabled (Windows only).

getEnablePrinter(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the printer setup button is enabled.

494 | Ericsson AB. All Rights Reserved.: wxErlang

wxPageSetupDialogData

getEnableHelp(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the printer setup button is enabled.

getDefaultInfo(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the dialog will simply return default printer information (such as orientation) instead of showing a
dialog (Windows only).

getMarginTopLeft(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxPageSetupDialogData()
Returns the left (x) and top (y) margins in millimetres.

getMarginBottomRight(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxPageSetupDialogData()
Returns the right (x) and bottom (y) margins in millimetres.

getMinMarginTopLeft(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxPageSetupDialogData()
Returns the left (x) and top (y) minimum margins the user can enter (Windows only).

Units are in millimetres.

getMinMarginBottomRight(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxPageSetupDialogData()
Returns the right (x) and bottom (y) minimum margins the user can enter (Windows only).

Units are in millimetres.

getPaperId(This) -> wx:wx_enum()
Types:

This = wxPageSetupDialogData()
Returns the paper id (stored in the internal wxPrintData object).

See: wxPrintData:setPaperId/2

getPaperSize(This) -> {W :: integer(), H :: integer()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 495

wxPageSetupDialogData

This = wxPageSetupDialogData()
Returns the paper size in millimetres.

getPrintData(This) -> wxPrintData:wxPrintData()
Types:

This = wxPageSetupDialogData()

isOk(This) -> boolean()
Types:

This = wxPageSetupDialogData()
Returns true if the print data associated with the dialog data is valid.

This can return false on Windows if the current printer is not set, for example. On all other platforms, it returns true.

setDefaultInfo(This, Flag) -> ok
Types:

This = wxPageSetupDialogData()
Flag = boolean()

Pass true if the dialog will simply return default printer information (such as orientation) instead of showing a dialog
(Windows only).

setDefaultMinMargins(This, Flag) -> ok
Types:

This = wxPageSetupDialogData()
Flag = boolean()

Pass true if the page setup dialog will take its minimum margin values from the currently selected printer properties
(Windows only).

Units are in millimetres.

setMarginTopLeft(This, Pt) -> ok
Types:

This = wxPageSetupDialogData()
Pt = {X :: integer(), Y :: integer()}

Sets the left (x) and top (y) margins in millimetres.

setMarginBottomRight(This, Pt) -> ok
Types:

This = wxPageSetupDialogData()
Pt = {X :: integer(), Y :: integer()}

Sets the right (x) and bottom (y) margins in millimetres.

setMinMarginTopLeft(This, Pt) -> ok
Types:

496 | Ericsson AB. All Rights Reserved.: wxErlang

wxPageSetupDialogData

This = wxPageSetupDialogData()
Pt = {X :: integer(), Y :: integer()}

Sets the left (x) and top (y) minimum margins the user can enter (Windows only).

Units are in millimetres.

setMinMarginBottomRight(This, Pt) -> ok
Types:

This = wxPageSetupDialogData()
Pt = {X :: integer(), Y :: integer()}

Sets the right (x) and bottom (y) minimum margins the user can enter (Windows only).

Units are in millimetres.

setPaperId(This, Id) -> ok
Types:

This = wxPageSetupDialogData()
Id = wx:wx_enum()

Sets the paper size id.

Calling this function overrides the explicit paper dimensions passed in setPaperSize/2.

See: wxPrintData:setPaperId/2

setPaperSize(This, Size) -> ok
Types:

This = wxPageSetupDialogData()
Size = {W :: integer(), H :: integer()}

Sets the paper size in millimetres.

If a corresponding paper id is found, it will be set in the internal wxPrintData object, otherwise the paper size
overrides the paper id.

setPrintData(This, PrintData) -> ok
Types:

This = wxPageSetupDialogData()
PrintData = wxPrintData:wxPrintData()

Sets the print data associated with this object.

Ericsson AB. All Rights Reserved.: wxErlang | 497

wxPageSetupDialog

wxPageSetupDialog
Erlang module

This class represents the page setup common dialog.

The page setup dialog contains controls for paper size (letter, A4, A5 etc.), orientation (landscape or portrait), and,
only under Windows currently, controls for setting left, top, right and bottom margin sizes in millimetres.

The exact appearance of this dialog varies among the platforms as a native dialog is used when available (currently
the case for all major platforms).

When the dialog has been closed, you need to query the wxPageSetupDialogData object associated with the
dialog.

Note that the OK and Cancel buttons do not destroy the dialog; this must be done by the application.

See: Overview printing, wxPrintDialog, wxPageSetupDialogData

wxWidgets docs: wxPageSetupDialog

Data Types
wxPageSetupDialog() = wx:wx_object()

Exports

new(Parent) -> wxPageSetupDialog()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxPageSetupDialog()
Types:

Parent = wxWindow:wxWindow()
Option = {data, wxPageSetupDialogData:wxPageSetupDialogData()}

Constructor.

Pass a parent window, and optionally a pointer to a block of page setup data, which will be copied to the print dialog's
internal data.

destroy(This :: wxPageSetupDialog()) -> ok
Destructor.

getPageSetupData(This) ->
 wxPageSetupDialogData:wxPageSetupDialogData()
Types:

This = wxPageSetupDialog()
Returns the wxPageSetupDialogData object associated with the dialog.

showModal(This) -> integer()
Types:

498 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxPageSetupDialog

This = wxPageSetupDialog()
Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL otherwise.

Ericsson AB. All Rights Reserved.: wxErlang | 499

wxPaintDC

wxPaintDC
Erlang module

A wxPaintDC must be constructed if an application wishes to paint on the client area of a window from within
an EVT_PAINT() event handler. This should normally be constructed as a temporary stack object; don't store a
wxPaintDC object. If you have an EVT_PAINT() handler, you must create a wxPaintDC object within it even
if you don't actually use it.

Using wxPaintDC within your EVT_PAINT() handler is important because it automatically sets the clipping area to
the damaged area of the window. Attempts to draw outside this area do not appear.

A wxPaintDC object is initialized to use the same font and colours as the window it is associated with.

See: wxDC, wxClientDC, wxMemoryDC, wxWindowDC, wxScreenDC

This class is derived (and can use functions) from: wxWindowDC wxDC

wxWidgets docs: wxPaintDC

Data Types
wxPaintDC() = wx:wx_object()

Exports

new(Window) -> wxPaintDC()
Types:

Window = wxWindow:wxWindow()
Constructor.

Pass a pointer to the window on which you wish to paint.

destroy(This :: wxPaintDC()) -> ok
Destroys the object.

500 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxPaintEvent

wxPaintEvent
Erlang module

A paint event is sent when a window's contents needs to be repainted.

The handler of this event must create a wxPaintDC object and use it for painting the window contents. For example:

Notice that you must not create other kinds of wxDC (e.g. wxClientDC or wxWindowDC) in EVT_PAINT handlers
and also don't create wxPaintDC outside of this event handlers.

You can optimize painting by retrieving the rectangles that have been damaged and only repainting these. The
rectangles are in terms of the client area, and are unscrolled, so you will need to do some calculations using the
current view position to obtain logical, scrolled units. Here is an example of using the wxRegionIterator (not
implemented in wx) class:

Remark: Please notice that in general it is impossible to change the drawing of a standard control (such as wxButton)
and so you shouldn't attempt to handle paint events for them as even if it might work on some platforms, this is
inherently not portable and won't work everywhere.

See: Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxPaintEvent

Events
Use wxEvtHandler:connect/3 with wxPaintEventType to subscribe to events of this type.

Data Types
wxPaintEvent() = wx:wx_object()
wxPaint() = #wxPaint{type = wxPaintEvent:wxPaintEventType()}
wxPaintEventType() = paint

Ericsson AB. All Rights Reserved.: wxErlang | 501

href
href

wxPaletteChangedEvent

wxPaletteChangedEvent
Erlang module

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxPaletteChangedEvent

Data Types
wxPaletteChangedEvent() = wx:wx_object()
wxPaletteChanged() =
 #wxPaletteChanged{type =
 wxPaletteChangedEvent:wxPaletteChangedEventType()}
wxPaletteChangedEventType() = palette_changed

Exports

setChangedWindow(This, Win) -> ok
Types:

This = wxPaletteChangedEvent()
Win = wxWindow:wxWindow()

getChangedWindow(This) -> wxWindow:wxWindow()
Types:

This = wxPaletteChangedEvent()

502 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxPalette

wxPalette
Erlang module

A palette is a table that maps pixel values to RGB colours. It allows the colours of a low-depth bitmap, for example, to
be mapped to the available colours in a display. The notion of palettes is becoming more and more obsolete nowadays
and only the MSW port is still using a native palette. All other ports use generic code which is basically just an array
of colours.

It is likely that in the future the only use for palettes within wxWidgets will be for representing colour indices from
images (such as GIF or PNG). The image handlers for these formats have been modified to create a palette if there is
such information in the original image file (usually 256 or less colour images). See wxImage for more information.

Predefined objects (include wx.hrl): ?wxNullPalette

See: wxDC:setPalette/2, wxBitmap

wxWidgets docs: wxPalette

Data Types
wxPalette() = wx:wx_object()

Exports

new() -> wxPalette()
Default constructor.

new(Palette) -> wxPalette()
Types:

Palette = wxPalette()
Copy constructor, uses overview_refcount.

new(Red, Green, Blue) -> wxPalette()
Types:

Red = Green = Blue = binary()

Creates a palette from arrays of size n, one for each red, blue or green component.

See: create/4

destroy(This :: wxPalette()) -> ok
Destructor.

See: reference-counted object destruction

create(This, Red, Green, Blue) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 503

href

wxPalette

This = wxPalette()
Red = Green = Blue = binary()

Creates a palette from arrays of size n, one for each red, blue or green component.

Return: true if the creation was successful, false otherwise.

See: new/3

getColoursCount(This) -> integer()
Types:

This = wxPalette()
Returns number of entries in palette.

getPixel(This, Red, Green, Blue) -> integer()
Types:

This = wxPalette()
Red = Green = Blue = integer()

Returns a pixel value (index into the palette) for the given RGB values.

Return: The nearest palette index or wxNOT_FOUND for unexpected errors.

See: getRGB/2

getRGB(This, Pixel) -> Result
Types:

Result =
 {Res :: boolean(),
 Red :: integer(),
 Green :: integer(),
 Blue :: integer()}
This = wxPalette()
Pixel = integer()

Returns RGB values for a given palette index.

Return: true if the operation was successful.

See: getPixel/4

ok(This) -> boolean()
Types:

This = wxPalette()
See: isOk/1.

isOk(This) -> boolean()
Types:

This = wxPalette()
Returns true if palette data is present.

504 | Ericsson AB. All Rights Reserved.: wxErlang

wxPanel

wxPanel
Erlang module

A panel is a window on which controls are placed. It is usually placed within a frame. Its main feature over its parent
class wxWindow is code for handling child windows and TAB traversal, which is implemented natively if possible
(e.g. in wxGTK) or by wxWidgets itself otherwise.

Note: Tab traversal is implemented through an otherwise undocumented intermediate wxControlContainer class from
which any class can derive in addition to the normal wxWindow base class. Please see and to find out how this is
achieved.

Note: if not all characters are being intercepted by your OnKeyDown or OnChar handler, it may be because you are
using the wxTAB_TRAVERSAL style, which grabs some keypresses for use by child controls.

Remark: By default, a panel has the same colouring as a dialog.

See: wxDialog

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxPanel

Events
Event types emitted from this class: navigation_key

Data Types
wxPanel() = wx:wx_object()

Exports

new() -> wxPanel()
Default constructor.

new(Parent) -> wxPanel()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxPanel()
Types:

Parent = wxWindow:wxWindow()
Option =
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor.

See: Create() (not implemented in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 505

href

wxPanel

destroy(This :: wxPanel()) -> ok
Destructor.

Deletes any child windows before deleting the physical window.

initDialog(This) -> ok
Types:

This = wxPanel()
Sends a wxInitDialogEvent, which in turn transfers data to the dialog via validators.

See: wxInitDialogEvent

setFocusIgnoringChildren(This) -> ok
Types:

This = wxPanel()
In contrast to wxWindow:setFocus/1 (see above) this will set the focus to the panel even if there are child windows
in the panel.

This is only rarely needed.

506 | Ericsson AB. All Rights Reserved.: wxErlang

wxPasswordEntryDialog

wxPasswordEntryDialog
Erlang module

This class represents a dialog that requests a one-line password string from the user.

It is implemented as a generic wxWidgets dialog.

See: Overview cmndlg

This class is derived (and can use functions) from: wxTextEntryDialog wxDialog wxTopLevelWindow
wxWindow wxEvtHandler

wxWidgets docs: wxPasswordEntryDialog

Data Types
wxPasswordEntryDialog() = wx:wx_object()

Exports

new(Parent, Message) -> wxPasswordEntryDialog()
Types:

Parent = wxWindow:wxWindow()
Message = unicode:chardata()

new(Parent, Message, Options :: [Option]) ->
 wxPasswordEntryDialog()
Types:

Parent = wxWindow:wxWindow()
Message = unicode:chardata()
Option =
 {caption, unicode:chardata()} |
 {value, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}

Constructor.

Use wxDialog:showModal/1 to show the dialog.

destroy(This :: wxPasswordEntryDialog()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 507

href
href

wxPen

wxPen
Erlang module

A pen is a drawing tool for drawing outlines. It is used for drawing lines and painting the outline of rectangles, ellipses,
etc. It has a colour, a width and a style.

Note: On a monochrome display, wxWidgets shows all non-white pens as black.

Do not initialize objects on the stack before the program commences, since other required structures may not have
been set up yet. Instead, define global pointers to objects and create them in wxApp::OnInit() (not implemented
in wx) or when required.

An application may wish to dynamically create pens with different characteristics, and there is the consequent
danger that a large number of duplicate pens will be created. Therefore an application may wish to get
a pointer to a pen by using the global list of pens ?wxThePenList, and calling the member function
wxPenList::FindOrCreatePen() (not implemented in wx). See wxPenList (not implemented in wx) for
more info.

This class uses reference counting and copy-on-write internally so that assignments between two instances of this class
are very cheap. You can therefore use actual objects instead of pointers without efficiency problems. If an instance
of this class is changed it will create its own data internally so that other instances, which previously shared the data
using the reference counting, are not affected.

Predefined objects (include wx.hrl):

See: wxPenList (not implemented in wx), wxDC, wxDC:setPen/2

wxWidgets docs: wxPen

Data Types
wxPen() = wx:wx_object()

Exports

new() -> wxPen()
Default constructor.

The pen will be uninitialised, and isOk/1 will return false.

new(Colour) -> wxPen()
new(Pen) -> wxPen()
Types:

Pen = wxPen()
Copy constructor, uses overview_refcount.

new(Colour, Options :: [Option]) -> wxPen()
Types:

Colour = wx:wx_colour()
Option = {width, integer()} | {style, wx:wx_enum()}

Constructs a pen from a colour object, pen width and style.

508 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxPen

Remark: Different versions of Windows and different versions of other platforms support very different subsets of
the styles above so handle with care.

See: setStyle/2, setColour/4, setWidth/2

destroy(This :: wxPen()) -> ok
Destructor.

See: reference-counted object destruction

Remark: Although all remaining pens are deleted when the application exits, the application should try to clean up
all pens itself. This is because wxWidgets cannot know if a pointer to the pen object is stored in an application data
structure, and there is a risk of double deletion.

getCap(This) -> wx:wx_enum()
Types:

This = wxPen()
Returns the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and wxCAP_BUTT.

The default is wxCAP_ROUND.

See: setCap/2

getColour(This) -> wx:wx_colour4()
Types:

This = wxPen()
Returns a reference to the pen colour.

See: setColour/4

getJoin(This) -> wx:wx_enum()
Types:

This = wxPen()
Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and wxJOIN_MITER.

The default is wxJOIN_ROUND.

See: setJoin/2

getStyle(This) -> wx:wx_enum()
Types:

This = wxPen()
Returns the pen style.

See: new/2, setStyle/2

getWidth(This) -> integer()
Types:

This = wxPen()
Returns the pen width.

See: setWidth/2

Ericsson AB. All Rights Reserved.: wxErlang | 509

wxPen

isOk(This) -> boolean()
Types:

This = wxPen()
Returns true if the pen is initialised.

Notice that an uninitialized pen object can't be queried for any pen properties and all calls to the accessor methods
on it will result in an assert failure.

setCap(This, CapStyle) -> ok
Types:

This = wxPen()
CapStyle = wx:wx_enum()

Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and wxCAP_BUTT.

The default is wxCAP_ROUND.

See: getCap/1

setColour(This, Colour) -> ok
Types:

This = wxPen()
Colour = wx:wx_colour()

The pen's colour is changed to the given colour.

See: getColour/1

setColour(This, Red, Green, Blue) -> ok
Types:

This = wxPen()
Red = Green = Blue = integer()

setJoin(This, Join_style) -> ok
Types:

This = wxPen()
Join_style = wx:wx_enum()

Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and wxJOIN_MITER.

The default is wxJOIN_ROUND.

See: getJoin/1

setStyle(This, Style) -> ok
Types:

This = wxPen()
Style = wx:wx_enum()

Set the pen style.

See: new/2

510 | Ericsson AB. All Rights Reserved.: wxErlang

wxPen

setWidth(This, Width) -> ok
Types:

This = wxPen()
Width = integer()

Sets the pen width.

See: getWidth/1

Ericsson AB. All Rights Reserved.: wxErlang | 511

wxPickerBase

wxPickerBase
Erlang module

Base abstract class for all pickers which support an auxiliary text control.

This class handles all positioning and sizing of the text control like a an horizontal wxBoxSizer would do, with the
text control on the left of the picker button.

The proportion (see wxSizer documentation for more info about proportion values) of the picker control defaults to
1 when there isn't a text control associated (see wxPB_USE_TEXTCTRL style) and to 0 otherwise.

Styles

This class supports the following styles:

See: wxColourPickerCtrl

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxPickerBase

Data Types
wxPickerBase() = wx:wx_object()

Exports

setInternalMargin(This, Margin) -> ok
Types:

This = wxPickerBase()
Margin = integer()

Sets the margin (in pixel) between the picker and the text control.

This function can be used only when hasTextCtrl/1 returns true.

getInternalMargin(This) -> integer()
Types:

This = wxPickerBase()
Returns the margin (in pixel) between the picker and the text control.

This function can be used only when hasTextCtrl/1 returns true.

setTextCtrlProportion(This, Prop) -> ok
Types:

This = wxPickerBase()
Prop = integer()

Sets the proportion value of the text control.

Look at the detailed description of wxPickerBase for more info.

This function can be used only when hasTextCtrl/1 returns true.

512 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxPickerBase

setPickerCtrlProportion(This, Prop) -> ok
Types:

This = wxPickerBase()
Prop = integer()

Sets the proportion value of the picker.

Look at the detailed description of wxPickerBase for more info.

getTextCtrlProportion(This) -> integer()
Types:

This = wxPickerBase()
Returns the proportion value of the text control.

This function can be used only when hasTextCtrl/1 returns true.

getPickerCtrlProportion(This) -> integer()
Types:

This = wxPickerBase()
Returns the proportion value of the picker.

hasTextCtrl(This) -> boolean()
Types:

This = wxPickerBase()
Returns true if this window has a valid text control (i.e. if the wxPB_USE_TEXTCTRL style was given when creating
this control).

getTextCtrl(This) -> wxTextCtrl:wxTextCtrl()
Types:

This = wxPickerBase()
Returns a pointer to the text control handled by this window or NULL if the wxPB_USE_TEXTCTRL style was not
specified when this control was created.

Remark: The contents of the text control could be an invalid representation of the entity which can be
chosen through the picker (e.g. when the user enters an invalid colour syntax because of a typo). Thus you
should never parse the content of the textctrl to get the user's input; rather use the derived-class getter (e.g.
wxColourPickerCtrl:getColour/1, wxFilePickerCtrl:getPath/1, etc).

isTextCtrlGrowable(This) -> boolean()
Types:

This = wxPickerBase()
Returns true if the text control is growable.

This function can be used only when hasTextCtrl/1 returns true.

setPickerCtrlGrowable(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 513

wxPickerBase

This = wxPickerBase()

setPickerCtrlGrowable(This, Options :: [Option]) -> ok
Types:

This = wxPickerBase()
Option = {grow, boolean()}

Sets the picker control as growable when grow is true.

setTextCtrlGrowable(This) -> ok
Types:

This = wxPickerBase()

setTextCtrlGrowable(This, Options :: [Option]) -> ok
Types:

This = wxPickerBase()
Option = {grow, boolean()}

Sets the text control as growable when grow is true.

This function can be used only when hasTextCtrl/1 returns true.

isPickerCtrlGrowable(This) -> boolean()
Types:

This = wxPickerBase()
Returns true if the picker control is growable.

514 | Ericsson AB. All Rights Reserved.: wxErlang

wxPopupTransientWindow

wxPopupTransientWindow
Erlang module

A wxPopupWindow which disappears automatically when the user clicks mouse outside it or if it loses focus in any
other way.

This window can be useful for implementing custom combobox-like controls for example.

See: wxPopupWindow

This class is derived (and can use functions) from: wxPopupWindow wxWindow wxEvtHandler

wxWidgets docs: wxPopupTransientWindow

Data Types
wxPopupTransientWindow() = wx:wx_object()

Exports

new() -> wxPopupTransientWindow()
Default constructor.

new(Parent) -> wxPopupTransientWindow()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxPopupTransientWindow()
Types:

Parent = wxWindow:wxWindow()
Option = {style, integer()}

Constructor.

popup(This) -> ok
Types:

This = wxPopupTransientWindow()

popup(This, Options :: [Option]) -> ok
Types:

This = wxPopupTransientWindow()
Option = {focus, wxWindow:wxWindow()}

Popup the window (this will show it too).

If focus is non-NULL, it will be kept focused while this window is shown if supported by the current platform,
otherwise the popup itself will receive focus. In any case, the popup will disappear automatically if it loses focus
because of a user action.

See: dismiss/1

Ericsson AB. All Rights Reserved.: wxErlang | 515

href

wxPopupTransientWindow

dismiss(This) -> ok
Types:

This = wxPopupTransientWindow()
Hide the window.

destroy(This :: wxPopupTransientWindow()) -> ok
Destroys the object.

516 | Ericsson AB. All Rights Reserved.: wxErlang

wxPopupWindow

wxPopupWindow
Erlang module

A special kind of top level window used for popup menus, combobox popups and such.

Styles

This class supports the following styles:

See: wxDialog, wxFrame

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxPopupWindow

Data Types
wxPopupWindow() = wx:wx_object()

Exports

new() -> wxPopupWindow()
Default constructor.

new(Parent) -> wxPopupWindow()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxPopupWindow()
Types:

Parent = wxWindow:wxWindow()
Option = {flags, integer()}

Constructor.

create(This, Parent) -> boolean()
Types:

This = wxPopupWindow()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxPopupWindow()
Parent = wxWindow:wxWindow()
Option = {flags, integer()}

Create method for two-step creation.

position(This, PtOrigin, SizePopup) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 517

href

wxPopupWindow

This = wxPopupWindow()
PtOrigin = {X :: integer(), Y :: integer()}
SizePopup = {W :: integer(), H :: integer()}

Move the popup window to the right position, i.e. such that it is entirely visible.

The popup is positioned at ptOrigin + size if it opens below and to the right (default), at ptOrigin - sizePopup if it
opens above and to the left etc.

destroy(This :: wxPopupWindow()) -> ok
Destroys the object.

518 | Ericsson AB. All Rights Reserved.: wxErlang

wxPostScriptDC

wxPostScriptDC
Erlang module

This defines the wxWidgets Encapsulated PostScript device context, which can write PostScript files on any platform.
See wxDC for descriptions of the member functions.

Starting a document

Document should be started with call to wxDC:startDoc/2 prior to calling any function to execute a
drawing operation. However, some functions, like wxDC:setFont/2, may be legitimately called even before
wxDC:startDoc/2.

This class is derived (and can use functions) from: wxDC

wxWidgets docs: wxPostScriptDC

Data Types
wxPostScriptDC() = wx:wx_object()

Exports

new() -> wxPostScriptDC()

new(PrintData) -> wxPostScriptDC()
Types:

PrintData = wxPrintData:wxPrintData()
Constructs a PostScript printer device context from a wxPrintData object.

destroy(This :: wxPostScriptDC()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 519

href

wxPreviewCanvas

wxPreviewCanvas
Erlang module

A preview canvas is the default canvas used by the print preview system to display the preview.

See: wxPreviewFrame, wxPreviewControlBar, wxPrintPreview

This class is derived (and can use functions) from: wxScrolledWindow wxPanel wxWindow wxEvtHandler

wxWidgets docs: wxPreviewCanvas

Data Types
wxPreviewCanvas() = wx:wx_object()

520 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxPreviewControlBar

wxPreviewControlBar
Erlang module

This is the default implementation of the preview control bar, a panel with buttons and a zoom control.

You can derive a new class from this and override some or all member functions to change the behaviour and
appearance; or you can leave it as it is.

See: wxPreviewFrame, wxPreviewCanvas, wxPrintPreview

This class is derived (and can use functions) from: wxPanel wxWindow wxEvtHandler

wxWidgets docs: wxPreviewControlBar

Data Types
wxPreviewControlBar() = wx:wx_object()

Exports

new(Preview, Buttons, Parent) -> wxPreviewControlBar()
Types:

Preview = wxPrintPreview:wxPrintPreview()
Buttons = integer()
Parent = wxWindow:wxWindow()

new(Preview, Buttons, Parent, Options :: [Option]) ->
 wxPreviewControlBar()
Types:

Preview = wxPrintPreview:wxPrintPreview()
Buttons = integer()
Parent = wxWindow:wxWindow()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor.

The buttons parameter may be a combination of the following, using the bitwise 'or' operator:

destroy(This :: wxPreviewControlBar()) -> ok
Destructor.

createButtons(This) -> ok
Types:

This = wxPreviewControlBar()
Creates buttons, according to value of the button style flags.

Ericsson AB. All Rights Reserved.: wxErlang | 521

href

wxPreviewControlBar

getPrintPreview(This) -> wxPrintPreview:wxPrintPreview()
Types:

This = wxPreviewControlBar()
Gets the print preview object associated with the control bar.

getZoomControl(This) -> integer()
Types:

This = wxPreviewControlBar()
Gets the current zoom setting in percent.

setZoomControl(This, Percent) -> ok
Types:

This = wxPreviewControlBar()
Percent = integer()

Sets the zoom control.

522 | Ericsson AB. All Rights Reserved.: wxErlang

wxPreviewFrame

wxPreviewFrame
Erlang module

This class provides the default method of managing the print preview interface. Member functions may be overridden
to replace functionality, or the class may be used without derivation.

See: wxPreviewCanvas, wxPreviewControlBar, wxPrintPreview

This class is derived (and can use functions) from: wxFrame wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxPreviewFrame

Data Types
wxPreviewFrame() = wx:wx_object()

Exports

new(Preview, Parent) -> wxPreviewFrame()
Types:

Preview = wxPrintPreview:wxPrintPreview()
Parent = wxWindow:wxWindow()

new(Preview, Parent, Options :: [Option]) -> wxPreviewFrame()
Types:

Preview = wxPrintPreview:wxPrintPreview()
Parent = wxWindow:wxWindow()
Option =
 {title, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor.

Pass a print preview object plus other normal frame arguments. The print preview object will be destroyed by the
frame when it closes.

destroy(This :: wxPreviewFrame()) -> ok
Destructor.

createControlBar(This) -> ok
Types:

This = wxPreviewFrame()
Creates a wxPreviewControlBar.

Override this function to allow a user-defined preview control bar object to be created.

Ericsson AB. All Rights Reserved.: wxErlang | 523

href

wxPreviewFrame

createCanvas(This) -> ok
Types:

This = wxPreviewFrame()
Creates a wxPreviewCanvas.

Override this function to allow a user-defined preview canvas object to be created.

initialize(This) -> ok
Types:

This = wxPreviewFrame()
Initializes the frame elements and prepares for showing it.

Calling this method is equivalent to calling InitializeWithModality() (not implemented in wx) with
wxPreviewFrame_AppModal argument, please see its documentation for more details.

Please notice that this function is virtual mostly for backwards compatibility only, there is no real need to override
it as it's never called by wxWidgets itself.

onCloseWindow(This, Event) -> ok
Types:

This = wxPreviewFrame()
Event = wxCloseEvent:wxCloseEvent()

Enables any disabled frames in the application, and deletes the print preview object, implicitly deleting any printout
objects associated with the print preview object.

524 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintData

wxPrintData
Erlang module

This class holds a variety of information related to printers and printer device contexts. This class is used to
create a wxPrinterDC (not implemented in wx) and a wxPostScriptDC. It is also used as a data member of
wxPrintDialogData and wxPageSetupDialogData, as part of the mechanism for transferring data between
the print dialogs and the application.

See: Overview printing, wxPrintDialog, wxPageSetupDialog, wxPrintDialogData,
wxPageSetupDialogData, Overview cmndlg, wxPrinterDC (not implemented in wx), wxPostScriptDC

wxWidgets docs: wxPrintData

Data Types
wxPrintData() = wx:wx_object()

Exports

new() -> wxPrintData()
Default constructor.

new(Data) -> wxPrintData()
Types:

Data = wxPrintData()
Copy constructor.

destroy(This :: wxPrintData()) -> ok
Destructor.

getCollate(This) -> boolean()
Types:

This = wxPrintData()
Returns true if collation is on.

getBin(This) -> wx:wx_enum()
Types:

This = wxPrintData()
Returns the current bin (papersource).

By default, the system is left to select the bin (wxPRINTBIN_DEFAULT is returned).

See setBin/2 for the full list of bin values.

getColour(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 525

href
href
href

wxPrintData

This = wxPrintData()
Returns true if colour printing is on.

getDuplex(This) -> wx:wx_enum()
Types:

This = wxPrintData()
Returns the duplex mode.

One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL, wxDUPLEX_VERTICAL.

getNoCopies(This) -> integer()
Types:

This = wxPrintData()
Returns the number of copies requested by the user.

getOrientation(This) -> wx:wx_enum()
Types:

This = wxPrintData()
Gets the orientation.

This can be wxLANDSCAPE or wxPORTRAIT.

getPaperId(This) -> wx:wx_enum()
Types:

This = wxPrintData()
Returns the paper size id.

See: setPaperId/2

getPrinterName(This) -> unicode:charlist()
Types:

This = wxPrintData()
Returns the printer name.

If the printer name is the empty string, it indicates that the default printer should be used.

getQuality(This) -> integer()
Types:

This = wxPrintData()
Returns the current print quality.

This can be a positive integer, denoting the number of dots per inch, or one of the following identifiers:

On input you should pass one of these identifiers, but on return you may get back a positive integer indicating the
current resolution setting.

isOk(This) -> boolean()
Types:

526 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintData

This = wxPrintData()
Returns true if the print data is valid for using in print dialogs.

This can return false on Windows if the current printer is not set, for example. On all other platforms, it returns true.

setBin(This, Flag) -> ok
Types:

This = wxPrintData()
Flag = wx:wx_enum()

Sets the current bin.

setCollate(This, Flag) -> ok
Types:

This = wxPrintData()
Flag = boolean()

Sets collation to on or off.

setColour(This, Flag) -> ok
Types:

This = wxPrintData()
Flag = boolean()

Sets colour printing on or off.

setDuplex(This, Mode) -> ok
Types:

This = wxPrintData()
Mode = wx:wx_enum()

Returns the duplex mode.

One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL, wxDUPLEX_VERTICAL.

setNoCopies(This, N) -> ok
Types:

This = wxPrintData()
N = integer()

Sets the default number of copies to be printed out.

setOrientation(This, Orientation) -> ok
Types:

This = wxPrintData()
Orientation = wx:wx_enum()

Sets the orientation.

This can be wxLANDSCAPE or wxPORTRAIT.

Ericsson AB. All Rights Reserved.: wxErlang | 527

wxPrintData

setPaperId(This, PaperId) -> ok
Types:

This = wxPrintData()
PaperId = wx:wx_enum()

Sets the paper id.

This indicates the type of paper to be used. For a mapping between paper id, paper size and string name, see
wxPrintPaperDatabase in "paper.h" (not yet documented).

See: SetPaperSize() (not implemented in wx)

setPrinterName(This, PrinterName) -> ok
Types:

This = wxPrintData()
PrinterName = unicode:chardata()

Sets the printer name.

This can be the empty string to indicate that the default printer should be used.

setQuality(This, Quality) -> ok
Types:

This = wxPrintData()
Quality = integer()

Sets the desired print quality.

This can be a positive integer, denoting the number of dots per inch, or one of the following identifiers:

On input you should pass one of these identifiers, but on return you may get back a positive integer indicating the
current resolution setting.

528 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintDialogData

wxPrintDialogData
Erlang module

This class holds information related to the visual characteristics of wxPrintDialog. It contains a wxPrintData
object with underlying printing settings.

See: Overview printing, wxPrintDialog, Overview cmndlg

wxWidgets docs: wxPrintDialogData

Data Types
wxPrintDialogData() = wx:wx_object()

Exports

new() -> wxPrintDialogData()
Default constructor.

new(DialogData) -> wxPrintDialogData()
Types:

DialogData =
 wxPrintDialogData:wxPrintDialogData() |
 wxPrintData:wxPrintData()

Copy constructor.

destroy(This :: wxPrintDialogData()) -> ok
Destructor.

enableHelp(This, Flag) -> ok
Types:

This = wxPrintDialogData()
Flag = boolean()

Enables or disables the "Help" button.

enablePageNumbers(This, Flag) -> ok
Types:

This = wxPrintDialogData()
Flag = boolean()

Enables or disables the "Page numbers" controls.

enablePrintToFile(This, Flag) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 529

href
href
href

wxPrintDialogData

This = wxPrintDialogData()
Flag = boolean()

Enables or disables the "Print to file" checkbox.

enableSelection(This, Flag) -> ok
Types:

This = wxPrintDialogData()
Flag = boolean()

Enables or disables the "Selection" radio button.

getAllPages(This) -> boolean()
Types:

This = wxPrintDialogData()
Returns true if the user requested that all pages be printed.

getCollate(This) -> boolean()
Types:

This = wxPrintDialogData()
Returns true if the user requested that the document(s) be collated.

getFromPage(This) -> integer()
Types:

This = wxPrintDialogData()
Returns the from page number, as entered by the user.

getMaxPage(This) -> integer()
Types:

This = wxPrintDialogData()
Returns the maximum page number.

getMinPage(This) -> integer()
Types:

This = wxPrintDialogData()
Returns the minimum page number.

getNoCopies(This) -> integer()
Types:

This = wxPrintDialogData()
Returns the number of copies requested by the user.

getPrintData(This) -> wxPrintData:wxPrintData()
Types:

530 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintDialogData

This = wxPrintDialogData()
Returns a reference to the internal wxPrintData object.

getPrintToFile(This) -> boolean()
Types:

This = wxPrintDialogData()
Returns true if the user has selected printing to a file.

getSelection(This) -> boolean()
Types:

This = wxPrintDialogData()
Returns true if the user requested that the selection be printed (where "selection" is a concept specific to the application).

getToPage(This) -> integer()
Types:

This = wxPrintDialogData()
Returns the "print to" page number, as entered by the user.

isOk(This) -> boolean()
Types:

This = wxPrintDialogData()
Returns true if the print data is valid for using in print dialogs.

This can return false on Windows if the current printer is not set, for example. On all other platforms, it returns true.

setCollate(This, Flag) -> ok
Types:

This = wxPrintDialogData()
Flag = boolean()

Sets the "Collate" checkbox to true or false.

setFromPage(This, Page) -> ok
Types:

This = wxPrintDialogData()
Page = integer()

Sets the from page number.

setMaxPage(This, Page) -> ok
Types:

This = wxPrintDialogData()
Page = integer()

Sets the maximum page number.

Ericsson AB. All Rights Reserved.: wxErlang | 531

wxPrintDialogData

setMinPage(This, Page) -> ok
Types:

This = wxPrintDialogData()
Page = integer()

Sets the minimum page number.

setNoCopies(This, N) -> ok
Types:

This = wxPrintDialogData()
N = integer()

Sets the default number of copies the user has requested to be printed out.

setPrintData(This, PrintData) -> ok
Types:

This = wxPrintDialogData()
PrintData = wxPrintData:wxPrintData()

Sets the internal wxPrintData.

setPrintToFile(This, Flag) -> ok
Types:

This = wxPrintDialogData()
Flag = boolean()

Sets the "Print to file" checkbox to true or false.

setSelection(This, Flag) -> ok
Types:

This = wxPrintDialogData()
Flag = boolean()

Selects the "Selection" radio button.

The effect of printing the selection depends on how the application implements this command, if at all.

setToPage(This, Page) -> ok
Types:

This = wxPrintDialogData()
Page = integer()

Sets the "print to" page number.

532 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintDialog

wxPrintDialog
Erlang module

This class represents the print and print setup common dialogs. You may obtain a wxPrinterDC (not implemented
in wx) device context from a successfully dismissed print dialog.

See: Overview printing, Overview cmndlg

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxPrintDialog

Data Types
wxPrintDialog() = wx:wx_object()

Exports

new(Parent) -> wxPrintDialog()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxPrintDialog()
new(Parent, Data) -> wxPrintDialog()
Types:

Parent = wxWindow:wxWindow()
Data = wxPrintData:wxPrintData()

destroy(This :: wxPrintDialog()) -> ok
Destructor.

If getPrintDC/1 has not been called, the device context obtained by the dialog (if any) will be deleted.

getPrintDialogData(This) -> wxPrintDialogData:wxPrintDialogData()
Types:

This = wxPrintDialog()
Returns the print dialog data associated with the print dialog.

getPrintDC(This) -> wxDC:wxDC()
Types:

This = wxPrintDialog()
Returns the device context created by the print dialog, if any.

When this function has been called, the ownership of the device context is transferred to the application, so it must
then be deleted explicitly.

Ericsson AB. All Rights Reserved.: wxErlang | 533

href
href
href

wxPrinter

wxPrinter
Erlang module

This class represents the Windows or PostScript printer, and is the vehicle through which printing may be launched
by an application.

Printing can also be achieved through using of lower functions and classes, but this and associated classes provide a
more convenient and general method of printing.

See: Overview printing, wxPrinterDC (not implemented in wx), wxPrintDialog, wxPrintout,
wxPrintPreview

wxWidgets docs: wxPrinter

Data Types
wxPrinter() = wx:wx_object()

Exports

new() -> wxPrinter()

new(Options :: [Option]) -> wxPrinter()
Types:

Option = {data, wxPrintDialogData:wxPrintDialogData()}
Constructor.

Pass an optional pointer to a block of print dialog data, which will be copied to the printer object's local data.

See: wxPrintDialogData, wxPrintData

createAbortWindow(This, Parent, Printout) -> wxDialog:wxDialog()
Types:

This = wxPrinter()
Parent = wxWindow:wxWindow()
Printout = wxPrintout:wxPrintout()

Creates the default printing abort window, with a cancel button.

getAbort(This) -> boolean()
Types:

This = wxPrinter()
Returns true if the user has aborted the print job.

getLastError() -> wx:wx_enum()
Return last error.

Valid after calling print/4, printDialog/2 or wxPrintPreview:print/2.

These functions set last error to wxPRINTER_NO_ERROR if no error happened.

534 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxPrinter

Returned value is one of the following:

getPrintDialogData(This) -> wxPrintDialogData:wxPrintDialogData()
Types:

This = wxPrinter()
Returns the print data associated with the printer object.

print(This, Parent, Printout) -> boolean()
Types:

This = wxPrinter()
Parent = wxWindow:wxWindow()
Printout = wxPrintout:wxPrintout()

print(This, Parent, Printout, Options :: [Option]) -> boolean()
Types:

This = wxPrinter()
Parent = wxWindow:wxWindow()
Printout = wxPrintout:wxPrintout()
Option = {prompt, boolean()}

Starts the printing process.

Provide a parent window, a user-defined wxPrintout object which controls the printing of a document, and whether
the print dialog should be invoked first.

print/4 could return false if there was a problem initializing the printer device context (current printer not set, for
example) or the user cancelled printing. Call getLastError/0 to get detailed information about the kind of the
error.

printDialog(This, Parent) -> wxDC:wxDC()
Types:

This = wxPrinter()
Parent = wxWindow:wxWindow()

Invokes the print dialog.

If successful (the user did not press Cancel and no error occurred), a suitable device context will be returned; otherwise
NULL is returned; call getLastError/0 to get detailed information about the kind of the error.

Remark: The application must delete this device context to avoid a memory leak.

reportError(This, Parent, Printout, Message) -> ok
Types:

This = wxPrinter()
Parent = wxWindow:wxWindow()
Printout = wxPrintout:wxPrintout()
Message = unicode:chardata()

Default error-reporting function.

Ericsson AB. All Rights Reserved.: wxErlang | 535

wxPrinter

setup(This, Parent) -> boolean()
Types:

This = wxPrinter()
Parent = wxWindow:wxWindow()

Invokes the print setup dialog.

Deprecated: The setup dialog is obsolete, though retained for backward compatibility.

destroy(This :: wxPrinter()) -> ok
Destroys the object.

536 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintout

wxPrintout
Erlang module

This class encapsulates the functionality of printing out an application document.

A new class must be derived and members overridden to respond to calls such as OnPrintPage() (not implemented
in wx) and HasPage() (not implemented in wx) and to render the print image onto an associated wxDC. Instances of
this class are passed to wxPrinter:print/4 or to a wxPrintPreview object to initiate printing or previewing.

Your derived wxPrintout is responsible for drawing both the preview image and the printed page. If your windows'
drawing routines accept an arbitrary DC as an argument, you can re-use those routines within your wxPrintout
subclass to draw the printout image. You may also add additional drawing elements within your wxPrintout
subclass, like headers, footers, and/or page numbers. However, the image on the printed page will often differ from
the image drawn on the screen, as will the print preview image - not just in the presence of headers and footers, but
typically in scale. A high-resolution printer presents a much larger drawing surface (i.e., a higher-resolution DC); a
zoomed-out preview image presents a much smaller drawing surface (lower-resolution DC). By using the routines
FitThisSizeToXXX() and/or MapScreenSizeToXXX() within your wxPrintout subclass to set the user scale and
origin of the associated DC, you can easily use a single drawing routine to draw on your application's windows, to
create the print preview image, and to create the printed paper image, and achieve a common appearance to the preview
image and the printed page.

See: Overview printing, wxPrinterDC (not implemented in wx), wxPrintDialog, wxPageSetupDialog,
wxPrinter, wxPrintPreview

wxWidgets docs: wxPrintout

Data Types
wxPrintout() = wx:wx_object()

Exports

new(Title :: string(), OnPrintPage, Opts :: [Option]) ->
 wxPrintout:wxPrintout()
Types:

OnPrintPage =
 fun((wxPrintout(), Page :: integer()) -> boolean())
Option =
 {onPreparePrinting, fun((wxPrintout()) -> ok)} |
 {onBeginPrinting, fun((wxPrintout()) -> ok)} |
 {onEndPrinting, fun((wxPrintout()) -> ok)} |
 {onBeginDocument,
 fun((wxPrintout(),
 StartPage :: integer(),
 EndPage :: integer()) ->
 boolean())} |
 {onEndDocument, fun((wxPrintout()) -> ok)} |
 {hasPage, fun((wxPrintout(), Page :: integer()) -> ok)} |
 {getPageInfo,
 fun((wxPrintout()) ->
 {MinPage :: integer(),
 MaxPage :: integer(),

Ericsson AB. All Rights Reserved.: wxErlang | 537

href
href

wxPrintout

 PageFrom :: integer(),
 PageTo :: integer()})}

Constructor.

Creates a wxPrintout object with a callback fun and optionally other callback funs. The This argument is the
wxPrintout object reference to this object

Notice: The callbacks may not call other processes.

destroy(This :: wxPrintout()) -> ok
Destructor.

getDC(This) -> wxDC:wxDC()
Types:

This = wxPrintout()
Returns the device context associated with the printout (given to the printout at start of printing or previewing).

The application can use getDC/1 to obtain a device context to draw on.

This will be a wxPrinterDC (not implemented in wx) if printing under Windows or Mac, a wxPostScriptDC if
printing on other platforms, and a wxMemoryDC if previewing.

getPageSizeMM(This) -> {W :: integer(), H :: integer()}
Types:

This = wxPrintout()
Returns the size of the printer page in millimetres.

getPageSizePixels(This) -> {W :: integer(), H :: integer()}
Types:

This = wxPrintout()
Returns the size of the printer page in pixels, called the page rectangle.

The page rectangle has a top left corner at (0,0) and a bottom right corner at (w,h). These values may not be the same as
the values returned from wxDC:getSize/1; if the printout is being used for previewing, a memory device context
is used, which uses a bitmap size reflecting the current preview zoom. The application must take this discrepancy into
account if previewing is to be supported.

getPaperRectPixels(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxPrintout()
Returns the rectangle that corresponds to the entire paper in pixels, called the paper rectangle.

This distinction between paper rectangle and page rectangle reflects the fact that most printers cannot print all the way
to the edge of the paper. The page rectangle is a rectangle whose top left corner is at (0,0) and whose width and height
are given by wxDC::GetPageSizePixels().

538 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintout

On MSW and Mac, the page rectangle gives the printable area of the paper, while the paper rectangle represents the
entire paper, including non-printable borders. Thus, the rectangle returned by wxDC::GetPaperRectPixels() will have
a top left corner whose coordinates are small negative numbers and the bottom right corner will have values somewhat
larger than the width and height given by wxDC::GetPageSizePixels().

On other platforms and for PostScript printing, the paper is treated as if its entire area were printable, so this function
will return the same rectangle as the page rectangle.

getPPIPrinter(This) -> {W :: integer(), H :: integer()}
Types:

This = wxPrintout()
Returns the number of pixels per logical inch of the printer device context.

Dividing the printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the printer.

Remember to multiply this by a scaling factor to take the preview DC size into account. Or you can just use the
FitThisSizeToXXX() and MapScreenSizeToXXX routines below, which do most of the scaling calculations for you.

getPPIScreen(This) -> {W :: integer(), H :: integer()}
Types:

This = wxPrintout()
Returns the number of pixels per logical inch of the screen device context.

Dividing the printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the printer.

If you are doing your own scaling, remember to multiply this by a scaling factor to take the preview DC size into
account.

getTitle(This) -> unicode:charlist()
Types:

This = wxPrintout()
Returns the title of the printout.

isPreview(This) -> boolean()
Types:

This = wxPrintout()
Returns true if the printout is currently being used for previewing.

See: GetPreview() (not implemented in wx)

fitThisSizeToPaper(This, ImageSize) -> ok
Types:

This = wxPrintout()
ImageSize = {W :: integer(), H :: integer()}

Set the user scale and device origin of the wxDC associated with this wxPrintout so that the given image size fits
entirely within the paper and the origin is at the top left corner of the paper.

Use this if you're managing your own page margins.

Note: With most printers, the region around the edges of the paper are not printable so that the edges of the image
could be cut off.

Ericsson AB. All Rights Reserved.: wxErlang | 539

wxPrintout

fitThisSizeToPage(This, ImageSize) -> ok
Types:

This = wxPrintout()
ImageSize = {W :: integer(), H :: integer()}

Set the user scale and device origin of the wxDC associated with this wxPrintout so that the given image size fits
entirely within the page rectangle and the origin is at the top left corner of the page rectangle.

On MSW and Mac, the page rectangle is the printable area of the page. On other platforms and PostScript printing,
the page rectangle is the entire paper.

Use this if you want your printed image as large as possible, but with the caveat that on some platforms, portions of
the image might be cut off at the edges.

fitThisSizeToPageMargins(This, ImageSize, PageSetupData) -> ok
Types:

This = wxPrintout()
ImageSize = {W :: integer(), H :: integer()}
PageSetupData = wxPageSetupDialogData:wxPageSetupDialogData()

Set the user scale and device origin of the wxDC associated with this wxPrintout so that the given image size fits
entirely within the page margins set in the given wxPageSetupDialogData object.

This function provides the greatest consistency across all platforms because it does not depend on having access to
the printable area of the paper.

Remark: On Mac, the native wxPageSetupDialog does not let you set the page margins; you'll have to provide
your own mechanism, or you can use the Mac-only class wxMacPageMarginsDialog.

mapScreenSizeToPaper(This) -> ok
Types:

This = wxPrintout()
Set the user scale and device origin of the wxDC associated with this wxPrintout so that the printed page matches
the screen size as closely as possible and the logical origin is in the top left corner of the paper rectangle.

That is, a 100-pixel object on screen should appear at the same size on the printed page. (It will, of course, be larger
or smaller in the preview image, depending on the zoom factor.)

Use this if you want WYSIWYG behaviour, e.g., in a text editor.

mapScreenSizeToPage(This) -> ok
Types:

This = wxPrintout()
This sets the user scale of the wxDC associated with this wxPrintout to the same scale as
mapScreenSizeToPaper/1 but sets the logical origin to the top left corner of the page rectangle.

mapScreenSizeToPageMargins(This, PageSetupData) -> ok
Types:

540 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintout

This = wxPrintout()
PageSetupData = wxPageSetupDialogData:wxPageSetupDialogData()

This sets the user scale of the wxDC associated with this wxPrintout to the same scale as
mapScreenSizeToPageMargins/2 but sets the logical origin to the top left corner of the page margins specified
by the given wxPageSetupDialogData object.

mapScreenSizeToDevice(This) -> ok
Types:

This = wxPrintout()
Set the user scale and device origin of the wxDC associated with this wxPrintout so that one screen pixel maps
to one device pixel on the DC.

That is, the user scale is set to (1,1) and the device origin is set to (0,0).

Use this if you want to do your own scaling prior to calling wxDC drawing calls, for example, if your underlying model
is floating-point and you want to achieve maximum drawing precision on high-resolution printers.

You can use the GetLogicalXXXRect() routines below to obtain the paper rectangle, page rectangle, or page margins
rectangle to perform your own scaling.

Note: While the underlying drawing model of macOS is floating-point, wxWidgets's drawing model scales from integer
coordinates.

getLogicalPaperRect(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxPrintout()
Return the rectangle corresponding to the paper in the associated wxDC 's logical coordinates for the current user scale
and device origin.

getLogicalPageRect(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxPrintout()
Return the rectangle corresponding to the page in the associated wxDC 's logical coordinates for the current user scale
and device origin.

On MSW and Mac, this will be the printable area of the paper. On other platforms and PostScript printing, this will
be the full paper rectangle.

getLogicalPageMarginsRect(This, PageSetupData) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),

Ericsson AB. All Rights Reserved.: wxErlang | 541

wxPrintout

 H :: integer()}
Types:

This = wxPrintout()
PageSetupData = wxPageSetupDialogData:wxPageSetupDialogData()

Return the rectangle corresponding to the page margins specified by the given wxPageSetupDialogData object
in the associated wxDC's logical coordinates for the current user scale and device origin.

The page margins are specified with respect to the edges of the paper on all platforms.

setLogicalOrigin(This, X, Y) -> ok
Types:

This = wxPrintout()
X = Y = integer()

Set the device origin of the associated wxDC so that the current logical point becomes the new logical origin.

offsetLogicalOrigin(This, Xoff, Yoff) -> ok
Types:

This = wxPrintout()
Xoff = Yoff = integer()

Shift the device origin by an amount specified in logical coordinates.

542 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintPreview

wxPrintPreview
Erlang module

Objects of this class manage the print preview process. The object is passed a wxPrintout object, and the
wxPrintPreview object itself is passed to a wxPreviewFrame object. Previewing is started by initializing and
showing the preview frame. Unlike wxPrinter:print/4, flow of control returns to the application immediately
after the frame is shown.

Note: The preview shown is only exact on Windows. On other platforms, the wxDC used for preview is different from
what is used for printing and the results may be significantly different, depending on how is the output created. In
particular, printing code relying on wxDC:getTextExtent/3 heavily (for example, wxHtmlEasyPrinting
and other wxHTML classes do) is affected. It is recommended to use native preview functionality on platforms that
offer it (macOS, GTK+).

See: Overview printing, wxPrinterDC (not implemented in wx), wxPrintDialog, wxPrintout,
wxPrinter, wxPreviewCanvas, wxPreviewControlBar, wxPreviewFrame

wxWidgets docs: wxPrintPreview

Data Types
wxPrintPreview() = wx:wx_object()

Exports

new(Printout) -> wxPrintPreview()
Types:

Printout = wxPrintout:wxPrintout()

new(Printout, Options :: [Option]) -> wxPrintPreview()
Types:

Printout = wxPrintout:wxPrintout()
Option =
 {printoutForPrinting, wxPrintout:wxPrintout()} |
 {data, wxPrintDialogData:wxPrintDialogData()}

Constructor.

Pass a printout object, an optional printout object to be used for actual printing, and the address of an optional block
of printer data, which will be copied to the print preview object's print data.

If printoutForPrinting is non-NULL, a "Print..." button will be placed on the preview frame so that the
user can print directly from the preview interface.

Remark: Do not explicitly delete the printout objects once this constructor has been called, since they will be deleted
in the wxPrintPreview destructor. The same does not apply to the data argument.

Use isOk/1 to check whether the wxPrintPreview object was created correctly.

new(Printout, PrintoutForPrinting, Data) -> wxPrintPreview()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 543

href
href

wxPrintPreview

Printout = PrintoutForPrinting = wxPrintout:wxPrintout()
Data = wxPrintData:wxPrintData()

destroy(This :: wxPrintPreview()) -> ok
Destructor.

Deletes both print preview objects, so do not destroy these objects in your application.

getCanvas(This) -> wxPreviewCanvas:wxPreviewCanvas()
Types:

This = wxPrintPreview()
Gets the preview window used for displaying the print preview image.

getCurrentPage(This) -> integer()
Types:

This = wxPrintPreview()
Gets the page currently being previewed.

getFrame(This) -> wxFrame:wxFrame()
Types:

This = wxPrintPreview()
Gets the frame used for displaying the print preview canvas and control bar.

getMaxPage(This) -> integer()
Types:

This = wxPrintPreview()
Returns the maximum page number.

getMinPage(This) -> integer()
Types:

This = wxPrintPreview()
Returns the minimum page number.

getPrintout(This) -> wxPrintout:wxPrintout()
Types:

This = wxPrintPreview()
Gets the preview printout object associated with the wxPrintPreview object.

getPrintoutForPrinting(This) -> wxPrintout:wxPrintout()
Types:

This = wxPrintPreview()
Gets the printout object to be used for printing from within the preview interface, or NULL if none exists.

544 | Ericsson AB. All Rights Reserved.: wxErlang

wxPrintPreview

isOk(This) -> boolean()
Types:

This = wxPrintPreview()
Returns true if the wxPrintPreview is valid, false otherwise.

It could return false if there was a problem initializing the printer device context (current printer not set, for example).

paintPage(This, Canvas, Dc) -> boolean()
Types:

This = wxPrintPreview()
Canvas = wxPreviewCanvas:wxPreviewCanvas()
Dc = wxDC:wxDC()

This refreshes the preview window with the preview image.

It must be called from the preview window's OnPaint member.

The implementation simply blits the preview bitmap onto the canvas, creating a new preview bitmap if none exists.

print(This, Prompt) -> boolean()
Types:

This = wxPrintPreview()
Prompt = boolean()

Invokes the print process using the second wxPrintout object supplied in the wxPrintPreview constructor.

Will normally be called by the Print... panel item on the preview frame's control bar.

Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of
the error.

renderPage(This, PageNum) -> boolean()
Types:

This = wxPrintPreview()
PageNum = integer()

Renders a page into a wxMemoryDC.

Used internally by wxPrintPreview.

setCanvas(This, Window) -> ok
Types:

This = wxPrintPreview()
Window = wxPreviewCanvas:wxPreviewCanvas()

Sets the window to be used for displaying the print preview image.

setCurrentPage(This, PageNum) -> boolean()
Types:

This = wxPrintPreview()
PageNum = integer()

Sets the current page to be previewed.

Ericsson AB. All Rights Reserved.: wxErlang | 545

wxPrintPreview

setFrame(This, Frame) -> ok
Types:

This = wxPrintPreview()
Frame = wxFrame:wxFrame()

Sets the frame to be used for displaying the print preview canvas and control bar.

setPrintout(This, Printout) -> ok
Types:

This = wxPrintPreview()
Printout = wxPrintout:wxPrintout()

Associates a printout object with the wxPrintPreview object.

setZoom(This, Percent) -> ok
Types:

This = wxPrintPreview()
Percent = integer()

Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

546 | Ericsson AB. All Rights Reserved.: wxErlang

wxProgressDialog

wxProgressDialog
Erlang module

If supported by the platform this class will provide the platform's native progress dialog, else it will simply be the
wxGenericProgressDialog (not implemented in wx).

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxProgressDialog

Data Types
wxProgressDialog() = wx:wx_object()

Exports

new(Title, Message) -> wxProgressDialog()
Types:

Title = Message = unicode:chardata()

new(Title, Message, Options :: [Option]) -> wxProgressDialog()
Types:

Title = Message = unicode:chardata()
Option =
 {maximum, integer()} |
 {parent, wxWindow:wxWindow()} |
 {style, integer()}

resume(This) -> ok
Types:

This = wxProgressDialog()
Can be used to continue with the dialog, after the user had clicked the "Abort" button.

update(This, Value) -> boolean()
Types:

This = wxProgressDialog()
Value = integer()

update(This, Value, Options :: [Option]) -> boolean()
Types:

This = wxProgressDialog()
Value = integer()
Option = {newmsg, unicode:chardata()}

Updates the dialog, setting the progress bar to the new value and updating the message if new one is specified.

Returns true unless the "Cancel" button has been pressed.

Ericsson AB. All Rights Reserved.: wxErlang | 547

href

wxProgressDialog

If false is returned, the application can either immediately destroy the dialog or ask the user for the confirmation and
if the abort is not confirmed the dialog may be resumed with resume/1 function.

If value is the maximum value for the dialog, the behaviour of the function depends on whether wxPD_AUTO_HIDE
was used when the dialog was created. If it was, the dialog is hidden and the function returns immediately. If it was
not, the dialog becomes a modal dialog and waits for the user to dismiss it, meaning that this function does not return
until this happens.

Notice that if newmsg is longer than the currently shown message, the dialog will be automatically made wider to
account for it. However if the new message is shorter than the previous one, the dialog doesn't shrink back to avoid
constant resizes if the message is changed often. To do this and fit the dialog to its current contents you may call
wxWindow:fit/1 explicitly. However the native MSW implementation of this class does make the dialog shorter if
the new text has fewer lines of text than the old one, so it is recommended to keep the number of lines of text constant
in order to avoid jarring dialog size changes. You may also want to make the initial message, specified when creating
the dialog, wide enough to avoid having to resize the dialog later, e.g. by appending a long string of unbreakable spaces
(wxString (not implemented in wx)(L'\u00a0', 100)) to it.

destroy(This :: wxProgressDialog()) -> ok
Destroys the object.

548 | Ericsson AB. All Rights Reserved.: wxErlang

wxQueryNewPaletteEvent

wxQueryNewPaletteEvent
Erlang module

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxQueryNewPaletteEvent

Data Types
wxQueryNewPaletteEvent() = wx:wx_object()
wxQueryNewPalette() =
 #wxQueryNewPalette{type =
 wxQueryNewPaletteEvent:wxQueryNewPaletteEventType()}
wxQueryNewPaletteEventType() = query_new_palette

Exports

setPaletteRealized(This, Realized) -> ok
Types:

This = wxQueryNewPaletteEvent()
Realized = boolean()

getPaletteRealized(This) -> boolean()
Types:

This = wxQueryNewPaletteEvent()

Ericsson AB. All Rights Reserved.: wxErlang | 549

href

wxRadioBox

wxRadioBox
Erlang module

A radio box item is used to select one of number of mutually exclusive choices. It is displayed as a vertical column
or horizontal row of labelled buttons.

Styles

This class supports the following styles:

See: Overview events, wxRadioButton, wxCheckBox

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxRadioBox

Events
Event types emitted from this class: command_radiobox_selected

Data Types
wxRadioBox() = wx:wx_object()

Exports

new(Parent, Id, Label, Pos, Size, Choices) -> wxRadioBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]

new(Parent, Id, Label, Pos, Size, Choices, Options :: [Option]) ->
 wxRadioBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]
Option =
 {majorDim, integer()} |
 {style, integer()} |
 {val, wx:wx_object()}

Constructor, creating and showing a radiobox.

550 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxRadioBox

See: create/8, wxValidator (not implemented in wx)

destroy(This :: wxRadioBox()) -> ok
Destructor, destroying the radiobox item.

create(This, Parent, Id, Label, Pos, Size, Choices) -> boolean()
Types:

This = wxRadioBox()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]

create(This, Parent, Id, Label, Pos, Size, Choices,
 Options :: [Option]) ->
 boolean()
Types:

This = wxRadioBox()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]
Option =
 {majorDim, integer()} |
 {style, integer()} |
 {val, wx:wx_object()}

Creates the radiobox for two-step construction.

See new/7 for further details.

enable(This) -> boolean()
Types:

This = wxRadioBox()

enable(This, N) -> boolean()
enable(This, N :: [Option]) -> boolean()
Types:

This = wxRadioBox()
Option = {enable, boolean()}

Enables or disables the radiobox.

See: wxWindow:enable/2

Ericsson AB. All Rights Reserved.: wxErlang | 551

wxRadioBox

enable(This, N, Options :: [Option]) -> boolean()
Types:

This = wxRadioBox()
N = integer()
Option = {enable, boolean()}

Enables or disables an individual button in the radiobox.

See: wxWindow:enable/2

getSelection(This) -> integer()
Types:

This = wxRadioBox()
Returns the index of the selected item or wxNOT_FOUND if no item is selected.

Return: The position of the current selection.

Remark: This method can be used with single selection list boxes only, you should use
wxListBox:getSelections/1 for the list boxes with wxLB_MULTIPLE style.

See: setSelection/2, wxControlWithItems:getStringSelection/1

getString(This, N) -> unicode:charlist()
Types:

This = wxRadioBox()
N = integer()

Returns the label of the item with the given index.

Return: The label of the item or an empty string if the position was invalid.

setSelection(This, N) -> ok
Types:

This = wxRadioBox()
N = integer()

Sets the selection to the given item.

Notice that a radio box always has selection, so n must be valid here and passing wxNOT_FOUND is not allowed.

show(This, Item) -> boolean()
Types:

This = wxRadioBox()
Item = integer()

show(This, Item, Options :: [Option]) -> boolean()
Types:

This = wxRadioBox()
Item = integer()
Option = {show, boolean()}

Shows or hides individual buttons.

552 | Ericsson AB. All Rights Reserved.: wxErlang

wxRadioBox

Return: true if the item has been shown or hidden or false if nothing was done because it already was in the requested
state.

See: show/3

getColumnCount(This) -> integer()
Types:

This = wxRadioBox()
Returns the number of columns in the radiobox.

getItemHelpText(This, Item) -> unicode:charlist()
Types:

This = wxRadioBox()
Item = integer()

Returns the helptext associated with the specified item if any or wxEmptyString.

See: setItemHelpText/3

getItemToolTip(This, Item) -> wxToolTip:wxToolTip()
Types:

This = wxRadioBox()
Item = integer()

Returns the tooltip associated with the specified item if any or NULL.

See: setItemToolTip/3, wxWindow:getToolTip/1

getItemFromPoint(This, Pt) -> integer()
Types:

This = wxRadioBox()
Pt = {X :: integer(), Y :: integer()}

Returns a radio box item under the point, a zero-based item index, or wxNOT_FOUND if no item is under the point.

getRowCount(This) -> integer()
Types:

This = wxRadioBox()
Returns the number of rows in the radiobox.

isItemEnabled(This, N) -> boolean()
Types:

This = wxRadioBox()
N = integer()

Returns true if the item is enabled or false if it was disabled using enable/3.

This function is currently only implemented in wxMSW, wxGTK, wxQT and wxUniversal and always returns true
in the other ports.

Ericsson AB. All Rights Reserved.: wxErlang | 553

wxRadioBox

isItemShown(This, N) -> boolean()
Types:

This = wxRadioBox()
N = integer()

Returns true if the item is currently shown or false if it was hidden using show/3.

Note that this function returns true for an item which hadn't been hidden even if the entire radiobox is not currently
shown.

This function is currently only implemented in wxMSW, wxGTK, wxQT and wxUniversal and always returns true
in the other ports.

setItemHelpText(This, Item, Helptext) -> ok
Types:

This = wxRadioBox()
Item = integer()
Helptext = unicode:chardata()

Sets the helptext for an item.

Empty string erases any existing helptext.

See: getItemHelpText/2

setItemToolTip(This, Item, Text) -> ok
Types:

This = wxRadioBox()
Item = integer()
Text = unicode:chardata()

Sets the tooltip text for the specified item in the radio group.

This function is currently only implemented in wxMSW and wxGTK2 and does nothing in the other ports.

See: getItemToolTip/2, wxWindow:setToolTip/2

554 | Ericsson AB. All Rights Reserved.: wxErlang

wxRadioButton

wxRadioButton
Erlang module

A radio button item is a button which usually denotes one of several mutually exclusive options. It has a text label
next to a (usually) round button.

You can create a group of mutually-exclusive radio buttons by specifying wxRB_GROUP for the first in the group.
The group ends when another radio button group is created, or there are no more radio buttons.

Styles

This class supports the following styles:

See: Overview events, wxRadioBox, wxCheckBox

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxRadioButton

Events
Event types emitted from this class: command_radiobutton_selected

Data Types
wxRadioButton() = wx:wx_object()

Exports

new() -> wxRadioButton()
Default constructor.

See: create/5, wxValidator (not implemented in wx)

new(Parent, Id, Label) -> wxRadioButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

new(Parent, Id, Label, Options :: [Option]) -> wxRadioButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a radio button.

Ericsson AB. All Rights Reserved.: wxErlang | 555

href
href

wxRadioButton

See: create/5, wxValidator (not implemented in wx)

destroy(This :: wxRadioButton()) -> ok
Destructor, destroying the radio button item.

create(This, Parent, Id, Label) -> boolean()
Types:

This = wxRadioButton()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

create(This, Parent, Id, Label, Options :: [Option]) -> boolean()
Types:

This = wxRadioButton()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates the choice for two-step construction.

See new/4 for further details.

getValue(This) -> boolean()
Types:

This = wxRadioButton()
Returns true if the radio button is checked, false otherwise.

setValue(This, Value) -> ok
Types:

This = wxRadioButton()
Value = boolean()

Sets the radio button to checked or unchecked status.

This does not cause a wxEVT_RADIOBUTTON event to get emitted.

If the radio button belongs to a radio group exactly one button in the group may be checked and so this method can
be only called with value set to true. To uncheck a radio button in a group you must check another button in the
same group.

Note: Under MSW, the focused radio button is always selected, i.e. its value is true. And, conversely, calling
SetValue(true) will also set focus to the radio button if the focus had previously been on another radio button
in the same group - as otherwise setting it on wouldn't work.

556 | Ericsson AB. All Rights Reserved.: wxErlang

wxRegion

wxRegion
Erlang module

A wxRegion represents a simple or complex region on a device context or window.

This class uses reference counting and copy-on-write internally so that assignments between two instances of this class
are very cheap. You can therefore use actual objects instead of pointers without efficiency problems. If an instance
of this class is changed it will create its own data internally so that other instances, which previously shared the data
using the reference counting, are not affected.

Predefined objects (include wx.hrl):

See: wxRegionIterator (not implemented in wx)

wxWidgets docs: wxRegion

Data Types
wxRegion() = wx:wx_object()

Exports

new() -> wxRegion()
Default constructor.

This constructor creates an invalid, or null, object, i.e. calling IsOk() on it returns false and isEmpty/1 returns true.

new(Rect) -> wxRegion()
new(Bmp) -> wxRegion()
Types:

Bmp = wxBitmap:wxBitmap()
Constructs a region using a bitmap.

See union/5 for more details.

new(TopLeft, BottomRight) -> wxRegion()
Types:

TopLeft = BottomRight = {X :: integer(), Y :: integer()}

Constructs a rectangular region from the top left point and the bottom right point.

new(X, Y, Width, Height) -> wxRegion()
Types:

X = Y = Width = Height = integer()

Constructs a rectangular region with the given position and size.

destroy(This :: wxRegion()) -> ok
Destructor.

See reference-counted object destruction for more info.

Ericsson AB. All Rights Reserved.: wxErlang | 557

href

wxRegion

clear(This) -> ok
Types:

This = wxRegion()
Clears the current region.

The object becomes invalid, or null, after being cleared.

contains(This, Pt) -> wx:wx_enum()
contains(This, Rect) -> wx:wx_enum()
Types:

This = wxRegion()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

Returns a value indicating whether the given rectangle is contained within the region.

This method always returns wxOutRegion for an invalid region but may, nevertheless, be safely called in this case.

Return: One of ?wxOutRegion, ?wxPartRegion or ?wxInRegion.

Note: On Windows, only ?wxOutRegion and ?wxInRegion are returned; a value ?wxInRegion then indicates that all
or some part of the region is contained in this region.

contains(This, X, Y) -> wx:wx_enum()
Types:

This = wxRegion()
X = Y = integer()

Returns a value indicating whether the given point is contained within the region.

This method always returns wxOutRegion for an invalid region but may, nevertheless, be safely called in this case.

Return: The return value is one of wxOutRegion and wxInRegion.

contains(This, X, Y, Width, Height) -> wx:wx_enum()
Types:

This = wxRegion()
X = Y = Width = Height = integer()

Returns a value indicating whether the given rectangle is contained within the region.

This method always returns wxOutRegion for an invalid region but may, nevertheless, be safely called in this case.

Return: One of ?wxOutRegion, ?wxPartRegion or ?wxInRegion.

Note: On Windows, only ?wxOutRegion and ?wxInRegion are returned; a value ?wxInRegion then indicates that all
or some part of the region is contained in this region.

convertToBitmap(This) -> wxBitmap:wxBitmap()
Types:

558 | Ericsson AB. All Rights Reserved.: wxErlang

wxRegion

This = wxRegion()
Convert the region to a black and white bitmap with the white pixels being inside the region.

This method can't be used for invalid region.

getBox(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxRegion()

intersect(This, Rect) -> boolean()
intersect(This, Region) -> boolean()
Types:

This = Region = wxRegion()

Finds the intersection of this region and another region.

This method always fails, i.e. returns false, if this region is invalid but may nevertheless be safely used even in this case.

Return: true if successful, false otherwise.

Remark: Creates the intersection of the two regions, that is, the parts which are in both regions. The result is stored
in this region.

intersect(This, X, Y, Width, Height) -> boolean()
Types:

This = wxRegion()
X = Y = Width = Height = integer()

Finds the intersection of this region and another, rectangular region, specified using position and size.

This method always fails, i.e. returns false, if this region is invalid but may nevertheless be safely used even in this case.

Return: true if successful, false otherwise.

Remark: Creates the intersection of the two regions, that is, the parts which are in both regions. The result is stored
in this region.

isEmpty(This) -> boolean()
Types:

This = wxRegion()
Returns true if the region is empty, false otherwise.

Always returns true if the region is invalid.

subtract(This, Rect) -> boolean()
subtract(This, Region) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 559

wxRegion

This = Region = wxRegion()

Subtracts a region from this region.

This method always fails, i.e. returns false, if this region is invalid but may nevertheless be safely used even in this case.

Return: true if successful, false otherwise.

Remark: This operation combines the parts of 'this' region that are not part of the second region. The result is stored
in this region.

offset(This, Pt) -> boolean()
Types:

This = wxRegion()
Pt = {X :: integer(), Y :: integer()}

offset(This, X, Y) -> boolean()
Types:

This = wxRegion()
X = Y = integer()

Moves the region by the specified offsets in horizontal and vertical directions.

This method can't be called if the region is invalid as it doesn't make sense to offset it then. Attempts to do it will
result in assert failure.

Return: true if successful, false otherwise (the region is unchanged then).

union(This, Region) -> boolean()
union(This, Rect) -> boolean()
Types:

This = wxRegion()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

Finds the union of this region and another, rectangular region.

This method can be used even if this region is invalid and has the natural behaviour in this case, i.e. makes this region
equal to the given rectangle.

Return: true if successful, false otherwise.

Remark: This operation creates a region that combines all of this region and the second region. The result is stored
in this region.

union(This, Bmp, TransColour) -> boolean()
Types:

560 | Ericsson AB. All Rights Reserved.: wxErlang

wxRegion

This = wxRegion()
Bmp = wxBitmap:wxBitmap()
TransColour = wx:wx_colour()

union(This, Bmp, TransColour, Options :: [Option]) -> boolean()
Types:

This = wxRegion()
Bmp = wxBitmap:wxBitmap()
TransColour = wx:wx_colour()
Option = {tolerance, integer()}

Finds the union of this region and the non-transparent pixels of a bitmap.

Colour to be treated as transparent is specified in the transColour argument, along with an optional colour tolerance
value.

Return: true if successful, false otherwise.

Remark: This operation creates a region that combines all of this region and the second region. The result is stored
in this region.

union(This, X, Y, Width, Height) -> boolean()
Types:

This = wxRegion()
X = Y = Width = Height = integer()

Finds the union of this region and another, rectangular region, specified using position and size.

This method can be used even if this region is invalid and has the natural behaviour in this case, i.e. makes this region
equal to the given rectangle.

Return: true if successful, false otherwise.

Remark: This operation creates a region that combines all of this region and the second region. The result is stored
in this region.

'Xor'(This, Rect) -> boolean()
'Xor'(This, Region) -> boolean()
Types:

This = Region = wxRegion()

Finds the Xor of this region and another region.

This method can be used even if this region is invalid and has the natural behaviour in this case, i.e. makes this region
equal to the given region.

Return: true if successful, false otherwise.

Remark: This operation creates a region that combines all of this region and the second region, except for any
overlapping areas. The result is stored in this region.

'Xor'(This, X, Y, Width, Height) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 561

wxRegion

This = wxRegion()
X = Y = Width = Height = integer()

Finds the Xor of this region and another, rectangular region, specified using position and size.

This method can be used even if this region is invalid and has the natural behaviour in this case, i.e. makes this region
equal to the given rectangle.

Return: true if successful, false otherwise.

Remark: This operation creates a region that combines all of this region and the second region, except for any
overlapping areas. The result is stored in this region.

562 | Ericsson AB. All Rights Reserved.: wxErlang

wxSashEvent

wxSashEvent
Erlang module

A sash event is sent when the sash of a wxSashWindow has been dragged by the user.

Remark: When a sash belonging to a sash window is dragged by the user, and then released, this event is sent to the
window, where it may be processed by an event table entry in a derived class, a plug-in event handler or an ancestor
class. Note that the wxSashWindow doesn't change the window's size itself. It relies on the application's event handler
to do that. This is because the application may have to handle other consequences of the resize, or it may wish to veto
it altogether. The event handler should look at the drag rectangle: see getDragRect/1 to see what the new size
of the window would be if the resize were to be applied. It should also call getDragStatus/1 to see whether the
drag was OK or out of the current allowed range.

See: wxSashWindow, Overview events

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxSashEvent

Events
Use wxEvtHandler:connect/3 with wxSashEventType to subscribe to events of this type.

Data Types
wxSashEvent() = wx:wx_object()
wxSash() =
 #wxSash{type = wxSashEvent:wxSashEventType(),
 edge = wx:wx_enum(),
 dragRect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()},
 dragStatus = wx:wx_enum()}
wxSashEventType() = sash_dragged

Exports

getEdge(This) -> wx:wx_enum()
Types:

This = wxSashEvent()
Returns the dragged edge.

The return value is one of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM, wxSASH_LEFT.

getDragRect(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),

Ericsson AB. All Rights Reserved.: wxErlang | 563

href
href

wxSashEvent

 H :: integer()}
Types:

This = wxSashEvent()
Returns the rectangle representing the new size the window would be if the resize was applied.

It is up to the application to set the window size if required.

getDragStatus(This) -> wx:wx_enum()
Types:

This = wxSashEvent()
Returns the status of the sash: one of wxSASH_STATUS_OK, wxSASH_STATUS_OUT_OF_RANGE.

If the drag caused the notional bounding box of the window to flip over, for example, the drag will be out of rage.

564 | Ericsson AB. All Rights Reserved.: wxErlang

wxSashLayoutWindow

wxSashLayoutWindow
Erlang module

wxSashLayoutWindow responds to OnCalculateLayout events generated by wxLayoutAlgorithm. It allows
the application to use simple accessors to specify how the window should be laid out, rather than having to respond
to events.

The fact that the class derives from wxSashWindow allows sashes to be used if required, to allow the windows to
be user-resizable.

The documentation for wxLayoutAlgorithm explains the purpose of this class in more detail.

For the window styles see wxSashWindow.

This class handles the EVT_QUERY_LAYOUT_INFO and EVT_CALCULATE_LAYOUT events for you.
However, if you use sashes, see wxSashWindow for relevant event information. See also wxLayoutAlgorithm
for information about the layout events.

See: wxLayoutAlgorithm, wxSashWindow, Overview events

This class is derived (and can use functions) from: wxSashWindow wxWindow wxEvtHandler

wxWidgets docs: wxSashLayoutWindow

Data Types
wxSashLayoutWindow() = wx:wx_object()

Exports

new() -> wxSashLayoutWindow()
Default ctor.

new(Parent) -> wxSashLayoutWindow()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxSashLayoutWindow()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructs a sash layout window, which can be a child of a frame, dialog or any other non-control window.

create(This, Parent) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 565

href
href

wxSashLayoutWindow

This = wxSashLayoutWindow()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxSashLayoutWindow()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Initializes a sash layout window, which can be a child of a frame, dialog or any other non-control window.

getAlignment(This) -> wx:wx_enum()
Types:

This = wxSashLayoutWindow()
Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT, wxLAYOUT_RIGHT,
wxLAYOUT_BOTTOM.

getOrientation(This) -> wx:wx_enum()
Types:

This = wxSashLayoutWindow()
Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

setAlignment(This, Alignment) -> ok
Types:

This = wxSashLayoutWindow()
Alignment = wx:wx_enum()

Sets the alignment of the window (which edge of the available parent client area the window is attached to).

alignment is one of wxLAYOUT_TOP, wxLAYOUT_LEFT, wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

setDefaultSize(This, Size) -> ok
Types:

This = wxSashLayoutWindow()
Size = {W :: integer(), H :: integer()}

Sets the default dimensions of the window.

The dimension other than the orientation will be fixed to this value, and the orientation dimension will be ignored and
the window stretched to fit the available space.

setOrientation(This, Orientation) -> ok
Types:

566 | Ericsson AB. All Rights Reserved.: wxErlang

wxSashLayoutWindow

This = wxSashLayoutWindow()
Orientation = wx:wx_enum()

Sets the orientation of the window (the direction the window will stretch in, to fill the available parent client area).

orientation is one of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

destroy(This :: wxSashLayoutWindow()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 567

wxSashWindow

wxSashWindow
Erlang module

wxSashWindow allows any of its edges to have a sash which can be dragged to resize the window. The actual content
window will be created by the application as a child of wxSashWindow.

The window (or an ancestor) will be notified of a drag via a wxSashEvent notification.

Styles

This class supports the following styles:

See: wxSashEvent, wxSashLayoutWindow, Overview events

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxSashWindow

Events
Event types emitted from this class: sash_dragged

Data Types
wxSashWindow() = wx:wx_object()

Exports

new() -> wxSashWindow()
Default ctor.

new(Parent) -> wxSashWindow()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxSashWindow()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructs a sash window, which can be a child of a frame, dialog or any other non-control window.

destroy(This :: wxSashWindow()) -> ok
Destructor.

getSashVisible(This, Edge) -> boolean()
Types:

568 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxSashWindow

This = wxSashWindow()
Edge = wx:wx_enum()

Returns true if a sash is visible on the given edge, false otherwise.

See: setSashVisible/3

getMaximumSizeX(This) -> integer()
Types:

This = wxSashWindow()
Gets the maximum window size in the x direction.

getMaximumSizeY(This) -> integer()
Types:

This = wxSashWindow()
Gets the maximum window size in the y direction.

getMinimumSizeX(This) -> integer()
Types:

This = wxSashWindow()
Gets the minimum window size in the x direction.

getMinimumSizeY(This) -> integer()
Types:

This = wxSashWindow()
Gets the minimum window size in the y direction.

setMaximumSizeX(This, Min) -> ok
Types:

This = wxSashWindow()
Min = integer()

Sets the maximum window size in the x direction.

setMaximumSizeY(This, Min) -> ok
Types:

This = wxSashWindow()
Min = integer()

Sets the maximum window size in the y direction.

setMinimumSizeX(This, Min) -> ok
Types:

This = wxSashWindow()
Min = integer()

Sets the minimum window size in the x direction.

Ericsson AB. All Rights Reserved.: wxErlang | 569

wxSashWindow

setMinimumSizeY(This, Min) -> ok
Types:

This = wxSashWindow()
Min = integer()

Sets the minimum window size in the y direction.

setSashVisible(This, Edge, Visible) -> ok
Types:

This = wxSashWindow()
Edge = wx:wx_enum()
Visible = boolean()

Call this function to make a sash visible or invisible on a particular edge.

See: getSashVisible/2

570 | Ericsson AB. All Rights Reserved.: wxErlang

wxScreenDC

wxScreenDC
Erlang module

A wxScreenDC can be used to paint on the screen. This should normally be constructed as a temporary stack object;
don't store a wxScreenDC object.

When using multiple monitors, wxScreenDC corresponds to the entire virtual screen composed of all of them. Notice
that coordinates on wxScreenDC can be negative in this case, see wxDisplay:getGeometry/1 for more.

See: wxDC, wxMemoryDC, wxPaintDC, wxClientDC, wxWindowDC

This class is derived (and can use functions) from: wxDC

wxWidgets docs: wxScreenDC

Data Types
wxScreenDC() = wx:wx_object()

Exports

new() -> wxScreenDC()
Constructor.

destroy(This :: wxScreenDC()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 571

href

wxScrollBar

wxScrollBar
Erlang module

A wxScrollBar is a control that represents a horizontal or vertical scrollbar.

It is distinct from the two scrollbars that some windows provide automatically, but the two types of scrollbar share
the way events are received.

Remark: A scrollbar has the following main attributes: range, thumb size, page size, and position. The range is the
total number of units associated with the view represented by the scrollbar. For a table with 15 columns, the range
would be 15. The thumb size is the number of units that are currently visible. For the table example, the window might
be sized so that only 5 columns are currently visible, in which case the application would set the thumb size to 5.
When the thumb size becomes the same as or greater than the range, the scrollbar will be automatically hidden on
most platforms. The page size is the number of units that the scrollbar should scroll by, when 'paging' through the
data. This value is normally the same as the thumb size length, because it is natural to assume that the visible window
size defines a page. The scrollbar position is the current thumb position. Most applications will find it convenient to
provide a function called AdjustScrollbars() which can be called initially, from an OnSize event handler, and whenever
the application data changes in size. It will adjust the view, object and page size according to the size of the window
and the size of the data.

Styles

This class supports the following styles:

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED

The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb using the mouse
and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed by an EVT_SCROLL_CHANGED
event).

The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb position, and when
clicking next to the thumb (In all these cases the EVT_SCROLL_THUMBRELEASE event does not happen).

In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/moving has finished independently
of the way it had started. Please see the page_samples_widgets ("Slider" page) to see the difference between
EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.

See: Overview scrolling, Overview events, wxScrolled (not implemented in wx)

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxScrollBar

Events
Event types emitted from this class: scroll_top, scroll_bottom, scroll_lineup, scroll_linedown,
scroll_pageup, scroll_pagedown, scroll_thumbtrack, scroll_thumbrelease,
scroll_changed, scroll_top, scroll_bottom, scroll_lineup, scroll_linedown,
scroll_pageup, scroll_pagedown, scroll_thumbtrack, scroll_thumbrelease,
scroll_changed

572 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxScrollBar

Data Types
wxScrollBar() = wx:wx_object()

Exports

new() -> wxScrollBar()
Default constructor.

new(Parent, Id) -> wxScrollBar()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxScrollBar()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a scrollbar.

See: create/4, wxValidator (not implemented in wx)

destroy(This :: wxScrollBar()) -> ok
Destructor, destroying the scrollbar.

create(This, Parent, Id) -> boolean()
Types:

This = wxScrollBar()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxScrollBar()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |

Ericsson AB. All Rights Reserved.: wxErlang | 573

wxScrollBar

 {validator, wx:wx_object()}
Scrollbar creation function called by the scrollbar constructor.

See new/3 for details.

getRange(This) -> integer()
Types:

This = wxScrollBar()
Returns the length of the scrollbar.

See: setScrollbar/6

getPageSize(This) -> integer()
Types:

This = wxScrollBar()
Returns the page size of the scrollbar.

This is the number of scroll units that will be scrolled when the user pages up or down. Often it is the same as the
thumb size.

See: setScrollbar/6

getThumbPosition(This) -> integer()
Types:

This = wxScrollBar()
Returns the current position of the scrollbar thumb.

See: setThumbPosition/2

getThumbSize(This) -> integer()
Types:

This = wxScrollBar()
Returns the thumb or 'view' size.

See: setScrollbar/6

setThumbPosition(This, ViewStart) -> ok
Types:

This = wxScrollBar()
ViewStart = integer()

Sets the position of the scrollbar.

See: getThumbPosition/1

setScrollbar(This, Position, ThumbSize, Range, PageSize) -> ok
Types:

574 | Ericsson AB. All Rights Reserved.: wxErlang

wxScrollBar

This = wxScrollBar()
Position = ThumbSize = Range = PageSize = integer()

setScrollbar(This, Position, ThumbSize, Range, PageSize,
 Options :: [Option]) ->
 ok
Types:

This = wxScrollBar()
Position = ThumbSize = Range = PageSize = integer()
Option = {refresh, boolean()}

Sets the scrollbar properties.

Remark: Let's say you wish to display 50 lines of text, using the same font. The window is sized so that you can only
see 16 lines at a time. You would use: The page size is 1 less than the thumb size so that the last line of the previous
page will be visible on the next page, to help orient the user. Note that with the window at this size, the thumb position
can never go above 50 minus 16, or 34. You can determine how many lines are currently visible by dividing the current
view size by the character height in pixels. When defining your own scrollbar behaviour, you will always need to
recalculate the scrollbar settings when the window size changes. You could therefore put your scrollbar calculations
and setScrollbar/6 call into a function named AdjustScrollbars, which can be called initially and also from a
wxSizeEvent event handler function.

Ericsson AB. All Rights Reserved.: wxErlang | 575

wxScrolledWindow

wxScrolledWindow
Erlang module

There are two commonly used (but not the only possible!) specializations of this class:

Note: See wxScrolled::Create() (not implemented in wx) if you want to use wxScrolled (not implemented
in wx) with a custom class.

Starting from version 2.4 of wxWidgets, there are several ways to use a ?wxScrolledWindow (and now wxScrolled
(not implemented in wx)). In particular, there are three ways to set the size of the scrolling area:

One way is to set the scrollbars directly using a call to setScrollbars/6. This is the way it used to be in any
previous version of wxWidgets and it will be kept for backwards compatibility.

An additional method of manual control, which requires a little less computation of your own, is to set the total size of
the scrolling area by calling either wxWindow:setVirtualSize/3, or wxWindow:fitInside/1, and setting
the scrolling increments for it by calling setScrollRate/3. Scrolling in some orientation is enabled by setting
a non-zero increment for it.

The most automatic and newest way is to simply let sizers determine the scrolling area. This is now the default when
you set an interior sizer into a wxScrolled (not implemented in wx) with wxWindow:setSizer/3. The scrolling
area will be set to the size requested by the sizer and the scrollbars will be assigned for each orientation according
to the need for them and the scrolling increment set by setScrollRate/3. As above, scrolling is only enabled in
orientations with a non-zero increment. You can influence the minimum size of the scrolled area controlled by a sizer
by calling wxWindow::SetVirtualSizeHints(). (Calling setScrollbars/6 has analogous effects in wxWidgets 2.4
- in later versions it may not continue to override the sizer.)

Note that if maximum size hints are still supported by wxWindow::SetVirtualSizeHints(), use them at your own dire
risk. They may or may not have been removed for 2.4, but it really only makes sense to set minimum size hints here.
We should probably replace wxWindow::SetVirtualSizeHints() with wxWindow::SetMinVirtualSize() or similar and
remove it entirely in future.

As with all windows, an application can draw onto a wxScrolled (not implemented in wx) using a device context.

You have the option of handling the OnPaint handler or overriding the wxScrolled::OnDraw() (not implemented
in wx) function, which is passed a pre-scrolled device context (prepared by doPrepareDC/2).

If you don't wish to calculate your own scrolling, you must call doPrepareDC/2 when not drawing from within
OnDraw() (not implemented in wx), to set the device origin for the device context according to the current scroll
position.

A wxScrolled (not implemented in wx) will normally scroll itself and therefore its child windows as well. It might
however be desired to scroll a different window than itself: e.g. when designing a spreadsheet, you will normally only
have to scroll the (usually white) cell area, whereas the (usually grey) label area will scroll very differently. For this
special purpose, you can call setTargetWindow/2 which means that pressing the scrollbars will scroll a different
window.

Note that the underlying system knows nothing about scrolling coordinates, so that all system functions (mouse events,
expose events, refresh calls etc) as well as the position of subwindows are relative to the "physical" origin of the
scrolled window. If the user insert a child window at position (10,10) and scrolls the window down 100 pixels (moving
the child window out of the visible area), the child window will report a position of (10,-90).

Styles

This class supports the following styles:

Note: Don't confuse wxScrollWinEvents generated by this class with wxScrollEvent objects generated by
wxScrollBar and wxSlider.

576 | Ericsson AB. All Rights Reserved.: wxErlang

wxScrolledWindow

Remark: Use wxScrolled (not implemented in wx) for applications where the user scrolls by a fixed amount, and
where a 'page' can be interpreted to be the current visible portion of the window. For more sophisticated applications,
use the wxScrolled (not implemented in wx) implementation as a guide to build your own scroll behaviour or use
wxVScrolledWindow (not implemented in wx) or its variants.

Since: The wxScrolled (not implemented in wx) template exists since version 2.9.0. In older versions, only ?
wxScrolledWindow (equivalent of wxScrolled<wxPanel>) was available.

See: wxScrollBar, wxClientDC, wxPaintDC, wxVScrolledWindow (not implemented in wx),
wxHScrolledWindow (not implemented in wx), wxHVScrolledWindow (not implemented in wx)

This class is derived (and can use functions) from: wxPanel wxWindow wxEvtHandler

wxWidgets docs: wxScrolledWindow

Events
Event types emitted from this class: scrollwin_top, scrollwin_bottom, scrollwin_lineup,
scrollwin_linedown, scrollwin_pageup, scrollwin_pagedown, scrollwin_thumbtrack,
scrollwin_thumbrelease

Data Types
wxScrolledWindow() = wx:wx_object()

Exports

new() -> wxScrolledWindow()
Default constructor.

new(Parent) -> wxScrolledWindow()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxScrolledWindow()
Types:

Parent = wxWindow:wxWindow()
Option =
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor.

Remark: The window is initially created without visible scrollbars. Call setScrollbars/6 to specify how big the
virtual window size should be.

calcScrolledPosition(This, Pt) -> {X :: integer(), Y :: integer()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 577

href

wxScrolledWindow

This = wxScrolledWindow()
Pt = {X :: integer(), Y :: integer()}

calcScrolledPosition(This, X, Y) ->
 {Xx :: integer(), Yy :: integer()}
Types:

This = wxScrolledWindow()
X = Y = integer()

Translates the logical coordinates to the device ones.

For example, if a window is scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as always),
but the logical coordinates are (0, 10) and so the call to CalcScrolledPosition(0, 10, xx, yy) will return 0 in yy.

See: calcUnscrolledPosition/3

calcUnscrolledPosition(This, Pt) ->
 {X :: integer(), Y :: integer()}
Types:

This = wxScrolledWindow()
Pt = {X :: integer(), Y :: integer()}

calcUnscrolledPosition(This, X, Y) ->
 {Xx :: integer(), Yy :: integer()}
Types:

This = wxScrolledWindow()
X = Y = integer()

Translates the device coordinates to the logical ones.

For example, if a window is scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as always),
but the logical coordinates are (0, 10) and so the call to CalcUnscrolledPosition(0, 0, xx, yy) will return 10 in yy.

See: calcScrolledPosition/3

enableScrolling(This, XScrolling, YScrolling) -> ok
Types:

This = wxScrolledWindow()
XScrolling = YScrolling = boolean()

Enable or disable use of wxWindow:scrollWindow/4 for scrolling.

By default, when a scrolled window is logically scrolled, wxWindow:scrollWindow/4 is called on the underlying
window which scrolls the window contents and only invalidates the part of the window newly brought into view.
If false is passed as an argument, then this "physical scrolling" is disabled and the window is entirely invalidated
whenever it is scrolled by calling wxWindow:refresh/2.

It should be rarely necessary to disable physical scrolling, so this method shouldn't be called in normal circumstances.

getScrollPixelsPerUnit(This) ->
 {XUnit :: integer(), YUnit :: integer()}
Types:

578 | Ericsson AB. All Rights Reserved.: wxErlang

wxScrolledWindow

This = wxScrolledWindow()
Get the number of pixels per scroll unit (line), in each direction, as set by setScrollbars/6.

A value of zero indicates no scrolling in that direction.

See: setScrollbars/6, wxWindow:getVirtualSize/1

getViewStart(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxScrolledWindow()
This is a simple overload of GetViewStart(int*,int*); see that function for more info.

doPrepareDC(This, Dc) -> ok
Types:

This = wxScrolledWindow()
Dc = wxDC:wxDC()

Call this function to prepare the device context for drawing a scrolled image.

It sets the device origin according to the current scroll position. doPrepareDC/2 is called automatically within
the default wxEVT_PAINT event handler, so your OnDraw() (not implemented in wx) override will be passed an
already 'pre-scrolled' device context. However, if you wish to draw from outside of OnDraw() (not implemented in
wx) (e.g. from your own wxEVT_PAINT handler), you must call this function yourself.

For example:

Notice that the function sets the origin by moving it relatively to the current origin position, so you shouldn't change the
origin before calling doPrepareDC/2 or, if you do, reset it to (0, 0) later. If you call doPrepareDC/2 immediately
after device context creation, as in the example above, this problem doesn't arise, of course, so it is customary to do
it like this.

prepareDC(This, Dc) -> ok
Types:

This = wxScrolledWindow()
Dc = wxDC:wxDC()

This function is for backwards compatibility only and simply calls doPrepareDC/2 now.

Notice that it is not called by the default paint event handle (doPrepareDC/2 is), so overriding this method in your
derived class is useless.

scroll(This, Pt) -> ok
Types:

This = wxScrolledWindow()
Pt = {X :: integer(), Y :: integer()}

This is an overload of scroll/3; see that function for more info.

scroll(This, X, Y) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 579

wxScrolledWindow

This = wxScrolledWindow()
X = Y = integer()

Scrolls a window so the view start is at the given point.

Remark: The positions are in scroll units, not pixels, so to convert to pixels you will have to multiply by the number
of pixels per scroll increment. If either parameter is ?wxDefaultCoord (-1), that position will be ignored (no change
in that direction).

See: setScrollbars/6, getScrollPixelsPerUnit/1

setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX,
 NoUnitsY) ->
 ok
Types:

This = wxScrolledWindow()
PixelsPerUnitX = PixelsPerUnitY = NoUnitsX = NoUnitsY = integer()

setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX,
 NoUnitsY,
 Options :: [Option]) ->
 ok
Types:

This = wxScrolledWindow()
PixelsPerUnitX = PixelsPerUnitY = NoUnitsX = NoUnitsY = integer()
Option =
 {xPos, integer()} | {yPos, integer()} | {noRefresh, boolean()}

Sets up vertical and/or horizontal scrollbars.

The first pair of parameters give the number of pixels per 'scroll step', i.e. amount moved when the up or down scroll
arrows are pressed. The second pair gives the length of scrollbar in scroll steps, which sets the size of the virtual
window.

xPos and yPos optionally specify a position to scroll to immediately.

For example, the following gives a window horizontal and vertical scrollbars with 20 pixels per scroll step, and a size
of 50 steps (1000 pixels) in each direction:

wxScrolled (not implemented in wx) manages the page size itself, using the current client window size as the page
size.

Note that for more sophisticated scrolling applications, for example where scroll steps may be variable according to
the position in the document, it will be necessary to derive a new class from wxWindow, overriding OnSize() and
adjusting the scrollbars appropriately.

See: wxWindow:setVirtualSize/3

setScrollRate(This, Xstep, Ystep) -> ok
Types:

This = wxScrolledWindow()
Xstep = Ystep = integer()

Set the horizontal and vertical scrolling increment only.

580 | Ericsson AB. All Rights Reserved.: wxErlang

wxScrolledWindow

See the pixelsPerUnit parameter in setScrollbars/6.

setTargetWindow(This, Window) -> ok
Types:

This = wxScrolledWindow()
Window = wxWindow:wxWindow()

Call this function to tell wxScrolled (not implemented in wx) to perform the actual scrolling on a different window
(and not on itself).

This method is useful when only a part of the window should be scrolled. A typical example is a control consisting
of a fixed header and the scrollable contents window: the scrollbars are attached to the main window itself, hence it,
and not the contents window must be derived from wxScrolled (not implemented in wx), but only the contents
window scrolls when the scrollbars are used. To implement such setup, you need to call this method with the contents
window as argument.

Notice that if this method is used, GetSizeAvailableForScrollTarget() (not implemented in wx) method
must be overridden.

destroy(This :: wxScrolledWindow()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 581

wxScrollEvent

wxScrollEvent
Erlang module

A scroll event holds information about events sent from stand-alone scrollbars (see wxScrollBar) and sliders (see
wxSlider).

Note that scrolled windows send the wxScrollWinEvent which does not derive from wxCommandEvent, but
from wxEvent directly - don't confuse these two kinds of events and use the event table macros mentioned below
only for the scrollbar-like controls.

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED

The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb using the mouse
and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed by an EVT_SCROLL_CHANGED
event).

The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb position, and when
clicking next to the thumb (In all these cases the EVT_SCROLL_THUMBRELEASE event does not happen).

In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has finished independently
of the way it had started. Please see the page_samples_widgets ("Slider" page) to see the difference between
EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.

Remark: Note that unless specifying a scroll control identifier, you will need to test for scrollbar orientation with
getOrientation/1, since horizontal and vertical scroll events are processed using the same event handler.

See: wxScrollBar, wxSlider, wxSpinButton, wxScrollWinEvent, Overview events

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxScrollEvent

Events
Use wxEvtHandler:connect/3 with wxScrollEventType to subscribe to events of this type.

Data Types
wxScrollEvent() = wx:wx_object()
wxScroll() =
 #wxScroll{type = wxScrollEvent:wxScrollEventType(),
 commandInt = integer(),
 extraLong = integer()}
wxScrollEventType() =
 scroll_top | scroll_bottom | scroll_lineup | scroll_linedown |
 scroll_pageup | scroll_pagedown | scroll_thumbtrack |
 scroll_thumbrelease | scroll_changed

Exports

getOrientation(This) -> integer()
Types:

This = wxScrollEvent()
Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the scrollbar.

582 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxScrollEvent

getPosition(This) -> integer()
Types:

This = wxScrollEvent()
Returns the position of the scrollbar.

Ericsson AB. All Rights Reserved.: wxErlang | 583

wxScrollWinEvent

wxScrollWinEvent
Erlang module

A scroll event holds information about events sent from scrolling windows.

Note that you can use the EVT_SCROLLWIN* macros for intercepting scroll window events from the receiving
window.

See: wxScrollEvent, Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxScrollWinEvent

Events
Use wxEvtHandler:connect/3 with wxScrollWinEventType to subscribe to events of this type.

Data Types
wxScrollWinEvent() = wx:wx_object()
wxScrollWin() =
 #wxScrollWin{type = wxScrollWinEvent:wxScrollWinEventType(),
 commandInt = integer(),
 extraLong = integer()}
wxScrollWinEventType() =
 scrollwin_top | scrollwin_bottom | scrollwin_lineup |
 scrollwin_linedown | scrollwin_pageup | scrollwin_pagedown |
 scrollwin_thumbtrack | scrollwin_thumbrelease

Exports

getOrientation(This) -> integer()
Types:

This = wxScrollWinEvent()
Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the scrollbar.

getPosition(This) -> integer()
Types:

This = wxScrollWinEvent()
Returns the position of the scrollbar for the thumb track and release events.

Note that this field can't be used for the other events, you need to query the window itself for the current position
in that case.

584 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxSetCursorEvent

wxSetCursorEvent
Erlang module

A wxSetCursorEvent is generated from wxWindow when the mouse cursor is about to be set as a result of mouse
motion.

This event gives the application the chance to perform specific mouse cursor processing based on the current position
of the mouse within the window. Use setCursor/2 to specify the cursor you want to be displayed.

See: wx_misc:setCursor/1, wxWindow:setCursor/2

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxSetCursorEvent

Events
Use wxEvtHandler:connect/3 with wxSetCursorEventType to subscribe to events of this type.

Data Types
wxSetCursorEvent() = wx:wx_object()
wxSetCursor() =
 #wxSetCursor{type = wxSetCursorEvent:wxSetCursorEventType(),
 x = integer(),
 y = integer(),
 cursor = wxCursor:wxCursor()}
wxSetCursorEventType() = set_cursor

Exports

getCursor(This) -> wxCursor:wxCursor()
Types:

This = wxSetCursorEvent()
Returns a reference to the cursor specified by this event.

getX(This) -> integer()
Types:

This = wxSetCursorEvent()
Returns the X coordinate of the mouse in client coordinates.

getY(This) -> integer()
Types:

This = wxSetCursorEvent()
Returns the Y coordinate of the mouse in client coordinates.

hasCursor(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 585

href

wxSetCursorEvent

This = wxSetCursorEvent()
Returns true if the cursor specified by this event is a valid cursor.

Remark: You cannot specify wxNullCursor with this event, as it is not considered a valid cursor.

setCursor(This, Cursor) -> ok
Types:

This = wxSetCursorEvent()
Cursor = wxCursor:wxCursor()

Sets the cursor associated with this event.

586 | Ericsson AB. All Rights Reserved.: wxErlang

wxShowEvent

wxShowEvent
Erlang module

An event being sent when the window is shown or hidden. The event is triggered by calls to wxWindow:show/2,
and any user action showing a previously hidden window or vice versa (if allowed by the current platform and/or
window manager). Notice that the event is not triggered when the application is iconized (minimized) or restored
under wxMSW.

See: Overview events, wxWindow:show/2, wxWindow:isShown/1

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxShowEvent

Events
Use wxEvtHandler:connect/3 with wxShowEventType to subscribe to events of this type.

Data Types
wxShowEvent() = wx:wx_object()
wxShow() =
 #wxShow{type = wxShowEvent:wxShowEventType(),
 show = boolean()}
wxShowEventType() = show

Exports

setShow(This, Show) -> ok
Types:

This = wxShowEvent()
Show = boolean()

Set whether the windows was shown or hidden.

isShown(This) -> boolean()
Types:

This = wxShowEvent()
Return true if the window has been shown, false if it has been hidden.

Ericsson AB. All Rights Reserved.: wxErlang | 587

href
href

wxSingleChoiceDialog

wxSingleChoiceDialog
Erlang module

This class represents a dialog that shows a list of strings, and allows the user to select one. Double-clicking on a list
item is equivalent to single-clicking and then pressing OK.

Styles

This class supports the following styles:

See: Overview cmndlg, wxMultiChoiceDialog

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxSingleChoiceDialog

Data Types
wxSingleChoiceDialog() = wx:wx_object()

Exports

new(Parent, Message, Caption, Choices) -> wxSingleChoiceDialog()
Types:

Parent = wxWindow:wxWindow()
Message = Caption = unicode:chardata()
Choices = [unicode:chardata()]

new(Parent, Message, Caption, Choices, Options :: [Option]) ->
 wxSingleChoiceDialog()
Types:

Parent = wxWindow:wxWindow()
Message = Caption = unicode:chardata()
Choices = [unicode:chardata()]
Option =
 {style, integer()} | {pos, {X :: integer(), Y :: integer()}}

Constructor, taking an array of wxString (not implemented in wx) choices and optional client data.

Remark: Use wxDialog:showModal/1 to show the dialog.

getSelection(This) -> integer()
Types:

This = wxSingleChoiceDialog()
Returns the index of selected item.

getStringSelection(This) -> unicode:charlist()
Types:

This = wxSingleChoiceDialog()
Returns the selected string.

588 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxSingleChoiceDialog

setSelection(This, Selection) -> ok
Types:

This = wxSingleChoiceDialog()
Selection = integer()

Sets the index of the initially selected item.

destroy(This :: wxSingleChoiceDialog()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 589

wxSizeEvent

wxSizeEvent
Erlang module

A size event holds information about size change events of wxWindow.

The EVT_SIZE handler function will be called when the window has been resized.

You may wish to use this for frames to resize their child windows as appropriate.

Note that the size passed is of the whole window: call wxWindow:getClientSize/1 for the area which may
be used by the application.

When a window is resized, usually only a small part of the window is damaged and you may only need to repaint that
area. However, if your drawing depends on the size of the window, you may need to clear the DC explicitly and repaint
the whole window. In which case, you may need to call wxWindow:refresh/2 to invalidate the entire window.

Important : Sizers (see overview_sizer) rely on size events to function correctly. Therefore, in a sizer-based layout,
do not forget to call Skip on all size events you catch (and don't catch size events at all when you don't need to).

See: {Width,Height}, Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxSizeEvent

Events
Use wxEvtHandler:connect/3 with wxSizeEventType to subscribe to events of this type.

Data Types
wxSizeEvent() = wx:wx_object()
wxSize() =
 #wxSize{type = wxSizeEvent:wxSizeEventType(),
 size = {W :: integer(), H :: integer()},
 rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}
wxSizeEventType() = size

Exports

getSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxSizeEvent()
Returns the entire size of the window generating the size change event.

This is the new total size of the window, i.e. the same size as would be returned by wxWindow:getSize/1 if it were
called now. Use wxWindow:getClientSize/1 if you catch this event in a top level window such as wxFrame
to find the size available for the window contents.

getRect(This) ->

590 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxSizeEvent

 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxSizeEvent()

Ericsson AB. All Rights Reserved.: wxErlang | 591

wxSizerFlags

wxSizerFlags
Erlang module

Container for sizer items flags providing readable names for them.

Normally, when you add an item to a sizer via wxSizer:add/4, you have to specify a lot of flags and parameters
which can be unwieldy. This is where wxSizerFlags comes in: it allows you to specify all parameters using the
named methods instead. For example, instead of

you can now write

This is more readable and also allows you to create wxSizerFlags objects which can be reused for several sizer
items.

Note that by specification, all methods of wxSizerFlags return the wxSizerFlags object itself to allowing
chaining multiple methods calls like in the examples above.

See: wxSizer

wxWidgets docs: wxSizerFlags

Data Types
wxSizerFlags() = wx:wx_object()

Exports

new() -> wxSizerFlags()

new(Options :: [Option]) -> wxSizerFlags()
Types:

Option = {proportion, integer()}
Creates the wxSizer with the proportion specified by proportion.

align(This, Alignment) -> wxSizerFlags()
Types:

This = wxSizerFlags()
Alignment = integer()

Sets the alignment of this wxSizerFlags to align.

This method replaces the previously set alignment with the specified one.

See: Top() (not implemented in wx), left/1, right/1, Bottom() (not implemented in wx), centre/1

border(This) -> wxSizerFlags()
Types:

This = wxSizerFlags()

border(This, Options :: [Option]) -> wxSizerFlags()
Types:

592 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxSizerFlags

This = wxSizerFlags()
Option = {direction, integer()}

Sets the wxSizerFlags to have a border with size as returned by GetDefaultBorder() (not implemented in
wx).

border(This, Direction, Borderinpixels) -> wxSizerFlags()
Types:

This = wxSizerFlags()
Direction = Borderinpixels = integer()

Sets the wxSizerFlags to have a border of a number of pixels specified by borderinpixels with the directions
specified by direction.

Prefer to use the overload below or DoubleBorder() (not implemented in wx) or TripleBorder() (not
implemented in wx) versions instead of hard-coding the border value in pixels to avoid too small borders on devices
with high DPI displays.

centre(This) -> wxSizerFlags()
Types:

This = wxSizerFlags()
See: center/1.

center(This) -> wxSizerFlags()
Types:

This = wxSizerFlags()
Sets the object of the wxSizerFlags to center itself in the area it is given.

expand(This) -> wxSizerFlags()
Types:

This = wxSizerFlags()
Sets the object of the wxSizerFlags to expand to fill as much area as it can.

left(This) -> wxSizerFlags()
Types:

This = wxSizerFlags()
Aligns the object to the left, similar for Align(wxALIGN_LEFT).

Unlike align/2, this method doesn't change the vertical alignment of the item.

proportion(This, Proportion) -> wxSizerFlags()
Types:

This = wxSizerFlags()
Proportion = integer()

Sets the proportion of this wxSizerFlags to proportion.

Ericsson AB. All Rights Reserved.: wxErlang | 593

wxSizerFlags

right(This) -> wxSizerFlags()
Types:

This = wxSizerFlags()
Aligns the object to the right, similar for Align(wxALIGN_RIGHT).

Unlike align/2, this method doesn't change the vertical alignment of the item.

destroy(This :: wxSizerFlags()) -> ok
Destroys the object.

594 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizerItem

wxSizerItem
Erlang module

The wxSizerItem class is used to track the position, size and other attributes of each item managed by a wxSizer.

It is not usually necessary to use this class because the sizer elements can also be identified by their positions or window
or sizer pointers but sometimes it may be more convenient to use it directly.

wxWidgets docs: wxSizerItem

Data Types
wxSizerItem() = wx:wx_object()

Exports

new(Window) -> wxSizerItem()
Types:

Window = wxWindow:wxWindow() | wxSizer:wxSizer()

new(Width, Height) -> wxSizerItem()
new(Window, Flags) -> wxSizerItem()
new(Window, Height :: [Option]) -> wxSizerItem()
Types:

Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Option =
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}

new(Width, Height, Options :: [Option]) -> wxSizerItem()
Types:

Width = Height = integer()
Option =
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}

Construct a sizer item for tracking a spacer.

destroy(This :: wxSizerItem()) -> ok
Deletes the user data and subsizer, if any.

calcMin(This) -> {W :: integer(), H :: integer()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 595

href

wxSizerItem

This = wxSizerItem()
Calculates the minimum desired size for the item, including any space needed by borders.

deleteWindows(This) -> ok
Types:

This = wxSizerItem()
Destroy the window or the windows in a subsizer, depending on the type of item.

detachSizer(This) -> ok
Types:

This = wxSizerItem()
Enable deleting the SizerItem without destroying the contained sizer.

getBorder(This) -> integer()
Types:

This = wxSizerItem()
Return the border attribute.

getFlag(This) -> integer()
Types:

This = wxSizerItem()
Return the flags attribute.

See wxSizer flags list (not implemented in wx) for details.

getMinSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxSizerItem()
Get the minimum size needed for the item.

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxSizerItem()
What is the current position of the item, as set in the last Layout.

getProportion(This) -> integer()
Types:

This = wxSizerItem()
Get the proportion item attribute.

getRatio(This) -> number()
Types:

596 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizerItem

This = wxSizerItem()
Get the ratio item attribute.

getRect(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxSizerItem()
Get the rectangle of the item on the parent window, excluding borders.

getSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxSizerItem()
Get the current size of the item, as set in the last Layout.

getSizer(This) -> wxSizer:wxSizer()
Types:

This = wxSizerItem()
If this item is tracking a sizer, return it.

NULL otherwise.

getSpacer(This) -> {W :: integer(), H :: integer()}
Types:

This = wxSizerItem()
If this item is tracking a spacer, return its size.

getUserData(This) -> wx:wx_object()
Types:

This = wxSizerItem()
Get the userData item attribute.

getWindow(This) -> wxWindow:wxWindow()
Types:

This = wxSizerItem()
If this item is tracking a window then return it.

NULL otherwise.

isSizer(This) -> boolean()
Types:

This = wxSizerItem()
Is this item a sizer?

Ericsson AB. All Rights Reserved.: wxErlang | 597

wxSizerItem

isShown(This) -> boolean()
Types:

This = wxSizerItem()
Returns true if this item is a window or a spacer and it is shown or if this item is a sizer and not all of its elements
are hidden.

In other words, for sizer items, all of the child elements must be hidden for the sizer itself to be considered hidden.

As an exception, if the wxRESERVE_SPACE_EVEN_IF_HIDDEN flag was used for this sizer item, then
isShown/1 always returns true for it (see wxSizerFlags::ReserveSpaceEvenIfHidden() (not
implemented in wx)).

isSpacer(This) -> boolean()
Types:

This = wxSizerItem()
Is this item a spacer?

isWindow(This) -> boolean()
Types:

This = wxSizerItem()
Is this item a window?

setBorder(This, Border) -> ok
Types:

This = wxSizerItem()
Border = integer()

Set the border item attribute.

setDimension(This, Pos, Size) -> ok
Types:

This = wxSizerItem()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}

Set the position and size of the space allocated to the sizer, and adjust the position and size of the item to be within
that space taking alignment and borders into account.

setFlag(This, Flag) -> ok
Types:

This = wxSizerItem()
Flag = integer()

Set the flag item attribute.

setInitSize(This, X, Y) -> ok
Types:

598 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizerItem

This = wxSizerItem()
X = Y = integer()

Sets the minimum size to be allocated for this item.

This is identical to setMinSize/3, prefer to use the other function, as its name is more clear.

setMinSize(This, Size) -> ok
Types:

This = wxSizerItem()
Size = {W :: integer(), H :: integer()}

Sets the minimum size to be allocated for this item.

If this item is a window, the size is also passed to wxWindow:setMinSize/2.

setMinSize(This, X, Y) -> ok
Types:

This = wxSizerItem()
X = Y = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setProportion(This, Proportion) -> ok
Types:

This = wxSizerItem()
Proportion = integer()

Set the proportion item attribute.

setRatio(This, Ratio) -> ok
setRatio(This, Size) -> ok
Types:

This = wxSizerItem()
Size = {W :: integer(), H :: integer()}

setRatio(This, Width, Height) -> ok
Types:

This = wxSizerItem()
Width = Height = integer()

Set the ratio item attribute.

assignSizer(This, Sizer) -> ok
Types:

This = wxSizerItem()
Sizer = wxSizer:wxSizer()

Set the sizer tracked by this item.

Ericsson AB. All Rights Reserved.: wxErlang | 599

wxSizerItem

Old sizer, if any, is deleted.

assignSpacer(This, Size) -> ok
Types:

This = wxSizerItem()
Size = {W :: integer(), H :: integer()}

Set the size of the spacer tracked by this item.

Old spacer, if any, is deleted.

assignSpacer(This, W, H) -> ok
Types:

This = wxSizerItem()
W = H = integer()

assignWindow(This, Window) -> ok
Types:

This = wxSizerItem()
Window = wxWindow:wxWindow()

Set the window to be tracked by this item.

Note: This is a low-level method which is dangerous if used incorrectly, avoid using it if possible, i.e. if higher level
methods such as wxSizer:replace/4 can be used instead.

If the sizer item previously contained a window, it is dissociated from the sizer containing this sizer item (if
any), but this object doesn't have the pointer to the containing sizer and so it's the caller's responsibility to call
wxWindow:setContainingSizer/2 on window. Failure to do this can result in memory corruption when the
window is destroyed later, so it is crucial to not forget to do it.

Also note that the previously contained window is not deleted, so it's also the callers responsibility to do it, if
necessary.

show(This, Show) -> ok
Types:

This = wxSizerItem()
Show = boolean()

Set the show item attribute, which sizers use to determine if the item is to be made part of the layout or not.

If the item is tracking a window then it is shown or hidden as needed.

600 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizer

wxSizer
Erlang module

wxSizer is the abstract base class used for laying out subwindows in a window. You cannot use wxSizer
directly; instead, you will have to use one of the sizer classes derived from it. Currently there are wxBoxSizer,
wxStaticBoxSizer, wxGridSizer, wxFlexGridSizer, wxWrapSizer (not implemented in wx) and
wxGridBagSizer.

The layout algorithm used by sizers in wxWidgets is closely related to layout in other GUI toolkits, such as Java's
AWT, the GTK toolkit or the Qt toolkit. It is based upon the idea of the individual subwindows reporting their minimal
required size and their ability to get stretched if the size of the parent window has changed.

This will most often mean that the programmer does not set the original size of a dialog in the beginning, rather the
dialog will be assigned a sizer and this sizer will be queried about the recommended size. The sizer in turn will query its
children, which can be normal windows, empty space or other sizers, so that a hierarchy of sizers can be constructed.
Note that wxSizer does not derive from wxWindow and thus does not interfere with tab ordering and requires very
little resources compared to a real window on screen.

What makes sizers so well fitted for use in wxWidgets is the fact that every control reports its own minimal size and the
algorithm can handle differences in font sizes or different window (dialog item) sizes on different platforms without
problems. If e.g. the standard font as well as the overall design of Motif widgets requires more space than on Windows,
the initial dialog size will automatically be bigger on Motif than on Windows.

Sizers may also be used to control the layout of custom drawn items on the window. The add/4, insert/5, and
prepend/4 functions return a pointer to the newly added wxSizerItem. Just add empty space of the desired size
and attributes, and then use the wxSizerItem:getRect/1 method to determine where the drawing operations
should take place.

Please notice that sizers, like child windows, are owned by the library and will be deleted by it which implies that they
must be allocated on the heap. However if you create a sizer and do not add it to another sizer or window, the library
wouldn't be able to delete such an orphan sizer and in this, and only this, case it should be deleted explicitly.

wxSizer flags

The "flag" argument accepted by wxSizerItem constructors and other functions, e.g. add/4, is an OR-combination
of the following flags. Two main behaviours are defined using these flags. One is the border around a window: the
border parameter determines the border width whereas the flags given here determine which side(s) of the item that
the border will be added. The other flags determine how the sizer item behaves when the space allotted to the sizer
changes, and is somewhat dependent on the specific kind of sizer used.

See: Overview sizer

wxWidgets docs: wxSizer

Data Types
wxSizer() = wx:wx_object()

Exports

add(This, Window) -> wxSizerItem:wxSizerItem()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 601

href
href

wxSizer

This = wxSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()

add(This, Width, Height) -> wxSizerItem:wxSizerItem()
add(This, Window, Flags) -> wxSizerItem:wxSizerItem()
add(This, Window, Height :: [Option]) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Option =
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}

Appends a child to the sizer.

wxSizer itself is an abstract class, but the parameters are equivalent in the derived classes that you will instantiate
to use it so they are described here:

add(This, Width, Height, Options :: [Option]) ->
 wxSizerItem:wxSizerItem()
add(This, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Width = Height = integer()
Flags = wxSizerFlags:wxSizerFlags()

Appends a spacer child to the sizer.

addSpacer(This, Size) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Size = integer()

This base function adds non-stretchable space to both the horizontal and vertical orientation of the sizer.

More readable way of calling:

See: addSpacer/2

addStretchSpacer(This) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()

addStretchSpacer(This, Options :: [Option]) ->
 wxSizerItem:wxSizerItem()
Types:

602 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizer

This = wxSizer()
Option = {prop, integer()}

Adds stretchable space to the sizer.

More readable way of calling:

calcMin(This) -> {W :: integer(), H :: integer()}
Types:

This = wxSizer()
This method is abstract and has to be overwritten by any derived class.

Here, the sizer will do the actual calculation of its children's minimal sizes.

clear(This) -> ok
Types:

This = wxSizer()

clear(This, Options :: [Option]) -> ok
Types:

This = wxSizer()
Option = {delete_windows, boolean()}

Detaches all children from the sizer.

If delete_windows is true then child windows will also be deleted.

Notice that child sizers are always deleted, as a general consequence of the principle that sizers own their sizer children,
but don't own their window children (because they are already owned by their parent windows).

detach(This, Window) -> boolean()
detach(This, Index) -> boolean()
Types:

This = wxSizer()
Index = integer()

Detach a item at position index from the sizer without destroying it.

This method does not cause any layout or resizing to take place, call layout/1 to update the layout "on screen" after
detaching a child from the sizer. Returns true if the child item was found and detached, false otherwise.

See: remove/2

fit(This, Window) -> {W :: integer(), H :: integer()}
Types:

This = wxSizer()
Window = wxWindow:wxWindow()

Tell the sizer to resize the window so that its client area matches the sizer's minimal size
(ComputeFittingClientSize() (not implemented in wx) is called to determine it).

This is commonly done in the constructor of the window itself, see sample in the description of wxBoxSizer.

Return: The new window size.

Ericsson AB. All Rights Reserved.: wxErlang | 603

wxSizer

See: ComputeFittingClientSize() (not implemented in wx), ComputeFittingWindowSize() (not
implemented in wx)

setVirtualSizeHints(This, Window) -> ok
Types:

This = wxSizer()
Window = wxWindow:wxWindow()

See: fitInside/2.

fitInside(This, Window) -> ok
Types:

This = wxSizer()
Window = wxWindow:wxWindow()

Tell the sizer to resize the virtual size of the window to match the sizer's minimal size.

This will not alter the on screen size of the window, but may cause the addition/removal/alteration of scrollbars required
to view the virtual area in windows which manage it.

See: wxScrolledWindow:setScrollbars/6, setVirtualSizeHints/2

getChildren(This) -> [wxSizerItem:wxSizerItem()]
Types:

This = wxSizer()

getItem(This, Window) -> wxSizerItem:wxSizerItem()
getItem(This, Index) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Index = integer()

Finds wxSizerItem which is located in the sizer at position index.

Use parameter recursive to search in subsizers too. Returns pointer to item or NULL.

getItem(This, Window, Options :: [Option]) ->
 wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Option = {recursive, boolean()}

Finds wxSizerItem which holds the given window.

Use parameter recursive to search in subsizers too. Returns pointer to item or NULL.

getSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxSizer()
Returns the current size of the sizer.

604 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizer

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxSizer()
Returns the current position of the sizer.

getMinSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxSizer()
Returns the minimal size of the sizer.

This is either the combined minimal size of all the children and their borders or the minimal size
set by setMinSize/3, depending on which is bigger. Note that the returned value is client size, not
window size. In particular, if you use the value to set toplevel window's minimal or actual size, use
wxWindow::SetMinClientSize() (not implemented in wx) or wxWindow:setClientSize/3, not
wxWindow:setMinSize/2 or wxWindow:setSize/6.

hide(This, Window) -> boolean()
hide(This, Index) -> boolean()
Types:

This = wxSizer()
Index = integer()

Hides the item at position index.

To make a sizer item disappear, use hide/3 followed by layout/1.

Use parameter recursive to hide elements found in subsizers. Returns true if the child item was found, false
otherwise.

See: isShown/2, show/3

hide(This, Window, Options :: [Option]) -> boolean()
Types:

This = wxSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Option = {recursive, boolean()}

Hides the child window.

To make a sizer item disappear, use hide/3 followed by layout/1.

Use parameter recursive to hide elements found in subsizers. Returns true if the child item was found, false
otherwise.

See: isShown/2, show/3

insert(This, Index, Item) -> wxSizerItem:wxSizerItem()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 605

wxSizer

This = wxSizer()
Index = integer()
Item = wxSizerItem:wxSizerItem()

insert(This, Index, Width, Height) -> wxSizerItem:wxSizerItem()
insert(This, Index, Window, Flags) -> wxSizerItem:wxSizerItem()
insert(This, Index, Window, Height :: [Option]) ->
 wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Index = integer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Option =
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}

Insert a child into the sizer before any existing item at index.

See add/4 for the meaning of the other parameters.

insert(This, Index, Width, Height, Options :: [Option]) ->
 wxSizerItem:wxSizerItem()
insert(This, Index, Width, Height, Flags) ->
 wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Index = Width = Height = integer()
Flags = wxSizerFlags:wxSizerFlags()

Insert a child into the sizer before any existing item at index.

See add/4 for the meaning of the other parameters.

insertSpacer(This, Index, Size) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Index = Size = integer()

Inserts non-stretchable space to the sizer.

More readable way of calling wxSizer::Insert(index, size, size).

insertStretchSpacer(This, Index) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Index = integer()

insertStretchSpacer(This, Index, Options :: [Option]) ->

606 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizer

 wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Index = integer()
Option = {prop, integer()}

Inserts stretchable space to the sizer.

More readable way of calling wxSizer::Insert(0, 0, prop).

isShown(This, Window) -> boolean()
isShown(This, Index) -> boolean()
Types:

This = wxSizer()
Index = integer()

Returns true if the item at index is shown.

See: hide/3, show/3, wxSizerItem:isShown/1

recalcSizes(This) -> ok
Types:

This = wxSizer()
See: layout/1.

layout(This) -> ok
Types:

This = wxSizer()
Call this to force layout of the children anew, e.g. after having added a child to or removed a child (window, other
sizer or space) from the sizer while keeping the current dimension.

prepend(This, Item) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Item = wxSizerItem:wxSizerItem()

prepend(This, Width, Height) -> wxSizerItem:wxSizerItem()
prepend(This, Window, Flags) -> wxSizerItem:wxSizerItem()
prepend(This, Window, Height :: [Option]) ->
 wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Option =
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |

Ericsson AB. All Rights Reserved.: wxErlang | 607

wxSizer

 {userData, wx:wx_object()}
Same as add/4, but prepends the items to the beginning of the list of items (windows, subsizers or spaces) owned
by this sizer.

prepend(This, Width, Height, Options :: [Option]) ->
 wxSizerItem:wxSizerItem()
prepend(This, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Width = Height = integer()
Flags = wxSizerFlags:wxSizerFlags()

Same as add/4, but prepends the items to the beginning of the list of items (windows, subsizers or spaces) owned
by this sizer.

prependSpacer(This, Size) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Size = integer()

Prepends non-stretchable space to the sizer.

More readable way of calling wxSizer::Prepend(size, size, 0).

prependStretchSpacer(This) -> wxSizerItem:wxSizerItem()
Types:

This = wxSizer()

prependStretchSpacer(This, Options :: [Option]) ->
 wxSizerItem:wxSizerItem()
Types:

This = wxSizer()
Option = {prop, integer()}

Prepends stretchable space to the sizer.

More readable way of calling wxSizer::Prepend(0, 0, prop).

remove(This, Index) -> boolean()
remove(This, Sizer) -> boolean()
Types:

This = Sizer = wxSizer()

Removes a sizer child from the sizer and destroys it.

Note: This method does not cause any layout or resizing to take place, call layout/1 to update the layout "on screen"
after removing a child from the sizer.

Return: true if the child item was found and removed, false otherwise.

608 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizer

replace(This, Oldwin, Newwin) -> boolean()
replace(This, Index, Newitem) -> boolean()
Types:

This = wxSizer()
Index = integer()
Newitem = wxSizerItem:wxSizerItem()

Detaches the given item at position index from the sizer and replaces it with the given wxSizerItem newitem.

The detached child is deleted only if it is a sizer or a spacer (but not if it is a wxWindow because windows are owned
by their parent window, not the sizer).

This method does not cause any layout or resizing to take place, call layout/1 to update the layout "on screen"
after replacing a child from the sizer.

Returns true if the child item was found and removed, false otherwise.

replace(This, Oldwin, Newwin, Options :: [Option]) -> boolean()
Types:

This = wxSizer()
Oldwin = Newwin = wxWindow:wxWindow() | wxSizer:wxSizer()
Option = {recursive, boolean()}

Detaches the given oldwin from the sizer and replaces it with the given newwin.

The detached child window is not deleted (because windows are owned by their parent window, not the sizer).

Use parameter recursive to search the given element recursively in subsizers.

This method does not cause any layout or resizing to take place, call layout/1 to update the layout "on screen"
after replacing a child from the sizer.

Returns true if the child item was found and removed, false otherwise.

setDimension(This, Pos, Size) -> ok
Types:

This = wxSizer()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setDimension(This, X, Y, Width, Height) -> ok
Types:

This = wxSizer()
X = Y = Width = Height = integer()

Call this to force the sizer to take the given dimension and thus force the items owned by the sizer to resize themselves
according to the rules defined by the parameter in the add/4 and prepend/4 methods.

setMinSize(This, Size) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 609

wxSizer

This = wxSizer()
Size = {W :: integer(), H :: integer()}

Call this to give the sizer a minimal size.

Normally, the sizer will calculate its minimal size based purely on how much space its children need. After calling
this method getMinSize/1 will return either the minimal size as requested by its children or the minimal size set
here, depending on which is bigger.

setMinSize(This, Width, Height) -> ok
Types:

This = wxSizer()
Width = Height = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setItemMinSize(This, Window, Size) -> boolean()
setItemMinSize(This, Index, Size) -> boolean()
Types:

This = wxSizer()
Index = integer()
Size = {W :: integer(), H :: integer()}

setItemMinSize(This, Window, Width, Height) -> boolean()
setItemMinSize(This, Index, Width, Height) -> boolean()
Types:

This = wxSizer()
Index = Width = Height = integer()

setSizeHints(This, Window) -> ok
Types:

This = wxSizer()
Window = wxWindow:wxWindow()

This method first calls fit/2 and then setSizeHints/2 on the window passed to it.

This only makes sense when window is actually a wxTopLevelWindow such as a wxFrame or a wxDialog,
since SetSizeHints only has any effect in these classes. It does nothing in normal windows or controls.

This method is implicitly used by wxWindow:setSizerAndFit/3 which is commonly invoked in the constructor
of a toplevel window itself (see the sample in the description of wxBoxSizer) if the toplevel window is resizable.

show(This, Window) -> boolean()
show(This, Index) -> boolean()
show(This, Show) -> ok
Types:

610 | Ericsson AB. All Rights Reserved.: wxErlang

wxSizer

This = wxSizer()
Show = boolean()

show(This, Window, Options :: [Option]) -> boolean()
show(This, Index, Options :: [Option]) -> boolean()
Types:

This = wxSizer()
Index = integer()
Option = {show, boolean()}

Shows the item at index.

To make a sizer item disappear or reappear, use show/3 followed by layout/1.

Returns true if the child item was found, false otherwise.

See: hide/3, isShown/2

showItems(This, Show) -> ok
Types:

This = wxSizer()
Show = boolean()

Show or hide all items managed by the sizer.

Ericsson AB. All Rights Reserved.: wxErlang | 611

wxSlider

wxSlider
Erlang module

A slider is a control with a handle which can be pulled back and forth to change the value.

On Windows, the track bar control is used.

On GTK+, tick marks are only available for version 2.16 and later.

Slider generates the same events as wxScrollBar but in practice the most convenient way to process wxSlider
updates is by handling the slider-specific wxEVT_SLIDER event which carries wxCommandEvent containing just
the latest slider position.

Styles

This class supports the following styles:

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED

The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb using the mouse
and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed by an EVT_SCROLL_CHANGED
event).

The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb position, and
when clicking next to the thumb (In all these cases the EVT_SCROLL_THUMBRELEASE event does not happen).
In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has finished independently
of the way it had started. Please see the page_samples_widgets ("Slider" page) to see the difference between
EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.

See: Overview events, wxScrollBar

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxSlider

Events
Event types emitted from this class: scroll_top, scroll_bottom, scroll_lineup, scroll_linedown,
scroll_pageup, scroll_pagedown, scroll_thumbtrack, scroll_thumbrelease,
scroll_changed, scroll_top, scroll_bottom, scroll_lineup, scroll_linedown,
scroll_pageup, scroll_pagedown, scroll_thumbtrack, scroll_thumbrelease,
scroll_changed, command_slider_updated

Data Types
wxSlider() = wx:wx_object()

Exports

new() -> wxSlider()
Default constructor.

new(Parent, Id, Value, MinValue, MaxValue) -> wxSlider()
Types:

612 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxSlider

Parent = wxWindow:wxWindow()
Id = Value = MinValue = MaxValue = integer()

new(Parent, Id, Value, MinValue, MaxValue, Options :: [Option]) ->
 wxSlider()
Types:

Parent = wxWindow:wxWindow()
Id = Value = MinValue = MaxValue = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a slider.

See: create/7, wxValidator (not implemented in wx)

destroy(This :: wxSlider()) -> ok
Destructor, destroying the slider.

create(This, Parent, Id, Value, MinValue, MaxValue) -> boolean()
Types:

This = wxSlider()
Parent = wxWindow:wxWindow()
Id = Value = MinValue = MaxValue = integer()

create(This, Parent, Id, Value, MinValue, MaxValue,
 Options :: [Option]) ->
 boolean()
Types:

This = wxSlider()
Parent = wxWindow:wxWindow()
Id = Value = MinValue = MaxValue = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Used for two-step slider construction.

See new/6 for further details.

getLineSize(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 613

wxSlider

This = wxSlider()
Returns the line size.

See: setLineSize/2

getMax(This) -> integer()
Types:

This = wxSlider()
Gets the maximum slider value.

See: getMin/1, setRange/3

getMin(This) -> integer()
Types:

This = wxSlider()
Gets the minimum slider value.

See: getMin/1, setRange/3

getPageSize(This) -> integer()
Types:

This = wxSlider()
Returns the page size.

See: setPageSize/2

getThumbLength(This) -> integer()
Types:

This = wxSlider()
Returns the thumb length.

Only for:wxmsw

See: setThumbLength/2

getValue(This) -> integer()
Types:

This = wxSlider()
Gets the current slider value.

See: getMin/1, getMax/1, setValue/2

setLineSize(This, LineSize) -> ok
Types:

This = wxSlider()
LineSize = integer()

Sets the line size for the slider.

See: getLineSize/1

614 | Ericsson AB. All Rights Reserved.: wxErlang

wxSlider

setPageSize(This, PageSize) -> ok
Types:

This = wxSlider()
PageSize = integer()

Sets the page size for the slider.

See: getPageSize/1

setRange(This, MinValue, MaxValue) -> ok
Types:

This = wxSlider()
MinValue = MaxValue = integer()

Sets the minimum and maximum slider values.

See: getMin/1, getMax/1

setThumbLength(This, Len) -> ok
Types:

This = wxSlider()
Len = integer()

Sets the slider thumb length.

Only for:wxmsw

See: getThumbLength/1

setValue(This, Value) -> ok
Types:

This = wxSlider()
Value = integer()

Sets the slider position.

Ericsson AB. All Rights Reserved.: wxErlang | 615

wxSpinButton

wxSpinButton
Erlang module

A wxSpinButton has two small up and down (or left and right) arrow buttons.

It is often used next to a text control for increment and decrementing a value. Portable programs should try to use
wxSpinCtrl instead as wxSpinButton is not implemented for all platforms but wxSpinCtrl is as it degenerates
to a simple wxTextCtrl on such platforms.

Note: the range supported by this control (and wxSpinCtrl) depends on the platform but is at least -0x8000 to
0x7fff. Under GTK and Win32 with sufficiently new version of comctrl32.dll (at least 4.71 is required, 5.80
is recommended) the full 32 bit range is supported.

Styles

This class supports the following styles:

See: wxSpinCtrl

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxSpinButton

Events
Event types emitted from this class: spin, spin_up, spin_down

Data Types
wxSpinButton() = wx:wx_object()

Exports

new() -> wxSpinButton()
Default constructor.

new(Parent) -> wxSpinButton()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxSpinButton()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating and showing a spin button.

See: create/3

616 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxSpinButton

destroy(This :: wxSpinButton()) -> ok
Destructor, destroys the spin button control.

create(This, Parent) -> boolean()
Types:

This = wxSpinButton()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxSpinButton()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Scrollbar creation function called by the spin button constructor.

See new/2 for details.

getMax(This) -> integer()
Types:

This = wxSpinButton()
Returns the maximum permissible value.

See: setRange/3

getMin(This) -> integer()
Types:

This = wxSpinButton()
Returns the minimum permissible value.

See: setRange/3

getValue(This) -> integer()
Types:

This = wxSpinButton()
Returns the current spin button value.

See: setValue/2

setRange(This, Min, Max) -> ok
Types:

This = wxSpinButton()
Min = Max = integer()

Sets the range of the spin button.

Ericsson AB. All Rights Reserved.: wxErlang | 617

wxSpinButton

In portable code, min should be less than or equal to max. In wxMSW it is possible to specify minimum greater than
maximum and the native control supports the same range as if they were reversed, but swaps the meaning of up and
down arrows, however this dubious feature is not supported on other platforms.

See: getMin/1, getMax/1

setValue(This, Value) -> ok
Types:

This = wxSpinButton()
Value = integer()

Sets the value of the spin button.

618 | Ericsson AB. All Rights Reserved.: wxErlang

wxSpinCtrl

wxSpinCtrl
Erlang module

wxSpinCtrl combines wxTextCtrl and wxSpinButton in one control.

Styles

This class supports the following styles:

See: wxSpinButton, wxSpinCtrlDouble (not implemented in wx), wxControl

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxSpinCtrl

Events
Event types emitted from this class: command_spinctrl_updated

Data Types
wxSpinCtrl() = wx:wx_object()

Exports

new() -> wxSpinCtrl()
Default constructor.

new(Parent) -> wxSpinCtrl()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxSpinCtrl()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {min, integer()} |
 {max, integer()} |
 {initial, integer()}

Constructor, creating and showing a spin control.

If value is non-empty, it will be shown in the text entry part of the control and if it has numeric value, the initial
numeric value of the control, as returned by getValue/1 will also be determined by it instead of by initial.
Hence, it only makes sense to specify initial if value is an empty string or is not convertible to a number,
otherwise initial is simply ignored and the number specified by value is used.

See: create/3

Ericsson AB. All Rights Reserved.: wxErlang | 619

href

wxSpinCtrl

create(This, Parent) -> boolean()
Types:

This = wxSpinCtrl()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxSpinCtrl()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {min, integer()} |
 {max, integer()} |
 {initial, integer()}

Creation function called by the spin control constructor.

See new/2 for details.

setValue(This, Value) -> ok
setValue(This, Text) -> ok
Types:

This = wxSpinCtrl()
Text = unicode:chardata()

Sets the value of the spin control.

It is recommended to use the overload taking an integer value instead.

Notice that, unlike wxTextCtrl:setValue/2, but like most of the other setter methods in wxWidgets, calling
this method does not generate any events as events are only generated for the user actions.

getValue(This) -> integer()
Types:

This = wxSpinCtrl()
Gets the value of the spin control.

setRange(This, MinVal, MaxVal) -> ok
Types:

This = wxSpinCtrl()
MinVal = MaxVal = integer()

Sets range of allowable values.

Notice that calling this method may change the value of the control if it's not inside the new valid range, e.g. it will
become minVal if it is less than it now. However no wxEVT_SPINCTRL event is generated, even if it the value
does change.

620 | Ericsson AB. All Rights Reserved.: wxErlang

wxSpinCtrl

Note: Setting a range including negative values is silently ignored if current base is set to 16.

setSelection(This, From, To) -> ok
Types:

This = wxSpinCtrl()
From = To = integer()

Select the text in the text part of the control between positions from (inclusive) and to (exclusive).

This is similar to wxTextCtrl:setSelection/3.

Note: this is currently only implemented for Windows and generic versions of the control.

getMin(This) -> integer()
Types:

This = wxSpinCtrl()
Gets minimal allowable value.

getMax(This) -> integer()
Types:

This = wxSpinCtrl()
Gets maximal allowable value.

destroy(This :: wxSpinCtrl()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 621

wxSpinEvent

wxSpinEvent
Erlang module

This event class is used for the events generated by wxSpinButton and wxSpinCtrl.

See: wxSpinButton, and, wxSpinCtrl

This class is derived (and can use functions) from: wxNotifyEvent wxCommandEvent wxEvent

wxWidgets docs: wxSpinEvent

Events
Use wxEvtHandler:connect/3 with wxSpinEventType to subscribe to events of this type.

Data Types
wxSpinEvent() = wx:wx_object()
wxSpin() =
 #wxSpin{type = wxSpinEvent:wxSpinEventType(),
 commandInt = integer()}
wxSpinEventType() =
 command_spinctrl_updated | spin_up | spin_down | spin

Exports

getPosition(This) -> integer()
Types:

This = wxSpinEvent()
Retrieve the current spin button or control value.

setPosition(This, Pos) -> ok
Types:

This = wxSpinEvent()
Pos = integer()

Set the value associated with the event.

622 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxSplashScreen

wxSplashScreen
Erlang module

wxSplashScreen shows a window with a thin border, displaying a bitmap describing your application.

Show it in application initialisation, and then either explicitly destroy it or let it time-out.

Example usage:

This class is derived (and can use functions) from: wxFrame wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxSplashScreen

Data Types
wxSplashScreen() = wx:wx_object()

Exports

new(Bitmap, SplashStyle, Milliseconds, Parent, Id) ->
 wxSplashScreen()
Types:

Bitmap = wxBitmap:wxBitmap()
SplashStyle = Milliseconds = integer()
Parent = wxWindow:wxWindow()
Id = integer()

new(Bitmap, SplashStyle, Milliseconds, Parent, Id,
 Options :: [Option]) ->
 wxSplashScreen()
Types:

Bitmap = wxBitmap:wxBitmap()
SplashStyle = Milliseconds = integer()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Construct the splash screen passing a bitmap, a style, a timeout, a window id, optional position and size, and a window
style.

splashStyle is a bitlist of some of the following:

milliseconds is the timeout in milliseconds.

destroy(This :: wxSplashScreen()) -> ok
Destroys the splash screen.

Ericsson AB. All Rights Reserved.: wxErlang | 623

href

wxSplashScreen

getSplashStyle(This) -> integer()
Types:

This = wxSplashScreen()
Returns the splash style (see new/6 for details).

getTimeout(This) -> integer()
Types:

This = wxSplashScreen()
Returns the timeout in milliseconds.

624 | Ericsson AB. All Rights Reserved.: wxErlang

wxSplitterEvent

wxSplitterEvent
Erlang module

This class represents the events generated by a splitter control.

Also there is only one event class, the data associated to the different events is not the same and so not all accessor
functions may be called for each event. The documentation mentions the kind of event(s) for which the given accessor
function makes sense: calling it for other types of events will result in assert failure (in debug mode) and will return
meaningless results.

See: wxSplitterWindow, Overview events

This class is derived (and can use functions) from: wxNotifyEvent wxCommandEvent wxEvent

wxWidgets docs: wxSplitterEvent

Events
Use wxEvtHandler:connect/3 with wxSplitterEventType to subscribe to events of this type.

Data Types
wxSplitterEvent() = wx:wx_object()
wxSplitter() =
 #wxSplitter{type = wxSplitterEvent:wxSplitterEventType()}
wxSplitterEventType() =
 command_splitter_sash_pos_changed |
 command_splitter_sash_pos_changing |
 command_splitter_doubleclicked | command_splitter_unsplit

Exports

getSashPosition(This) -> integer()
Types:

This = wxSplitterEvent()
Returns the new sash position.

May only be called while processing wxEVT_SPLITTER_SASH_POS_CHANGING and
wxEVT_SPLITTER_SASH_POS_CHANGED events.

getX(This) -> integer()
Types:

This = wxSplitterEvent()
Returns the x coordinate of the double-click point.

May only be called while processing wxEVT_SPLITTER_DOUBLECLICKED events.

getY(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 625

href
href

wxSplitterEvent

This = wxSplitterEvent()
Returns the y coordinate of the double-click point.

May only be called while processing wxEVT_SPLITTER_DOUBLECLICKED events.

getWindowBeingRemoved(This) -> wxWindow:wxWindow()
Types:

This = wxSplitterEvent()
Returns a pointer to the window being removed when a splitter window is unsplit.

May only be called while processing wxEVT_SPLITTER_UNSPLIT events.

setSashPosition(This, Pos) -> ok
Types:

This = wxSplitterEvent()
Pos = integer()

In the case of wxEVT_SPLITTER_SASH_POS_CHANGED events, sets the new sash position.

In the case of wxEVT_SPLITTER_SASH_POS_CHANGING events, sets the new tracking bar position so visual
feedback during dragging will represent that change that will actually take place. Set to -1 from the event handler code
to prevent repositioning.

May only be called while processing wxEVT_SPLITTER_SASH_POS_CHANGING and
wxEVT_SPLITTER_SASH_POS_CHANGED events.

626 | Ericsson AB. All Rights Reserved.: wxErlang

wxSplitterWindow

wxSplitterWindow
Erlang module

This class manages up to two subwindows. The current view can be split into two programmatically (perhaps from a
menu command), and unsplit either programmatically or via the wxSplitterWindow user interface.

Styles

This class supports the following styles:

See: wxSplitterEvent, Overview splitterwindow

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxSplitterWindow

Events
Event types emitted from this class: command_splitter_sash_pos_changing,
command_splitter_sash_pos_changed, command_splitter_unsplit

Data Types
wxSplitterWindow() = wx:wx_object()

Exports

new() -> wxSplitterWindow()
Default constructor.

new(Parent) -> wxSplitterWindow()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxSplitterWindow()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor for creating the window.

Remark: After using this constructor, you must create either one or two subwindows with the splitter window as parent,
and then call one of initialize/2, splitVertically/4 and splitHorizontally/4 in order to set the
pane(s). You can create two windows, with one hidden when not being shown; or you can create and delete the second
pane on demand.

See: initialize/2, splitVertically/4, splitHorizontally/4, create/3

Ericsson AB. All Rights Reserved.: wxErlang | 627

href
href

wxSplitterWindow

destroy(This :: wxSplitterWindow()) -> ok
Destroys the wxSplitterWindow and its children.

create(This, Parent) -> boolean()
Types:

This = wxSplitterWindow()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxSplitterWindow()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creation function, for two-step construction.

See new/2 for details.

getMinimumPaneSize(This) -> integer()
Types:

This = wxSplitterWindow()
Returns the current minimum pane size (defaults to zero).

See: setMinimumPaneSize/2

getSashGravity(This) -> number()
Types:

This = wxSplitterWindow()
Returns the current sash gravity.

See: setSashGravity/2

getSashPosition(This) -> integer()
Types:

This = wxSplitterWindow()
Returns the current sash position.

See: setSashPosition/3

getSplitMode(This) -> wx:wx_enum()
Types:

This = wxSplitterWindow()
Gets the split mode.

See: setSplitMode/2, splitVertically/4, splitHorizontally/4

628 | Ericsson AB. All Rights Reserved.: wxErlang

wxSplitterWindow

getWindow1(This) -> wxWindow:wxWindow()
Types:

This = wxSplitterWindow()
Returns the left/top or only pane.

getWindow2(This) -> wxWindow:wxWindow()
Types:

This = wxSplitterWindow()
Returns the right/bottom pane.

initialize(This, Window) -> ok
Types:

This = wxSplitterWindow()
Window = wxWindow:wxWindow()

Initializes the splitter window to have one pane.

The child window is shown if it is currently hidden.

Remark: This should be called if you wish to initially view only a single pane in the splitter window.

See: splitVertically/4, splitHorizontally/4

isSplit(This) -> boolean()
Types:

This = wxSplitterWindow()
Returns true if the window is split, false otherwise.

replaceWindow(This, WinOld, WinNew) -> boolean()
Types:

This = wxSplitterWindow()
WinOld = WinNew = wxWindow:wxWindow()

This function replaces one of the windows managed by the wxSplitterWindow with another one.

It is in general better to use it instead of calling unsplit/2 and then resplitting the window back because it will
provoke much less flicker (if any). It is valid to call this function whether the splitter has two windows or only one.

Both parameters should be non-NULL and winOld must specify one of the windows managed by the splitter. If the
parameters are incorrect or the window couldn't be replaced, false is returned. Otherwise the function will return true,
but please notice that it will not delete the replaced window and you may wish to do it yourself.

See: getMinimumPaneSize/1

setSashGravity(This, Gravity) -> ok
Types:

This = wxSplitterWindow()
Gravity = number()

Sets the sash gravity.

Ericsson AB. All Rights Reserved.: wxErlang | 629

wxSplitterWindow

Remark: Gravity is real factor which controls position of sash while resizing wxSplitterWindow. Gravity tells
wxSplitterWindow how much will left/top window grow while resizing. Example values:

Notice that when sash gravity for a newly created splitter window, it is often necessary to explicitly set the splitter size
using wxWindow:setSize/6 to ensure that is big enough for its initial sash position. Otherwise, i.e. if the window
is created with the default tiny size and only resized to its correct size later, the initial sash position will be affected
by the gravity and typically result in sash being at the rightmost position for the gravity of 1. See the example code
creating wxSplitterWindow in the splitter sample for more details.

See: getSashGravity/1

setSashPosition(This, Position) -> ok
Types:

This = wxSplitterWindow()
Position = integer()

setSashPosition(This, Position, Options :: [Option]) -> ok
Types:

This = wxSplitterWindow()
Position = integer()
Option = {redraw, boolean()}

Sets the sash position.

Remark: Does not currently check for an out-of-range value.

See: getSashPosition/1

setMinimumPaneSize(This, PaneSize) -> ok
Types:

This = wxSplitterWindow()
PaneSize = integer()

Sets the minimum pane size.

Remark: The default minimum pane size is zero, which means that either pane can be reduced to zero by dragging the
sash, thus removing one of the panes. To prevent this behaviour (and veto out-of-range sash dragging), set a minimum
size, for example 20 pixels. If the wxSP_PERMIT_UNSPLIT style is used when a splitter window is created, the
window may be unsplit even if minimum size is non-zero.

See: getMinimumPaneSize/1

setSplitMode(This, Mode) -> ok
Types:

This = wxSplitterWindow()
Mode = integer()

Sets the split mode.

Remark: Only sets the internal variable; does not update the display.

See: getSplitMode/1, splitVertically/4, splitHorizontally/4

630 | Ericsson AB. All Rights Reserved.: wxErlang

wxSplitterWindow

splitHorizontally(This, Window1, Window2) -> boolean()
Types:

This = wxSplitterWindow()
Window1 = Window2 = wxWindow:wxWindow()

splitHorizontally(This, Window1, Window2, Options :: [Option]) ->
 boolean()
Types:

This = wxSplitterWindow()
Window1 = Window2 = wxWindow:wxWindow()
Option = {sashPosition, integer()}

Initializes the top and bottom panes of the splitter window.

The child windows are shown if they are currently hidden.

Return: true if successful, false otherwise (the window was already split).

Remark: This should be called if you wish to initially view two panes. It can also be called at any subsequent time,
but the application should check that the window is not currently split using isSplit/1.

See: splitVertically/4, isSplit/1, unsplit/2

splitVertically(This, Window1, Window2) -> boolean()
Types:

This = wxSplitterWindow()
Window1 = Window2 = wxWindow:wxWindow()

splitVertically(This, Window1, Window2, Options :: [Option]) ->
 boolean()
Types:

This = wxSplitterWindow()
Window1 = Window2 = wxWindow:wxWindow()
Option = {sashPosition, integer()}

Initializes the left and right panes of the splitter window.

The child windows are shown if they are currently hidden.

Return: true if successful, false otherwise (the window was already split).

Remark: This should be called if you wish to initially view two panes. It can also be called at any subsequent time,
but the application should check that the window is not currently split using isSplit/1.

See: splitHorizontally/4, isSplit/1, unsplit/2

unsplit(This) -> boolean()
Types:

This = wxSplitterWindow()

unsplit(This, Options :: [Option]) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 631

wxSplitterWindow

This = wxSplitterWindow()
Option = {toRemove, wxWindow:wxWindow()}

Unsplits the window.

Return: true if successful, false otherwise (the window was not split).

Remark: This call will not actually delete the pane being removed; it calls OnUnsplit() (not implemented in wx)
which can be overridden for the desired behaviour. By default, the pane being removed is hidden.

See: splitHorizontally/4, splitVertically/4, isSplit/1, OnUnsplit() (not implemented in wx)

updateSize(This) -> ok
Types:

This = wxSplitterWindow()
Causes any pending sizing of the sash and child panes to take place immediately.

Such resizing normally takes place in idle time, in order to wait for layout to be completed. However, this can cause
unacceptable flicker as the panes are resized after the window has been shown. To work around this, you can perform
window layout (for example by sending a size event to the parent window), and then call this function, before showing
the top-level window.

632 | Ericsson AB. All Rights Reserved.: wxErlang

wxStaticBitmap

wxStaticBitmap
Erlang module

A static bitmap control displays a bitmap. Native implementations on some platforms are only meant for display of
the small icons in the dialog boxes.

If you want to display larger images portably, you may use generic implementation wxGenericStaticBitmap declared
in <wx/generic/statbmpg.h>.

Notice that for the best results, the size of the control should be the same as the size of the image displayed in it,
as happens by default if it's not resized explicitly. Otherwise, behaviour depends on the platform: under MSW, the
bitmap is drawn centred inside the control, while elsewhere it is drawn at the origin of the control. You can use
SetScaleMode() (not implemented in wx) to control how the image is scaled inside the control.

See: wxBitmap

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxStaticBitmap

Data Types
wxStaticBitmap() = wx:wx_object()

Exports

new() -> wxStaticBitmap()
Default constructor.

new(Parent, Id, Label) -> wxStaticBitmap()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = wxBitmap:wxBitmap()

new(Parent, Id, Label, Options :: [Option]) -> wxStaticBitmap()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = wxBitmap:wxBitmap()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating and showing a static bitmap control.

See: create/5

create(This, Parent, Id, Label) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 633

href

wxStaticBitmap

This = wxStaticBitmap()
Parent = wxWindow:wxWindow()
Id = integer()
Label = wxBitmap:wxBitmap()

create(This, Parent, Id, Label, Options :: [Option]) -> boolean()
Types:

This = wxStaticBitmap()
Parent = wxWindow:wxWindow()
Id = integer()
Label = wxBitmap:wxBitmap()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creation function, for two-step construction.

For details see new/4.

getBitmap(This) -> wxBitmap:wxBitmap()
Types:

This = wxStaticBitmap()
Returns the bitmap currently used in the control.

Notice that this method can be called even if SetIcon() (not implemented in wx) had been used.

See: setBitmap/2

setBitmap(This, Label) -> ok
Types:

This = wxStaticBitmap()
Label = wxBitmap:wxBitmap()

Sets the bitmap label.

See: getBitmap/1

destroy(This :: wxStaticBitmap()) -> ok
Destroys the object.

634 | Ericsson AB. All Rights Reserved.: wxErlang

wxStaticBoxSizer

wxStaticBoxSizer
Erlang module

wxStaticBoxSizer is a sizer derived from wxBoxSizer but adds a static box around the sizer.

The static box may be either created independently or the sizer may create it itself as a convenience. In any case, the
sizer owns the wxStaticBox control and will delete it in the wxStaticBoxSizer destructor.

Note that since wxWidgets 2.9.1 you are encouraged to create the windows which are added to wxStaticBoxSizer
as children of wxStaticBox itself, see this class documentation for more details.

Example of use of this class:

See: wxSizer, wxStaticBox, wxBoxSizer, Overview sizer

This class is derived (and can use functions) from: wxBoxSizer wxSizer

wxWidgets docs: wxStaticBoxSizer

Data Types
wxStaticBoxSizer() = wx:wx_object()

Exports

new(Orient, Parent) -> wxStaticBoxSizer()
new(Box, Orient) -> wxStaticBoxSizer()
Types:

Box = wxStaticBox:wxStaticBox()
Orient = integer()

This constructor uses an already existing static box.

new(Orient, Parent, Options :: [Option]) -> wxStaticBoxSizer()
Types:

Orient = integer()
Parent = wxWindow:wxWindow()
Option = {label, unicode:chardata()}

This constructor creates a new static box with the given label and parent window.

getStaticBox(This) -> wxStaticBox:wxStaticBox()
Types:

This = wxStaticBoxSizer()
Returns the static box associated with the sizer.

destroy(This :: wxStaticBoxSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 635

href
href

wxStaticBox

wxStaticBox
Erlang module

A static box is a rectangle drawn around other windows to denote a logical grouping of items.

Note that while the previous versions required that windows appearing inside a static box be created as its siblings
(i.e. use the same parent as the static box itself), since wxWidgets 2.9.1 it is also possible to create them as children
of wxStaticBox itself and you are actually encouraged to do it like this if compatibility with the previous versions
is not important.

So the new recommended way to create static box is:

While the compatible - and now deprecated - way is

Also note that there is a specialized wxSizer class (wxStaticBoxSizer) which can be used as an easier way
to pack items into a static box.

See: wxStaticText, wxStaticBoxSizer

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxStaticBox

Data Types
wxStaticBox() = wx:wx_object()

Exports

new() -> wxStaticBox()
Default constructor.

new(Parent, Id, Label) -> wxStaticBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

new(Parent, Id, Label, Options :: [Option]) -> wxStaticBox()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating and showing a static box.

See: create/5

636 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxStaticBox

destroy(This :: wxStaticBox()) -> ok
Constructor for a static box using the given window as label.

This constructor takes a pointer to an arbitrary window (although usually a wxCheckBox or a wxRadioButton)
instead of just the usual text label and puts this window at the top of the box at the place where the label would be shown.

The label window must be a non-null, fully created window and will become a child of this wxStaticBox, i.e. it
will be owned by this control and will be deleted when the wxStaticBox itself is deleted.

An example of creating a wxStaticBox with window as a label:

Currently this constructor is only available in wxGTK and wxMSW, use
wxHAS_WINDOW_LABEL_IN_STATIC_BOX to check whether it can be used at compile-time.

Since: 3.1.1 Destructor, destroying the group box.

create(This, Parent, Id, Label) -> boolean()
Types:

This = wxStaticBox()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

create(This, Parent, Id, Label, Options :: [Option]) -> boolean()
Types:

This = wxStaticBox()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creates the static box for two-step construction.

See new/4 for further details.

Ericsson AB. All Rights Reserved.: wxErlang | 637

wxStaticLine

wxStaticLine
Erlang module

A static line is just a line which may be used in a dialog to separate the groups of controls.

The line may be only vertical or horizontal. Moreover, not all ports (notably not wxGTK) support specifying the
transversal direction of the line (e.g. height for a horizontal line) so for maximal portability you should specify it as
wxDefaultCoord.

Styles

This class supports the following styles:

See: wxStaticBox

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxStaticLine

Data Types
wxStaticLine() = wx:wx_object()

Exports

new() -> wxStaticLine()
Default constructor.

new(Parent) -> wxStaticLine()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxStaticLine()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating and showing a static line.

See: create/3

create(This, Parent) -> boolean()
Types:

638 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxStaticLine

This = wxStaticLine()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxStaticLine()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creates the static line for two-step construction.

See new/2 for further details.

isVertical(This) -> boolean()
Types:

This = wxStaticLine()
Returns true if the line is vertical, false if horizontal.

getDefaultSize() -> integer()
This static function returns the size which will be given to the smaller dimension of the static line, i.e.

its height for a horizontal line or its width for a vertical one.

destroy(This :: wxStaticLine()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 639

wxStaticText

wxStaticText
Erlang module

A static text control displays one or more lines of read-only text. wxStaticText supports the three classic text
alignments, label ellipsization i.e. replacing parts of the text with the ellipsis ("...") if the label doesn't fit into the
provided space and also formatting markup with wxControl::SetLabelMarkup() (not implemented in wx).

Styles

This class supports the following styles:

See: wxStaticBitmap, wxStaticBox

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxStaticText

Data Types
wxStaticText() = wx:wx_object()

Exports

new() -> wxStaticText()
Default constructor.

new(Parent, Id, Label) -> wxStaticText()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

new(Parent, Id, Label, Options :: [Option]) -> wxStaticText()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructor, creating and showing a text control.

See: create/5

create(This, Parent, Id, Label) -> boolean()
Types:

640 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxStaticText

This = wxStaticText()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

create(This, Parent, Id, Label, Options :: [Option]) -> boolean()
Types:

This = wxStaticText()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creation function, for two-step construction.

For details see new/4.

getLabel(This) -> unicode:charlist()
Types:

This = wxStaticText()
Returns the control's label, as it was passed to wxControl:setLabel/2.

Note that the returned string may contains mnemonics ("&" characters) if they were passed to the
wxControl:setLabel/2 function; use GetLabelText() (not implemented in wx) if they are undesired.

Also note that the returned string is always the string which was passed to wxControl:setLabel/2 but may be
different from the string passed to SetLabelText() (not implemented in wx) (since this last one escapes mnemonic
characters).

setLabel(This, Label) -> ok
Types:

This = wxStaticText()
Label = unicode:chardata()

Change the label shown in the control.

Notice that since wxWidgets 3.1.1 this function is guaranteed not to do anything if the label didn't really change, so
there is no benefit to checking if the new label is different from the current one in the application code.

See: wxControl:setLabel/2

wrap(This, Width) -> ok
Types:

This = wxStaticText()
Width = integer()

This functions wraps the controls label so that each of its lines becomes at most width pixels wide if possible (the
lines are broken at words boundaries so it might not be the case if words are too long).

Ericsson AB. All Rights Reserved.: wxErlang | 641

wxStaticText

If width is negative, no wrapping is done. Note that this width is not necessarily the total width of the control, since
a few pixels for the border (depending on the controls border style) may be added.

Since: 2.6.2

destroy(This :: wxStaticText()) -> ok
Destroys the object.

642 | Ericsson AB. All Rights Reserved.: wxErlang

wxStatusBar

wxStatusBar
Erlang module

A status bar is a narrow window that can be placed along the bottom of a frame to give small amounts of status
information. It can contain one or more fields, one or more of which can be variable length according to the size of
the window.

wxStatusBar also maintains an independent stack of status texts for each field (see pushStatusText/3 and
popStatusText/2).

Note that in wxStatusBar context, the terms pane and field are synonyms.

Styles

This class supports the following styles:

Remark: It is possible to create controls and other windows on the status bar. Position these windows from an OnSize()
event handler.

Remark: Notice that only the first 127 characters of a string will be shown in status bar fields under Windows if a
proper manifest indicating that the program uses version 6 of common controls library is not used. This is a limitation
of the native control on these platforms.

See: wxStatusBarPane (not implemented in wx), wxFrame, Examples

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxStatusBar

Data Types
wxStatusBar() = wx:wx_object()

Exports

new() -> wxStatusBar()
Default ctor.

new(Parent) -> wxStatusBar()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxStatusBar()
Types:

Parent = wxWindow:wxWindow()
Option = {winid, integer()} | {style, integer()}

Constructor, creating the window.

See: create/3

destroy(This :: wxStatusBar()) -> ok
Destructor.

Ericsson AB. All Rights Reserved.: wxErlang | 643

href
href

wxStatusBar

create(This, Parent) -> boolean()
Types:

This = wxStatusBar()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxStatusBar()
Parent = wxWindow:wxWindow()
Option = {winid, integer()} | {style, integer()}

Creates the window, for two-step construction.

See new/2 for details.

getFieldRect(This, I) -> Result
Types:

Result =
 {Res :: boolean(),
 Rect ::
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}
This = wxStatusBar()
I = integer()

Returns the size and position of a field's internal bounding rectangle.

Return: true if the field index is valid, false otherwise.

See: {X,Y,W,H}

getFieldsCount(This) -> integer()
Types:

This = wxStatusBar()
Returns the number of fields in the status bar.

getStatusText(This) -> unicode:charlist()
Types:

This = wxStatusBar()

getStatusText(This, Options :: [Option]) -> unicode:charlist()
Types:

This = wxStatusBar()
Option = {number, integer()}

Returns the string associated with a status bar field.

Return: The status field string if the field is valid, otherwise the empty string.

644 | Ericsson AB. All Rights Reserved.: wxErlang

wxStatusBar

See: setStatusText/3

popStatusText(This) -> ok
Types:

This = wxStatusBar()

popStatusText(This, Options :: [Option]) -> ok
Types:

This = wxStatusBar()
Option = {number, integer()}

Restores the text to the value it had before the last call to pushStatusText/3.

Notice that if setStatusText/3 had been called in the meanwhile, popStatusText/2 will not change the text,
i.e. it does not override explicit changes to status text but only restores the saved text if it hadn't been changed since.

See: pushStatusText/3

pushStatusText(This, String) -> ok
Types:

This = wxStatusBar()
String = unicode:chardata()

pushStatusText(This, String, Options :: [Option]) -> ok
Types:

This = wxStatusBar()
String = unicode:chardata()
Option = {number, integer()}

Saves the current field text in a per-field stack, and sets the field text to the string passed as argument.

See: popStatusText/2

setFieldsCount(This, Number) -> ok
Types:

This = wxStatusBar()
Number = integer()

setFieldsCount(This, Number, Options :: [Option]) -> ok
Types:

This = wxStatusBar()
Number = integer()
Option = {widths, [integer()]}

Sets the number of fields, and optionally the field widths.

setMinHeight(This, Height) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 645

wxStatusBar

This = wxStatusBar()
Height = integer()

Sets the minimal possible height for the status bar.

The real height may be bigger than the height specified here depending on the size of the font used by the status bar.

setStatusText(This, Text) -> ok
Types:

This = wxStatusBar()
Text = unicode:chardata()

setStatusText(This, Text, Options :: [Option]) -> ok
Types:

This = wxStatusBar()
Text = unicode:chardata()
Option = {number, integer()}

Sets the status text for the i-th field.

The given text will replace the current text. The display of the status bar is updated immediately, so there is no need
to call wxWindow:update/1 after calling this function.

Note that if pushStatusText/3 had been called before the new text will also replace the last saved value to make
sure that the next call to popStatusText/2 doesn't restore the old value, which was overwritten by the call to
this function.

See: getStatusText/2, wxFrame:setStatusText/3

setStatusWidths(This, Widths_field) -> ok
Types:

This = wxStatusBar()
Widths_field = [integer()]

Sets the widths of the fields in the status line.

There are two types of fields: fixed widths and variable width fields. For the fixed width fields you should
specify their (constant) width in pixels. For the variable width fields, specify a negative number which indicates how
the field should expand: the space left for all variable width fields is divided between them according to the absolute
value of this number. A variable width field with width of -2 gets twice as much of it as a field with width -1 and so on.

For example, to create one fixed width field of width 100 in the right part of the status bar and two more fields which
get 66% and 33% of the remaining space correspondingly, you should use an array containing -2, -1 and 100.

Remark: The widths of the variable fields are calculated from the total width of all fields, minus the sum of widths of
the non-variable fields, divided by the number of variable fields.

See: setFieldsCount/3, wxFrame:setStatusWidths/2

setStatusStyles(This, Styles) -> ok
Types:

646 | Ericsson AB. All Rights Reserved.: wxErlang

wxStatusBar

This = wxStatusBar()
Styles = [integer()]

Sets the styles of the fields in the status line which can make fields appear flat or raised instead of the standard sunken
3D border.

Ericsson AB. All Rights Reserved.: wxErlang | 647

wxStdDialogButtonSizer

wxStdDialogButtonSizer
Erlang module

This class creates button layouts which conform to the standard button spacing and ordering defined by the platform
or toolkit's user interface guidelines (if such things exist). By using this class, you can ensure that all your standard
dialogs look correct on all major platforms. Currently it conforms to the Windows, GTK+ and macOS human interface
guidelines.

When there aren't interface guidelines defined for a particular platform or toolkit, wxStdDialogButtonSizer
reverts to the Windows implementation.

To use this class, first add buttons to the sizer by calling addButton/2 (or setAffirmativeButton/2,
setNegativeButton/2 or setCancelButton/2) and then call Realize in order to create the actual button
layout used. Other than these special operations, this sizer works like any other sizer.

If you add a button with wxID_SAVE, on macOS the button will be renamed to "Save" and the wxID_NO button will
be renamed to "Don't Save" in accordance with the macOS Human Interface Guidelines.

See: wxSizer, Overview sizer, wxDialog:createButtonSizer/2

This class is derived (and can use functions) from: wxBoxSizer wxSizer

wxWidgets docs: wxStdDialogButtonSizer

Data Types
wxStdDialogButtonSizer() = wx:wx_object()

Exports

new() -> wxStdDialogButtonSizer()
Constructor for a wxStdDialogButtonSizer.

addButton(This, Button) -> ok
Types:

This = wxStdDialogButtonSizer()
Button = wxButton:wxButton()

Adds a button to the wxStdDialogButtonSizer.

The button must have one of the following identifiers:

realize(This) -> ok
Types:

This = wxStdDialogButtonSizer()
Rearranges the buttons and applies proper spacing between buttons to make them match the platform or toolkit's
interface guidelines.

setAffirmativeButton(This, Button) -> ok
Types:

648 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxStdDialogButtonSizer

This = wxStdDialogButtonSizer()
Button = wxButton:wxButton()

Sets the affirmative button for the sizer.

This allows you to use identifiers other than the standard identifiers outlined above.

setCancelButton(This, Button) -> ok
Types:

This = wxStdDialogButtonSizer()
Button = wxButton:wxButton()

Sets the cancel button for the sizer.

This allows you to use identifiers other than the standard identifiers outlined above.

setNegativeButton(This, Button) -> ok
Types:

This = wxStdDialogButtonSizer()
Button = wxButton:wxButton()

Sets the negative button for the sizer.

This allows you to use identifiers other than the standard identifiers outlined above.

destroy(This :: wxStdDialogButtonSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 649

wxStyledTextCtrl

wxStyledTextCtrl
Erlang module

A wxWidgets implementation of the Scintilla source code editing component.

As well as features found in standard text editing components, Scintilla includes features especially useful when editing
and debugging source code. These include support for syntax styling, error indicators, code completion and call tips.

The selection margin can contain markers like those used in debuggers to indicate breakpoints and the current line.
Styling choices are more open than with many editors, allowing the use of proportional fonts, bold and italics, multiple
foreground and background colours and multiple fonts.

wxStyledTextCtrl is a 1 to 1 mapping of "raw" scintilla interface, whose documentation can be found in the
Scintilla website (http://www.scintilla.org/).

Please see wxStyledTextEvent for the documentation of all event types you can use with wxStyledTextCtrl.

Index of the member groups

Links for quick access to the various categories of wxStyledTextCtrl functions:

See: wxStyledTextEvent

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxStyledTextCtrl

Data Types
wxStyledTextCtrl() = wx:wx_object()

Exports

new() -> wxStyledTextCtrl()
Default ctor.

new(Parent) -> wxStyledTextCtrl()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxStyledTextCtrl()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Ctor.

destroy(This :: wxStyledTextCtrl()) -> ok
Destructor.

650 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxStyledTextCtrl

create(This, Parent) -> boolean()
Types:

This = wxStyledTextCtrl()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxStyledTextCtrl()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Create the UI elements for a STC that was created with the default ctor.

(For 2-phase create.)

addText(This, Text) -> ok
Types:

This = wxStyledTextCtrl()
Text = unicode:chardata()

Add text to the document at current position.

insertText(This, Pos, Text) -> ok
Types:

This = wxStyledTextCtrl()
Pos = integer()
Text = unicode:chardata()

Insert string at a position.

clearAll(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete all text in the document.

clearDocumentStyle(This) -> ok
Types:

This = wxStyledTextCtrl()
Set all style bytes to 0, remove all folding information.

getLength(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 651

wxStyledTextCtrl

This = wxStyledTextCtrl()
Returns the number of bytes in the document.

getCharAt(This, Pos) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()

Returns the character byte at the position.

getCurrentPos(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the position of the caret.

getAnchor(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the position of the opposite end of the selection to the caret.

getStyleAt(This, Pos) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()

Returns the style byte at the position.

redo(This) -> ok
Types:

This = wxStyledTextCtrl()
Redoes the next action on the undo history.

setUndoCollection(This, CollectUndo) -> ok
Types:

This = wxStyledTextCtrl()
CollectUndo = boolean()

Choose between collecting actions into the undo history and discarding them.

selectAll(This) -> ok
Types:

This = wxStyledTextCtrl()
Select all the text in the document.

setSavePoint(This) -> ok
Types:

652 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Remember the current position in the undo history as the position at which the document was saved.

canRedo(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Are there any redoable actions in the undo history?

markerLineFromHandle(This, MarkerHandle) -> integer()
Types:

This = wxStyledTextCtrl()
MarkerHandle = integer()

Retrieve the line number at which a particular marker is located.

markerDeleteHandle(This, MarkerHandle) -> ok
Types:

This = wxStyledTextCtrl()
MarkerHandle = integer()

Delete a marker.

getUndoCollection(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is undo history being collected?

getViewWhiteSpace(This) -> integer()
Types:

This = wxStyledTextCtrl()
Are white space characters currently visible? Returns one of wxSTC_WS_* constants.

setViewWhiteSpace(This, ViewWS) -> ok
Types:

This = wxStyledTextCtrl()
ViewWS = integer()

Make white space characters invisible, always visible or visible outside indentation.

The input should be one of the ?wxSTC_WS_* constants.

positionFromPoint(This, Pt) -> integer()
Types:

This = wxStyledTextCtrl()
Pt = {X :: integer(), Y :: integer()}

Find the position from a point within the window.

Ericsson AB. All Rights Reserved.: wxErlang | 653

wxStyledTextCtrl

positionFromPointClose(This, X, Y) -> integer()
Types:

This = wxStyledTextCtrl()
X = Y = integer()

Find the position from a point within the window but return wxSTC_INVALID_POSITION if not close to text.

gotoLine(This, Line) -> ok
Types:

This = wxStyledTextCtrl()
Line = integer()

Set caret to start of a line and ensure it is visible.

gotoPos(This, Caret) -> ok
Types:

This = wxStyledTextCtrl()
Caret = integer()

Set caret to a position and ensure it is visible.

setAnchor(This, Anchor) -> ok
Types:

This = wxStyledTextCtrl()
Anchor = integer()

Set the selection anchor to a position.

The anchor is the opposite end of the selection from the caret.

getCurLine(This) -> Result
Types:

Result = {Res :: unicode:charlist(), LinePos :: integer()}
This = wxStyledTextCtrl()

Retrieve the text of the line containing the caret.

linePos can optionally be passed in to receive the index of the caret on the line.

getEndStyled(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the position of the last correctly styled character.

convertEOLs(This, EolMode) -> ok
Types:

This = wxStyledTextCtrl()
EolMode = integer()

Convert all line endings in the document to one mode.

654 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

getEOLMode(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the current end of line mode - one of wxSTC_EOL_CRLF, wxSTC_EOL_CR, or wxSTC_EOL_LF.

setEOLMode(This, EolMode) -> ok
Types:

This = wxStyledTextCtrl()
EolMode = integer()

Set the current end of line mode.

The input should be one of the ?wxSTC_EOL_* constants.

startStyling(This, Start) -> ok
Types:

This = wxStyledTextCtrl()
Start = integer()

Set the current styling position to start.

setStyling(This, Length, Style) -> ok
Types:

This = wxStyledTextCtrl()
Length = Style = integer()

Change style from current styling position for length characters to a style and move the current styling position to
after this newly styled segment.

getBufferedDraw(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is drawing done first into a buffer or direct to the screen?

setBufferedDraw(This, Buffered) -> ok
Types:

This = wxStyledTextCtrl()
Buffered = boolean()

If drawing is buffered then each line of text is drawn into a bitmap buffer before drawing it to the screen to avoid flicker.

setTabWidth(This, TabWidth) -> ok
Types:

This = wxStyledTextCtrl()
TabWidth = integer()

Change the visible size of a tab to be a multiple of the width of a space character.

Ericsson AB. All Rights Reserved.: wxErlang | 655

wxStyledTextCtrl

getTabWidth(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the visible size of a tab.

setCodePage(This, CodePage) -> ok
Types:

This = wxStyledTextCtrl()
CodePage = integer()

Set the code page used to interpret the bytes of the document as characters.

markerDefine(This, MarkerNumber, MarkerSymbol) -> ok
Types:

This = wxStyledTextCtrl()
MarkerNumber = MarkerSymbol = integer()

markerDefine(This, MarkerNumber, MarkerSymbol,
 Options :: [Option]) ->
 ok
Types:

This = wxStyledTextCtrl()
MarkerNumber = MarkerSymbol = integer()
Option =
 {foreground, wx:wx_colour()} | {background, wx:wx_colour()}

Set the symbol used for a particular marker number, and optionally the fore and background colours.

The second argument should be one of the ?wxSTC_MARK_* constants.

markerSetForeground(This, MarkerNumber, Fore) -> ok
Types:

This = wxStyledTextCtrl()
MarkerNumber = integer()
Fore = wx:wx_colour()

Set the foreground colour used for a particular marker number.

markerSetBackground(This, MarkerNumber, Back) -> ok
Types:

This = wxStyledTextCtrl()
MarkerNumber = integer()
Back = wx:wx_colour()

Set the background colour used for a particular marker number.

markerAdd(This, Line, MarkerNumber) -> integer()
Types:

656 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Line = MarkerNumber = integer()

Add a marker to a line, returning an ID which can be used to find or delete the marker.

markerDelete(This, Line, MarkerNumber) -> ok
Types:

This = wxStyledTextCtrl()
Line = MarkerNumber = integer()

Delete a marker from a line.

markerDeleteAll(This, MarkerNumber) -> ok
Types:

This = wxStyledTextCtrl()
MarkerNumber = integer()

Delete all markers with a particular number from all lines.

markerGet(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Get a bit mask of all the markers set on a line.

markerNext(This, LineStart, MarkerMask) -> integer()
Types:

This = wxStyledTextCtrl()
LineStart = MarkerMask = integer()

Find the next line at or after lineStart that includes a marker in mask.

Return -1 when no more lines.

markerPrevious(This, LineStart, MarkerMask) -> integer()
Types:

This = wxStyledTextCtrl()
LineStart = MarkerMask = integer()

Find the previous line before lineStart that includes a marker in mask.

markerDefineBitmap(This, MarkerNumber, Bmp) -> ok
Types:

This = wxStyledTextCtrl()
MarkerNumber = integer()
Bmp = wxBitmap:wxBitmap()

Define a marker with a wxBitmap.

Ericsson AB. All Rights Reserved.: wxErlang | 657

wxStyledTextCtrl

markerAddSet(This, Line, MarkerSet) -> ok
Types:

This = wxStyledTextCtrl()
Line = MarkerSet = integer()

Add a set of markers to a line.

markerSetAlpha(This, MarkerNumber, Alpha) -> ok
Types:

This = wxStyledTextCtrl()
MarkerNumber = Alpha = integer()

Set the alpha used for a marker that is drawn in the text area, not the margin.

setMarginType(This, Margin, MarginType) -> ok
Types:

This = wxStyledTextCtrl()
Margin = MarginType = integer()

Set a margin to be either numeric or symbolic.

The second argument should be one of the ?wxSTC_MARGIN_* constants.

getMarginType(This, Margin) -> integer()
Types:

This = wxStyledTextCtrl()
Margin = integer()

Retrieve the type of a margin.

The return value will be one of the ?wxSTC_MARGIN_* constants.

setMarginWidth(This, Margin, PixelWidth) -> ok
Types:

This = wxStyledTextCtrl()
Margin = PixelWidth = integer()

Set the width of a margin to a width expressed in pixels.

getMarginWidth(This, Margin) -> integer()
Types:

This = wxStyledTextCtrl()
Margin = integer()

Retrieve the width of a margin in pixels.

setMarginMask(This, Margin, Mask) -> ok
Types:

658 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Margin = Mask = integer()

Set a mask that determines which markers are displayed in a margin.

getMarginMask(This, Margin) -> integer()
Types:

This = wxStyledTextCtrl()
Margin = integer()

Retrieve the marker mask of a margin.

setMarginSensitive(This, Margin, Sensitive) -> ok
Types:

This = wxStyledTextCtrl()
Margin = integer()
Sensitive = boolean()

Make a margin sensitive or insensitive to mouse clicks.

getMarginSensitive(This, Margin) -> boolean()
Types:

This = wxStyledTextCtrl()
Margin = integer()

Retrieve the mouse click sensitivity of a margin.

styleClearAll(This) -> ok
Types:

This = wxStyledTextCtrl()
Clear all the styles and make equivalent to the global default style.

styleSetForeground(This, Style, Fore) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
Fore = wx:wx_colour()

Set the foreground colour of a style.

styleSetBackground(This, Style, Back) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
Back = wx:wx_colour()

Set the background colour of a style.

Ericsson AB. All Rights Reserved.: wxErlang | 659

wxStyledTextCtrl

styleSetBold(This, Style, Bold) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
Bold = boolean()

Set a style to be bold or not.

styleSetItalic(This, Style, Italic) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
Italic = boolean()

Set a style to be italic or not.

styleSetSize(This, Style, SizePoints) -> ok
Types:

This = wxStyledTextCtrl()
Style = SizePoints = integer()

Set the size of characters of a style.

styleSetFaceName(This, Style, FontName) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
FontName = unicode:chardata()

Set the font of a style.

styleSetEOLFilled(This, Style, EolFilled) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
EolFilled = boolean()

Set a style to have its end of line filled or not.

styleResetDefault(This) -> ok
Types:

This = wxStyledTextCtrl()
Reset the default style to its state at startup.

styleSetUnderline(This, Style, Underline) -> ok
Types:

660 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Style = integer()
Underline = boolean()

Set a style to be underlined or not.

styleSetCase(This, Style, CaseVisible) -> ok
Types:

This = wxStyledTextCtrl()
Style = CaseVisible = integer()

Set a style to be mixed case, or to force upper or lower case.

The second argument should be one of the ?wxSTC_CASE_* constants.

styleSetHotSpot(This, Style, Hotspot) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
Hotspot = boolean()

Set a style to be a hotspot or not.

setSelForeground(This, UseSetting, Fore) -> ok
Types:

This = wxStyledTextCtrl()
UseSetting = boolean()
Fore = wx:wx_colour()

Set the foreground colour of the main and additional selections and whether to use this setting.

setSelBackground(This, UseSetting, Back) -> ok
Types:

This = wxStyledTextCtrl()
UseSetting = boolean()
Back = wx:wx_colour()

Set the background colour of the main and additional selections and whether to use this setting.

getSelAlpha(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the alpha of the selection.

setSelAlpha(This, Alpha) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 661

wxStyledTextCtrl

This = wxStyledTextCtrl()
Alpha = integer()

Set the alpha of the selection.

setCaretForeground(This, Fore) -> ok
Types:

This = wxStyledTextCtrl()
Fore = wx:wx_colour()

Set the foreground colour of the caret.

cmdKeyAssign(This, Key, Modifiers, Cmd) -> ok
Types:

This = wxStyledTextCtrl()
Key = Modifiers = Cmd = integer()

When key+modifier combination keyDefinition is pressed perform sciCommand.

The second argument should be a bit list containing one or more of the ?wxSTC_KEYMOD_* constants and the third
argument should be one of the ?wxSTC_CMD_* constants.

cmdKeyClear(This, Key, Modifiers) -> ok
Types:

This = wxStyledTextCtrl()
Key = Modifiers = integer()

When key+modifier combination keyDefinition is pressed do nothing.

The second argument should be a bit list containing one or more of the ?wxSTC_KEYMOD_* constants.

cmdKeyClearAll(This) -> ok
Types:

This = wxStyledTextCtrl()
Drop all key mappings.

setStyleBytes(This, Length) -> integer()
Types:

This = wxStyledTextCtrl()
Length = integer()

Set the styles for a segment of the document.

styleSetVisible(This, Style, Visible) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
Visible = boolean()

Set a style to be visible or not.

662 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

getCaretPeriod(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the time in milliseconds that the caret is on and off.

setCaretPeriod(This, PeriodMilliseconds) -> ok
Types:

This = wxStyledTextCtrl()
PeriodMilliseconds = integer()

Get the time in milliseconds that the caret is on and off.

0 = steady on.

setWordChars(This, Characters) -> ok
Types:

This = wxStyledTextCtrl()
Characters = unicode:chardata()

Set the set of characters making up words for when moving or selecting by word.

First sets defaults like SetCharsDefault.

beginUndoAction(This) -> ok
Types:

This = wxStyledTextCtrl()
Start a sequence of actions that is undone and redone as a unit.

May be nested.

endUndoAction(This) -> ok
Types:

This = wxStyledTextCtrl()
End a sequence of actions that is undone and redone as a unit.

indicatorSetStyle(This, Indicator, IndicatorStyle) -> ok
Types:

This = wxStyledTextCtrl()
Indicator = IndicatorStyle = integer()

Set an indicator to plain, squiggle or TT.

The second argument should be one of the ?wxSTC_INDIC_* constants.

indicatorGetStyle(This, Indicator) -> integer()
Types:

This = wxStyledTextCtrl()
Indicator = integer()

Retrieve the style of an indicator.

Ericsson AB. All Rights Reserved.: wxErlang | 663

wxStyledTextCtrl

The return value will be one of the ?wxSTC_INDIC_* constants.

indicatorSetForeground(This, Indicator, Fore) -> ok
Types:

This = wxStyledTextCtrl()
Indicator = integer()
Fore = wx:wx_colour()

Set the foreground colour of an indicator.

indicatorGetForeground(This, Indicator) -> wx:wx_colour4()
Types:

This = wxStyledTextCtrl()
Indicator = integer()

Retrieve the foreground colour of an indicator.

setWhitespaceForeground(This, UseSetting, Fore) -> ok
Types:

This = wxStyledTextCtrl()
UseSetting = boolean()
Fore = wx:wx_colour()

Set the foreground colour of all whitespace and whether to use this setting.

setWhitespaceBackground(This, UseSetting, Back) -> ok
Types:

This = wxStyledTextCtrl()
UseSetting = boolean()
Back = wx:wx_colour()

Set the background colour of all whitespace and whether to use this setting.

getStyleBits(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve number of bits in style bytes used to hold the lexical state.

Deprecated:

setLineState(This, Line, State) -> ok
Types:

This = wxStyledTextCtrl()
Line = State = integer()

Used to hold extra styling information for each line.

getLineState(This, Line) -> integer()
Types:

664 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Line = integer()

Retrieve the extra styling information for a line.

getMaxLineState(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the last line number that has line state.

getCaretLineVisible(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is the background of the line containing the caret in a different colour?

setCaretLineVisible(This, Show) -> ok
Types:

This = wxStyledTextCtrl()
Show = boolean()

Display the background of the line containing the caret in a different colour.

getCaretLineBackground(This) -> wx:wx_colour4()
Types:

This = wxStyledTextCtrl()
Get the colour of the background of the line containing the caret.

setCaretLineBackground(This, Back) -> ok
Types:

This = wxStyledTextCtrl()
Back = wx:wx_colour()

Set the colour of the background of the line containing the caret.

autoCompShow(This, LengthEntered, ItemList) -> ok
Types:

This = wxStyledTextCtrl()
LengthEntered = integer()
ItemList = unicode:chardata()

Display a auto-completion list.

The lengthEntered parameter indicates how many characters before the caret should be used to provide context.

autoCompCancel(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 665

wxStyledTextCtrl

This = wxStyledTextCtrl()
Remove the auto-completion list from the screen.

autoCompActive(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is there an auto-completion list visible?

autoCompPosStart(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the position of the caret when the auto-completion list was displayed.

autoCompComplete(This) -> ok
Types:

This = wxStyledTextCtrl()
User has selected an item so remove the list and insert the selection.

autoCompStops(This, CharacterSet) -> ok
Types:

This = wxStyledTextCtrl()
CharacterSet = unicode:chardata()

Define a set of character that when typed cancel the auto-completion list.

autoCompSetSeparator(This, SeparatorCharacter) -> ok
Types:

This = wxStyledTextCtrl()
SeparatorCharacter = integer()

Change the separator character in the string setting up an auto-completion list.

Default is space but can be changed if items contain space.

autoCompGetSeparator(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the auto-completion list separator character.

autoCompSelect(This, Select) -> ok
Types:

This = wxStyledTextCtrl()
Select = unicode:chardata()

Select the item in the auto-completion list that starts with a string.

666 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

autoCompSetCancelAtStart(This, Cancel) -> ok
Types:

This = wxStyledTextCtrl()
Cancel = boolean()

Should the auto-completion list be cancelled if the user backspaces to a position before where the box was created.

autoCompGetCancelAtStart(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Retrieve whether auto-completion cancelled by backspacing before start.

autoCompSetFillUps(This, CharacterSet) -> ok
Types:

This = wxStyledTextCtrl()
CharacterSet = unicode:chardata()

Define a set of characters that when typed will cause the autocompletion to choose the selected item.

autoCompSetChooseSingle(This, ChooseSingle) -> ok
Types:

This = wxStyledTextCtrl()
ChooseSingle = boolean()

Should a single item auto-completion list automatically choose the item.

autoCompGetChooseSingle(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Retrieve whether a single item auto-completion list automatically choose the item.

autoCompSetIgnoreCase(This, IgnoreCase) -> ok
Types:

This = wxStyledTextCtrl()
IgnoreCase = boolean()

Set whether case is significant when performing auto-completion searches.

autoCompGetIgnoreCase(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Retrieve state of ignore case flag.

userListShow(This, ListType, ItemList) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 667

wxStyledTextCtrl

This = wxStyledTextCtrl()
ListType = integer()
ItemList = unicode:chardata()

Display a list of strings and send notification when user chooses one.

autoCompSetAutoHide(This, AutoHide) -> ok
Types:

This = wxStyledTextCtrl()
AutoHide = boolean()

Set whether or not autocompletion is hidden automatically when nothing matches.

autoCompGetAutoHide(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Retrieve whether or not autocompletion is hidden automatically when nothing matches.

autoCompSetDropRestOfWord(This, DropRestOfWord) -> ok
Types:

This = wxStyledTextCtrl()
DropRestOfWord = boolean()

Set whether or not autocompletion deletes any word characters after the inserted text upon completion.

autoCompGetDropRestOfWord(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Retrieve whether or not autocompletion deletes any word characters after the inserted text upon completion.

registerImage(This, Type, Bmp) -> ok
Types:

This = wxStyledTextCtrl()
Type = integer()
Bmp = wxBitmap:wxBitmap()

Register an image for use in autocompletion lists.

clearRegisteredImages(This) -> ok
Types:

This = wxStyledTextCtrl()
Clear all the registered images.

autoCompGetTypeSeparator(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the auto-completion list type-separator character.

668 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

autoCompSetTypeSeparator(This, SeparatorCharacter) -> ok
Types:

This = wxStyledTextCtrl()
SeparatorCharacter = integer()

Change the type-separator character in the string setting up an auto-completion list.

Default is '?' but can be changed if items contain '?'.

autoCompSetMaxWidth(This, CharacterCount) -> ok
Types:

This = wxStyledTextCtrl()
CharacterCount = integer()

Set the maximum width, in characters, of auto-completion and user lists.

Set to 0 to autosize to fit longest item, which is the default.

autoCompGetMaxWidth(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the maximum width, in characters, of auto-completion and user lists.

autoCompSetMaxHeight(This, RowCount) -> ok
Types:

This = wxStyledTextCtrl()
RowCount = integer()

Set the maximum height, in rows, of auto-completion and user lists.

The default is 5 rows.

autoCompGetMaxHeight(This) -> integer()
Types:

This = wxStyledTextCtrl()
Set the maximum height, in rows, of auto-completion and user lists.

setIndent(This, IndentSize) -> ok
Types:

This = wxStyledTextCtrl()
IndentSize = integer()

Set the number of spaces used for one level of indentation.

getIndent(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve indentation size.

Ericsson AB. All Rights Reserved.: wxErlang | 669

wxStyledTextCtrl

setUseTabs(This, UseTabs) -> ok
Types:

This = wxStyledTextCtrl()
UseTabs = boolean()

Indentation will only use space characters if useTabs is false, otherwise it will use a combination of tabs and spaces.

getUseTabs(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Retrieve whether tabs will be used in indentation.

setLineIndentation(This, Line, Indentation) -> ok
Types:

This = wxStyledTextCtrl()
Line = Indentation = integer()

Change the indentation of a line to a number of columns.

getLineIndentation(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Retrieve the number of columns that a line is indented.

getLineIndentPosition(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Retrieve the position before the first non indentation character on a line.

getColumn(This, Pos) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()

Retrieve the column number of a position, taking tab width into account.

setUseHorizontalScrollBar(This, Visible) -> ok
Types:

This = wxStyledTextCtrl()
Visible = boolean()

Show or hide the horizontal scroll bar.

getUseHorizontalScrollBar(This) -> boolean()
Types:

670 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Is the horizontal scroll bar visible?

setIndentationGuides(This, IndentView) -> ok
Types:

This = wxStyledTextCtrl()
IndentView = integer()

Show or hide indentation guides.

The input should be one of the ?wxSTC_IV_* constants.

getIndentationGuides(This) -> integer()
Types:

This = wxStyledTextCtrl()
Are the indentation guides visible?

The return value will be one of the ?wxSTC_IV_* constants.

setHighlightGuide(This, Column) -> ok
Types:

This = wxStyledTextCtrl()
Column = integer()

Set the highlighted indentation guide column.

0 = no highlighted guide.

getHighlightGuide(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the highlighted indentation guide column.

getLineEndPosition(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Get the position after the last visible characters on a line.

getCodePage(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the code page used to interpret the bytes of the document as characters.

getCaretForeground(This) -> wx:wx_colour4()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 671

wxStyledTextCtrl

This = wxStyledTextCtrl()
Get the foreground colour of the caret.

getReadOnly(This) -> boolean()
Types:

This = wxStyledTextCtrl()
In read-only mode?

setCurrentPos(This, Caret) -> ok
Types:

This = wxStyledTextCtrl()
Caret = integer()

Sets the position of the caret.

setSelectionStart(This, Anchor) -> ok
Types:

This = wxStyledTextCtrl()
Anchor = integer()

Sets the position that starts the selection - this becomes the anchor.

getSelectionStart(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the position at the start of the selection.

setSelectionEnd(This, Caret) -> ok
Types:

This = wxStyledTextCtrl()
Caret = integer()

Sets the position that ends the selection - this becomes the caret.

getSelectionEnd(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the position at the end of the selection.

setPrintMagnification(This, Magnification) -> ok
Types:

This = wxStyledTextCtrl()
Magnification = integer()

Sets the print magnification added to the point size of each style for printing.

672 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

getPrintMagnification(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the print magnification.

setPrintColourMode(This, Mode) -> ok
Types:

This = wxStyledTextCtrl()
Mode = integer()

Modify colours when printing for clearer printed text.

The input should be one of the ?wxSTC_PRINT_* constants.

getPrintColourMode(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the print colour mode.

The return value will be one of the ?wxSTC_PRINT_* constants.

findText(This, MinPos, MaxPos, Text) -> integer()
Types:

This = wxStyledTextCtrl()
MinPos = MaxPos = integer()
Text = unicode:chardata()

findText(This, MinPos, MaxPos, Text, Options :: [Option]) ->
 integer()
Types:

This = wxStyledTextCtrl()
MinPos = MaxPos = integer()
Text = unicode:chardata()
Option = {flags, integer()}

Find some text in the document. @param minPos The position (starting from
zero) in the document at which to begin the search @param maxPos The last
position (starting from zero) in the document to which the search will be
restricted. @param text The text to search for. @param flags (Optional) The
search flags. This should be a bit list containing one or more of the @link
wxStyledTextCtrl::wxSTC_FIND_WHOLEWORD wxSTC_FIND_* @endlink constants.

Return: The position (starting from zero) in the document at which the text was found or
wxSTC_INVALID_POSITION if the search fails.

Remark: A backwards search can be performed by setting minPos to be greater than maxPos.

formatRange(This, DoDraw, StartPos, EndPos, Draw, Target,
 RenderRect, PageRect) ->

Ericsson AB. All Rights Reserved.: wxErlang | 673

wxStyledTextCtrl

 integer()
Types:

This = wxStyledTextCtrl()
DoDraw = boolean()
StartPos = EndPos = integer()
Draw = Target = wxDC:wxDC()
RenderRect = PageRect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

On Windows, will draw the document into a display context such as a printer.

getFirstVisibleLine(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the display line at the top of the display.

getLine(This, Line) -> unicode:charlist()
Types:

This = wxStyledTextCtrl()
Line = integer()

Retrieve the contents of a line.

getLineCount(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the number of lines in the document.

There is always at least one.

setMarginLeft(This, PixelWidth) -> ok
Types:

This = wxStyledTextCtrl()
PixelWidth = integer()

Sets the size in pixels of the left margin.

getMarginLeft(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the size in pixels of the left margin.

setMarginRight(This, PixelWidth) -> ok
Types:

674 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
PixelWidth = integer()

Sets the size in pixels of the right margin.

getMarginRight(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the size in pixels of the right margin.

getModify(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is the document different from when it was last saved?

setSelection(This, From, To) -> ok
Types:

This = wxStyledTextCtrl()
From = To = integer()

Selects the text starting at the first position up to (but not including) the character at the last position.

If both parameters are equal to -1 all text in the control is selected.

Notice that the insertion point will be moved to from by this function.

See: selectAll/1

getSelectedText(This) -> unicode:charlist()
Types:

This = wxStyledTextCtrl()
Retrieve the selected text.

getTextRange(This, StartPos, EndPos) -> unicode:charlist()
Types:

This = wxStyledTextCtrl()
StartPos = EndPos = integer()

Retrieve a range of text.

hideSelection(This, Hide) -> ok
Types:

This = wxStyledTextCtrl()
Hide = boolean()

Draw the selection in normal style or with selection highlighted.

lineFromPosition(This, Pos) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 675

wxStyledTextCtrl

This = wxStyledTextCtrl()
Pos = integer()

Retrieve the line containing a position.

positionFromLine(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Retrieve the position at the start of a line.

lineScroll(This, Columns, Lines) -> ok
Types:

This = wxStyledTextCtrl()
Columns = Lines = integer()

Scroll horizontally and vertically.

ensureCaretVisible(This) -> ok
Types:

This = wxStyledTextCtrl()
Ensure the caret is visible.

replaceSelection(This, Text) -> ok
Types:

This = wxStyledTextCtrl()
Text = unicode:chardata()

Replace the selected text with the argument text.

setReadOnly(This, ReadOnly) -> ok
Types:

This = wxStyledTextCtrl()
ReadOnly = boolean()

Set to read only or read write.

canPaste(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Will a paste succeed?

canUndo(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Are there any undoable actions in the undo history?

676 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

emptyUndoBuffer(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete the undo history.

undo(This) -> ok
Types:

This = wxStyledTextCtrl()
Undo one action in the undo history.

cut(This) -> ok
Types:

This = wxStyledTextCtrl()
Cut the selection to the clipboard.

copy(This) -> ok
Types:

This = wxStyledTextCtrl()
Copy the selection to the clipboard.

paste(This) -> ok
Types:

This = wxStyledTextCtrl()
Paste the contents of the clipboard into the document replacing the selection.

clear(This) -> ok
Types:

This = wxStyledTextCtrl()
Clear the selection.

setText(This, Text) -> ok
Types:

This = wxStyledTextCtrl()
Text = unicode:chardata()

Replace the contents of the document with the argument text.

getText(This) -> unicode:charlist()
Types:

This = wxStyledTextCtrl()
Retrieve all the text in the document.

getTextLength(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 677

wxStyledTextCtrl

This = wxStyledTextCtrl()
Retrieve the number of characters in the document.

getOvertype(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Returns true if overtype mode is active otherwise false is returned.

setCaretWidth(This, PixelWidth) -> ok
Types:

This = wxStyledTextCtrl()
PixelWidth = integer()

Set the width of the insert mode caret.

getCaretWidth(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the width of the insert mode caret.

setTargetStart(This, Start) -> ok
Types:

This = wxStyledTextCtrl()
Start = integer()

Sets the position that starts the target which is used for updating the document without affecting the scroll position.

getTargetStart(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the position that starts the target.

setTargetEnd(This, End) -> ok
Types:

This = wxStyledTextCtrl()
End = integer()

Sets the position that ends the target which is used for updating the document without affecting the scroll position.

getTargetEnd(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the position that ends the target.

replaceTarget(This, Text) -> integer()
Types:

678 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Text = unicode:chardata()

Replace the target text with the argument text.

Text is counted so it can contain NULs. Returns the length of the replacement text.

searchInTarget(This, Text) -> integer()
Types:

This = wxStyledTextCtrl()
Text = unicode:chardata()

Search for a counted string in the target and set the target to the found range.

Text is counted so it can contain NULs. Returns length of range or -1 for failure in which case target is not moved.

setSearchFlags(This, SearchFlags) -> ok
Types:

This = wxStyledTextCtrl()
SearchFlags = integer()

Set the search flags used by SearchInTarget.

The input should be a bit list containing one or more of the ?wxSTC_FIND_* constants.

getSearchFlags(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the search flags used by SearchInTarget.

The return value will be a bit list containing one or more of the ?wxSTC_FIND_* constants.

callTipShow(This, Pos, Definition) -> ok
Types:

This = wxStyledTextCtrl()
Pos = integer()
Definition = unicode:chardata()

Show a call tip containing a definition near position pos.

callTipCancel(This) -> ok
Types:

This = wxStyledTextCtrl()
Remove the call tip from the screen.

callTipActive(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is there an active call tip?

Ericsson AB. All Rights Reserved.: wxErlang | 679

wxStyledTextCtrl

callTipPosAtStart(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the position where the caret was before displaying the call tip.

Since: 3.1.0

callTipSetHighlight(This, HighlightStart, HighlightEnd) -> ok
Types:

This = wxStyledTextCtrl()
HighlightStart = HighlightEnd = integer()

Highlight a segment of the definition.

callTipSetBackground(This, Back) -> ok
Types:

This = wxStyledTextCtrl()
Back = wx:wx_colour()

Set the background colour for the call tip.

callTipSetForeground(This, Fore) -> ok
Types:

This = wxStyledTextCtrl()
Fore = wx:wx_colour()

Set the foreground colour for the call tip.

callTipSetForegroundHighlight(This, Fore) -> ok
Types:

This = wxStyledTextCtrl()
Fore = wx:wx_colour()

Set the foreground colour for the highlighted part of the call tip.

callTipUseStyle(This, TabSize) -> ok
Types:

This = wxStyledTextCtrl()
TabSize = integer()

Enable use of wxSTC_STYLE_CALLTIP and set call tip tab size in pixels.

visibleFromDocLine(This, DocLine) -> integer()
Types:

This = wxStyledTextCtrl()
DocLine = integer()

Find the display line of a document line taking hidden lines into account.

680 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

docLineFromVisible(This, DisplayLine) -> integer()
Types:

This = wxStyledTextCtrl()
DisplayLine = integer()

Find the document line of a display line taking hidden lines into account.

wrapCount(This, DocLine) -> integer()
Types:

This = wxStyledTextCtrl()
DocLine = integer()

The number of display lines needed to wrap a document line.

setFoldLevel(This, Line, Level) -> ok
Types:

This = wxStyledTextCtrl()
Line = Level = integer()

Set the fold level of a line.

This encodes an integer level along with flags indicating whether the line is a header and whether it is effectively
white space.

getFoldLevel(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Retrieve the fold level of a line.

getLastChild(This, Line, Level) -> integer()
Types:

This = wxStyledTextCtrl()
Line = Level = integer()

Find the last child line of a header line.

getFoldParent(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Find the parent line of a child line.

showLines(This, LineStart, LineEnd) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 681

wxStyledTextCtrl

This = wxStyledTextCtrl()
LineStart = LineEnd = integer()

Make a range of lines visible.

hideLines(This, LineStart, LineEnd) -> ok
Types:

This = wxStyledTextCtrl()
LineStart = LineEnd = integer()

Make a range of lines invisible.

getLineVisible(This, Line) -> boolean()
Types:

This = wxStyledTextCtrl()
Line = integer()

Is a line visible?

setFoldExpanded(This, Line, Expanded) -> ok
Types:

This = wxStyledTextCtrl()
Line = integer()
Expanded = boolean()

Show the children of a header line.

getFoldExpanded(This, Line) -> boolean()
Types:

This = wxStyledTextCtrl()
Line = integer()

Is a header line expanded?

toggleFold(This, Line) -> ok
Types:

This = wxStyledTextCtrl()
Line = integer()

Switch a header line between expanded and contracted.

ensureVisible(This, Line) -> ok
Types:

This = wxStyledTextCtrl()
Line = integer()

Ensure a particular line is visible by expanding any header line hiding it.

682 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

setFoldFlags(This, Flags) -> ok
Types:

This = wxStyledTextCtrl()
Flags = integer()

Set some style options for folding.

The second argument should be a bit list containing one or more of the ?wxSTC_FOLDFLAG_* constants.

ensureVisibleEnforcePolicy(This, Line) -> ok
Types:

This = wxStyledTextCtrl()
Line = integer()

Ensure a particular line is visible by expanding any header line hiding it.

Use the currently set visibility policy to determine which range to display.

setTabIndents(This, TabIndents) -> ok
Types:

This = wxStyledTextCtrl()
TabIndents = boolean()

Sets whether a tab pressed when caret is within indentation indents.

getTabIndents(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Does a tab pressed when caret is within indentation indent?

setBackSpaceUnIndents(This, BsUnIndents) -> ok
Types:

This = wxStyledTextCtrl()
BsUnIndents = boolean()

Sets whether a backspace pressed when caret is within indentation unindents.

getBackSpaceUnIndents(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Does a backspace pressed when caret is within indentation unindent?

setMouseDwellTime(This, PeriodMilliseconds) -> ok
Types:

This = wxStyledTextCtrl()
PeriodMilliseconds = integer()

Sets the time the mouse must sit still to generate a mouse dwell event.

The input should be a time in milliseconds or wxSTC_TIME_FOREVER.

Ericsson AB. All Rights Reserved.: wxErlang | 683

wxStyledTextCtrl

getMouseDwellTime(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the time the mouse must sit still to generate a mouse dwell event.

The return value will be a time in milliseconds or wxSTC_TIME_FOREVER.

wordStartPosition(This, Pos, OnlyWordCharacters) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()
OnlyWordCharacters = boolean()

Get position of start of word.

wordEndPosition(This, Pos, OnlyWordCharacters) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()
OnlyWordCharacters = boolean()

Get position of end of word.

setWrapMode(This, WrapMode) -> ok
Types:

This = wxStyledTextCtrl()
WrapMode = integer()

Sets whether text is word wrapped.

The input should be one of the ?wxSTC_WRAP_* constants.

getWrapMode(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve whether text is word wrapped.

The return value will be one of the ?wxSTC_WRAP_* constants.

setWrapVisualFlags(This, WrapVisualFlags) -> ok
Types:

This = wxStyledTextCtrl()
WrapVisualFlags = integer()

Set the display mode of visual flags for wrapped lines.

The input should be a bit list containing one or more of the ?wxSTC_WRAPVISUALFLAG_* constants.

getWrapVisualFlags(This) -> integer()
Types:

684 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Retrieve the display mode of visual flags for wrapped lines.

The return value will be a bit list containing one or more of the ?wxSTC_WRAPVISUALFLAG_* constants.

setWrapVisualFlagsLocation(This, WrapVisualFlagsLocation) -> ok
Types:

This = wxStyledTextCtrl()
WrapVisualFlagsLocation = integer()

Set the location of visual flags for wrapped lines.

The input should be a bit list containing one or more of the ?wxSTC_WRAPVISUALFLAGLOC_* constants.

getWrapVisualFlagsLocation(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the location of visual flags for wrapped lines.

The return value will be a bit list containing one or more of the ?wxSTC_WRAPVISUALFLAGLOC_* constants.

setWrapStartIndent(This, Indent) -> ok
Types:

This = wxStyledTextCtrl()
Indent = integer()

Set the start indent for wrapped lines.

getWrapStartIndent(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the start indent for wrapped lines.

setLayoutCache(This, CacheMode) -> ok
Types:

This = wxStyledTextCtrl()
CacheMode = integer()

Sets the degree of caching of layout information.

The input should be one of the ?wxSTC_CACHE_* constants.

getLayoutCache(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the degree of caching of layout information.

The return value will be one of the ?wxSTC_CACHE_* constants.

Ericsson AB. All Rights Reserved.: wxErlang | 685

wxStyledTextCtrl

setScrollWidth(This, PixelWidth) -> ok
Types:

This = wxStyledTextCtrl()
PixelWidth = integer()

Sets the document width assumed for scrolling.

getScrollWidth(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the document width assumed for scrolling.

textWidth(This, Style, Text) -> integer()
Types:

This = wxStyledTextCtrl()
Style = integer()
Text = unicode:chardata()

Measure the pixel width of some text in a particular style.

Does not handle tab or control characters.

getEndAtLastLine(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Retrieve whether the maximum scroll position has the last line at the bottom of the view.

textHeight(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

Retrieve the height of a particular line of text in pixels.

setUseVerticalScrollBar(This, Visible) -> ok
Types:

This = wxStyledTextCtrl()
Visible = boolean()

Show or hide the vertical scroll bar.

getUseVerticalScrollBar(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is the vertical scroll bar visible?

appendText(This, Text) -> ok
Types:

686 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Text = unicode:chardata()

Append a string to the end of the document without changing the selection.

getTwoPhaseDraw(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is drawing done in two phases with backgrounds drawn before foregrounds?

setTwoPhaseDraw(This, TwoPhase) -> ok
Types:

This = wxStyledTextCtrl()
TwoPhase = boolean()

In twoPhaseDraw mode, drawing is performed in two phases, first the background and then the foreground.

This avoids chopping off characters that overlap the next run.

targetFromSelection(This) -> ok
Types:

This = wxStyledTextCtrl()
Make the target range start and end be the same as the selection range start and end.

linesJoin(This) -> ok
Types:

This = wxStyledTextCtrl()
Join the lines in the target.

linesSplit(This, PixelWidth) -> ok
Types:

This = wxStyledTextCtrl()
PixelWidth = integer()

Split the lines in the target into lines that are less wide than pixelWidth where possible.

setFoldMarginColour(This, UseSetting, Back) -> ok
Types:

This = wxStyledTextCtrl()
UseSetting = boolean()
Back = wx:wx_colour()

Set one of the colours used as a chequerboard pattern in the fold margin.

setFoldMarginHiColour(This, UseSetting, Fore) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 687

wxStyledTextCtrl

This = wxStyledTextCtrl()
UseSetting = boolean()
Fore = wx:wx_colour()

Set the other colour used as a chequerboard pattern in the fold margin.

lineDown(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret down one line.

lineDownExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret down one line extending selection to new caret position.

lineUp(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret up one line.

lineUpExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret up one line extending selection to new caret position.

charLeft(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret left one character.

charLeftExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret left one character extending selection to new caret position.

charRight(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret right one character.

charRightExtend(This) -> ok
Types:

688 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Move caret right one character extending selection to new caret position.

wordLeft(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret left one word.

wordLeftExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret left one word extending selection to new caret position.

wordRight(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret right one word.

wordRightExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret right one word extending selection to new caret position.

home(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to first position on line.

homeExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to first position on line extending selection to new caret position.

lineEnd(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to last position on line.

lineEndExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to last position on line extending selection to new caret position.

Ericsson AB. All Rights Reserved.: wxErlang | 689

wxStyledTextCtrl

documentStart(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to first position in document.

documentStartExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to first position in document extending selection to new caret position.

documentEnd(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to last position in document.

documentEndExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to last position in document extending selection to new caret position.

pageUp(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret one page up.

pageUpExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret one page up extending selection to new caret position.

pageDown(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret one page down.

pageDownExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret one page down extending selection to new caret position.

editToggleOvertype(This) -> ok
Types:

690 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Switch from insert to overtype mode or the reverse.

cancel(This) -> ok
Types:

This = wxStyledTextCtrl()
Cancel any modes such as call tip or auto-completion list display.

deleteBack(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete the selection or if no selection, the character before the caret.

tab(This) -> ok
Types:

This = wxStyledTextCtrl()
If selection is empty or all on one line replace the selection with a tab character.

If more than one line selected, indent the lines.

backTab(This) -> ok
Types:

This = wxStyledTextCtrl()
Dedent the selected lines.

newLine(This) -> ok
Types:

This = wxStyledTextCtrl()
Insert a new line, may use a CRLF, CR or LF depending on EOL mode.

formFeed(This) -> ok
Types:

This = wxStyledTextCtrl()
Insert a Form Feed character.

vCHome(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to before first visible character on line.

If already there move to first character on line.

vCHomeExtend(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 691

wxStyledTextCtrl

This = wxStyledTextCtrl()
Like VCHome but extending selection to new caret position.

zoomIn(This) -> ok
Types:

This = wxStyledTextCtrl()
Magnify the displayed text by increasing the sizes by 1 point.

zoomOut(This) -> ok
Types:

This = wxStyledTextCtrl()
Make the displayed text smaller by decreasing the sizes by 1 point.

delWordLeft(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete the word to the left of the caret.

delWordRight(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete the word to the right of the caret.

lineCut(This) -> ok
Types:

This = wxStyledTextCtrl()
Cut the line containing the caret.

lineDelete(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete the line containing the caret.

lineTranspose(This) -> ok
Types:

This = wxStyledTextCtrl()
Switch the current line with the previous.

lineDuplicate(This) -> ok
Types:

This = wxStyledTextCtrl()
Duplicate the current line.

692 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

lowerCase(This) -> ok
Types:

This = wxStyledTextCtrl()
Transform the selection to lower case.

upperCase(This) -> ok
Types:

This = wxStyledTextCtrl()
Transform the selection to upper case.

lineScrollDown(This) -> ok
Types:

This = wxStyledTextCtrl()
Scroll the document down, keeping the caret visible.

lineScrollUp(This) -> ok
Types:

This = wxStyledTextCtrl()
Scroll the document up, keeping the caret visible.

deleteBackNotLine(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete the selection or if no selection, the character before the caret.

Will not delete the character before at the start of a line.

homeDisplay(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to first position on display line.

homeDisplayExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to first position on display line extending selection to new caret position.

lineEndDisplay(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to last position on display line.

lineEndDisplayExtend(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 693

wxStyledTextCtrl

This = wxStyledTextCtrl()
Move caret to last position on display line extending selection to new caret position.

homeWrapExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Like HomeExtend but when word-wrap is enabled extends first to start of display line HomeDisplayExtend, then to
start of document line HomeExtend.

lineEndWrap(This) -> ok
Types:

This = wxStyledTextCtrl()
Like LineEnd but when word-wrap is enabled goes first to end of display line LineEndDisplay, then to start of document
line LineEnd.

lineEndWrapExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Like LineEndExtend but when word-wrap is enabled extends first to end of display line LineEndDisplayExtend, then
to start of document line LineEndExtend.

vCHomeWrap(This) -> ok
Types:

This = wxStyledTextCtrl()
Like VCHome but when word-wrap is enabled goes first to start of display line VCHomeDisplay, then behaves like
VCHome.

vCHomeWrapExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Like VCHomeExtend but when word-wrap is enabled extends first to start of display line VCHomeDisplayExtend,
then behaves like VCHomeExtend.

lineCopy(This) -> ok
Types:

This = wxStyledTextCtrl()
Copy the line containing the caret.

moveCaretInsideView(This) -> ok
Types:

This = wxStyledTextCtrl()
Move the caret inside current view if it's not there already.

694 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

lineLength(This, Line) -> integer()
Types:

This = wxStyledTextCtrl()
Line = integer()

How many characters are on a line, including end of line characters?

braceHighlight(This, PosA, PosB) -> ok
Types:

This = wxStyledTextCtrl()
PosA = PosB = integer()

Highlight the characters at two positions.

braceBadLight(This, Pos) -> ok
Types:

This = wxStyledTextCtrl()
Pos = integer()

Highlight the character at a position indicating there is no matching brace.

braceMatch(This, Pos) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()

Find the position of a matching brace or wxSTC_INVALID_POSITION if no match.

getViewEOL(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Are the end of line characters visible?

setViewEOL(This, Visible) -> ok
Types:

This = wxStyledTextCtrl()
Visible = boolean()

Make the end of line characters visible or invisible.

setModEventMask(This, EventMask) -> ok
Types:

This = wxStyledTextCtrl()
EventMask = integer()

Set which document modification events are sent to the container.

The input should be a bit list containing one or more of the ?wxSTC_MOD_* constants, the ?wxSTC_PERFORMED_*
constants, wxSTC_STARTACTION, wxSTC_MULTILINEUNDOREDO, wxSTC_MULTISTEPUNDOREDO, and

Ericsson AB. All Rights Reserved.: wxErlang | 695

wxStyledTextCtrl

wxSTC_LASTSTEPINUNDOREDO. The input can also be wxSTC_MODEVENTMASKALL to indicate that all
changes should generate events.

getEdgeColumn(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the column number which text should be kept within.

setEdgeColumn(This, Column) -> ok
Types:

This = wxStyledTextCtrl()
Column = integer()

Set the column number of the edge.

If text goes past the edge then it is highlighted.

setEdgeMode(This, EdgeMode) -> ok
Types:

This = wxStyledTextCtrl()
EdgeMode = integer()

The edge may be displayed by a line (wxSTC_EDGE_LINE/wxSTC_EDGE_MULTILINE) or by highlighting text
that goes beyond it (wxSTC_EDGE_BACKGROUND) or not displayed at all (wxSTC_EDGE_NONE).

The input should be one of the ?wxSTC_EDGE_* constants.

getEdgeMode(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the edge highlight mode.

The return value will be one of the ?wxSTC_EDGE_* constants.

getEdgeColour(This) -> wx:wx_colour4()
Types:

This = wxStyledTextCtrl()
Retrieve the colour used in edge indication.

setEdgeColour(This, EdgeColour) -> ok
Types:

This = wxStyledTextCtrl()
EdgeColour = wx:wx_colour()

Change the colour used in edge indication.

searchAnchor(This) -> ok
Types:

696 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Sets the current caret position to be the search anchor.

searchNext(This, SearchFlags, Text) -> integer()
Types:

This = wxStyledTextCtrl()
SearchFlags = integer()
Text = unicode:chardata()

Find some text starting at the search anchor.

Does not ensure the selection is visible.

searchPrev(This, SearchFlags, Text) -> integer()
Types:

This = wxStyledTextCtrl()
SearchFlags = integer()
Text = unicode:chardata()

Find some text starting at the search anchor and moving backwards.

Does not ensure the selection is visible.

linesOnScreen(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieves the number of lines completely visible.

usePopUp(This, PopUpMode) -> ok
Types:

This = wxStyledTextCtrl()
PopUpMode = integer()

Set whether a pop up menu is displayed automatically when the user presses the wrong mouse button on certain areas.

The input should be one of the ?wxSTC_POPUP_* constants.

Remark: When wxContextMenuEvent is used to create a custom popup menu, this function should be called with
wxSTC_POPUP_NEVER. Otherwise the default menu will be shown instead of the custom one.

selectionIsRectangle(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Is the selection rectangular? The alternative is the more common stream selection.

setZoom(This, ZoomInPoints) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 697

wxStyledTextCtrl

This = wxStyledTextCtrl()
ZoomInPoints = integer()

Set the zoom level.

This number of points is added to the size of all fonts. It may be positive to magnify or negative to reduce.

getZoom(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the zoom level.

getModEventMask(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get which document modification events are sent to the container.

The return value will wxSTC_MODEVENTMASKALL if all changes generate events. Otherwise it will
be a bit list containing one or more of the ?wxSTC_MOD_* constants, the ?wxSTC_PERFORMED_*
constants, wxSTC_STARTACTION, wxSTC_MULTILINEUNDOREDO, wxSTC_MULTISTEPUNDOREDO, and
wxSTC_LASTSTEPINUNDOREDO.

setSTCFocus(This, Focus) -> ok
Types:

This = wxStyledTextCtrl()
Focus = boolean()

Change internal focus flag.

getSTCFocus(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Get internal focus flag.

setStatus(This, Status) -> ok
Types:

This = wxStyledTextCtrl()
Status = integer()

Change error status - 0 = OK.

The input should be one of the ?wxSTC_STATUS_* constants.

getStatus(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get error status.

The return value will be one of the ?wxSTC_STATUS_* constants.

698 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

setMouseDownCaptures(This, Captures) -> ok
Types:

This = wxStyledTextCtrl()
Captures = boolean()

Set whether the mouse is captured when its button is pressed.

getMouseDownCaptures(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Get whether mouse gets captured.

setSTCCursor(This, CursorType) -> ok
Types:

This = wxStyledTextCtrl()
CursorType = integer()

Sets the cursor to one of the wxSTC_CURSOR* values.

getSTCCursor(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get cursor type.

The return value will be one of the ?wxSTC_CURSOR* constants.

setControlCharSymbol(This, Symbol) -> ok
Types:

This = wxStyledTextCtrl()
Symbol = integer()

Change the way control characters are displayed: If symbol is < 32, keep the drawn way, else, use the given character.

getControlCharSymbol(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the way control characters are displayed.

wordPartLeft(This) -> ok
Types:

This = wxStyledTextCtrl()
Move to the previous change in capitalisation.

wordPartLeftExtend(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 699

wxStyledTextCtrl

This = wxStyledTextCtrl()
Move to the previous change in capitalisation extending selection to new caret position.

wordPartRight(This) -> ok
Types:

This = wxStyledTextCtrl()
Move to the change next in capitalisation.

wordPartRightExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move to the next change in capitalisation extending selection to new caret position.

setVisiblePolicy(This, VisiblePolicy, VisibleSlop) -> ok
Types:

This = wxStyledTextCtrl()
VisiblePolicy = VisibleSlop = integer()

Set the way the display area is determined when a particular line is to be moved to by Find, FindNext, GotoLine, etc.

The first argument should be a bit list containing one or more of the ?wxSTC_VISIBLE_* constants.

delLineLeft(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete back from the current position to the start of the line.

delLineRight(This) -> ok
Types:

This = wxStyledTextCtrl()
Delete forwards from the current position to the end of the line.

getXOffset(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the xOffset (ie, horizontal scroll position).

chooseCaretX(This) -> ok
Types:

This = wxStyledTextCtrl()
Set the last x chosen value to be the caret x position.

setXCaretPolicy(This, CaretPolicy, CaretSlop) -> ok
Types:

700 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
CaretPolicy = CaretSlop = integer()

Set the way the caret is kept visible when going sideways.

The exclusion zone is given in pixels.

The first argument should be a bit list containing one or more of the ?wxSTC_CARET_* constants.

setYCaretPolicy(This, CaretPolicy, CaretSlop) -> ok
Types:

This = wxStyledTextCtrl()
CaretPolicy = CaretSlop = integer()

Set the way the line the caret is on is kept visible.

The exclusion zone is given in lines.

The first argument should be a bit list containing one or more of the ?wxSTC_CARET_* constants.

getPrintWrapMode(This) -> integer()
Types:

This = wxStyledTextCtrl()
Is printing line wrapped?

The return value will be one of the ?wxSTC_WRAP_* constants.

setHotspotActiveForeground(This, UseSetting, Fore) -> ok
Types:

This = wxStyledTextCtrl()
UseSetting = boolean()
Fore = wx:wx_colour()

Set a fore colour for active hotspots.

setHotspotActiveBackground(This, UseSetting, Back) -> ok
Types:

This = wxStyledTextCtrl()
UseSetting = boolean()
Back = wx:wx_colour()

Set a back colour for active hotspots.

setHotspotActiveUnderline(This, Underline) -> ok
Types:

This = wxStyledTextCtrl()
Underline = boolean()

Enable / Disable underlining active hotspots.

setHotspotSingleLine(This, SingleLine) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 701

wxStyledTextCtrl

This = wxStyledTextCtrl()
SingleLine = boolean()

Limit hotspots to single line so hotspots on two lines don't merge.

paraDownExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Extend selection down one paragraph (delimited by empty lines).

paraUp(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret up one paragraph (delimited by empty lines).

paraUpExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Extend selection up one paragraph (delimited by empty lines).

positionBefore(This, Pos) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()

Given a valid document position, return the previous position taking code page into account.

Returns 0 if passed 0.

positionAfter(This, Pos) -> integer()
Types:

This = wxStyledTextCtrl()
Pos = integer()

Given a valid document position, return the next position taking code page into account.

Maximum value returned is the last position in the document.

copyRange(This, Start, End) -> ok
Types:

This = wxStyledTextCtrl()
Start = End = integer()

Copy a range of text to the clipboard.

Positions are clipped into the document.

copyText(This, Length, Text) -> ok
Types:

702 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Length = integer()
Text = unicode:chardata()

Copy argument text to the clipboard.

setSelectionMode(This, SelectionMode) -> ok
Types:

This = wxStyledTextCtrl()
SelectionMode = integer()

Set the selection mode to stream (wxSTC_SEL_STREAM) or rectangular (wxSTC_SEL_RECTANGLE/
wxSTC_SEL_THIN) or by lines (wxSTC_SEL_LINES).

getSelectionMode(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the mode of the current selection.

The return value will be one of the ?wxSTC_SEL_* constants.

lineDownRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret down one line, extending rectangular selection to new caret position.

lineUpRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret up one line, extending rectangular selection to new caret position.

charLeftRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret left one character, extending rectangular selection to new caret position.

charRightRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret right one character, extending rectangular selection to new caret position.

homeRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to first position on line, extending rectangular selection to new caret position.

Ericsson AB. All Rights Reserved.: wxErlang | 703

wxStyledTextCtrl

vCHomeRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to before first visible character on line.

If already there move to first character on line. In either case, extend rectangular selection to new caret position.

lineEndRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to last position on line, extending rectangular selection to new caret position.

pageUpRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret one page up, extending rectangular selection to new caret position.

pageDownRectExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret one page down, extending rectangular selection to new caret position.

stutteredPageUp(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to top of page, or one page up if already at top of page.

stutteredPageUpExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to top of page, or one page up if already at top of page, extending selection to new caret position.

stutteredPageDown(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to bottom of page, or one page down if already at bottom of page.

stutteredPageDownExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret to bottom of page, or one page down if already at bottom of page, extending selection to new caret position.

wordLeftEnd(This) -> ok
Types:

704 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Move caret left one word, position cursor at end of word.

wordLeftEndExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret left one word, position cursor at end of word, extending selection to new caret position.

wordRightEnd(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret right one word, position cursor at end of word.

wordRightEndExtend(This) -> ok
Types:

This = wxStyledTextCtrl()
Move caret right one word, position cursor at end of word, extending selection to new caret position.

setWhitespaceChars(This, Characters) -> ok
Types:

This = wxStyledTextCtrl()
Characters = unicode:chardata()

Set the set of characters making up whitespace for when moving or selecting by word.

Should be called after SetWordChars.

setCharsDefault(This) -> ok
Types:

This = wxStyledTextCtrl()
Reset the set of characters for whitespace and word characters to the defaults.

autoCompGetCurrent(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get currently selected item position in the auto-completion list.

allocate(This, Bytes) -> ok
Types:

This = wxStyledTextCtrl()
Bytes = integer()

Enlarge the document to a particular size of text bytes.

findColumn(This, Line, Column) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 705

wxStyledTextCtrl

This = wxStyledTextCtrl()
Line = Column = integer()

Find the position of a column on a line taking into account tabs and multi-byte characters.

If beyond end of line, return line end position.

getCaretSticky(This) -> integer()
Types:

This = wxStyledTextCtrl()
Can the caret preferred x position only be changed by explicit movement commands?

The return value will be one of the ?wxSTC_CARETSTICKY_* constants.

setCaretSticky(This, UseCaretStickyBehaviour) -> ok
Types:

This = wxStyledTextCtrl()
UseCaretStickyBehaviour = integer()

Stop the caret preferred x position changing when the user types.

The input should be one of the ?wxSTC_CARETSTICKY_* constants.

toggleCaretSticky(This) -> ok
Types:

This = wxStyledTextCtrl()
Switch between sticky and non-sticky: meant to be bound to a key.

setPasteConvertEndings(This, Convert) -> ok
Types:

This = wxStyledTextCtrl()
Convert = boolean()

Enable/Disable convert-on-paste for line endings.

getPasteConvertEndings(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Get convert-on-paste setting.

selectionDuplicate(This) -> ok
Types:

This = wxStyledTextCtrl()
Duplicate the selection.

If selection empty duplicate the line containing the caret.

setCaretLineBackAlpha(This, Alpha) -> ok
Types:

706 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Alpha = integer()

Set background alpha of the caret line.

getCaretLineBackAlpha(This) -> integer()
Types:

This = wxStyledTextCtrl()
Get the background alpha of the caret line.

startRecord(This) -> ok
Types:

This = wxStyledTextCtrl()
Start notifying the container of all key presses and commands.

stopRecord(This) -> ok
Types:

This = wxStyledTextCtrl()
Stop notifying the container of all key presses and commands.

setLexer(This, Lexer) -> ok
Types:

This = wxStyledTextCtrl()
Lexer = integer()

Set the lexing language of the document.

The input should be one of the ?wxSTC_LEX_* constants.

getLexer(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the lexing language of the document.

The return value will be one of the ?wxSTC_LEX_* constants.

colourise(This, Start, End) -> ok
Types:

This = wxStyledTextCtrl()
Start = End = integer()

Colourise a segment of the document using the current lexing language.

setProperty(This, Key, Value) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 707

wxStyledTextCtrl

This = wxStyledTextCtrl()
Key = Value = unicode:chardata()

Set up a value that may be used by a lexer for some optional feature.

setKeyWords(This, KeyWordSet, KeyWords) -> ok
Types:

This = wxStyledTextCtrl()
KeyWordSet = integer()
KeyWords = unicode:chardata()

Set up the key words used by the lexer.

setLexerLanguage(This, Language) -> ok
Types:

This = wxStyledTextCtrl()
Language = unicode:chardata()

Set the lexing language of the document based on string name.

getProperty(This, Key) -> unicode:charlist()
Types:

This = wxStyledTextCtrl()
Key = unicode:chardata()

Retrieve a "property" value previously set with SetProperty.

getStyleBitsNeeded(This) -> integer()
Types:

This = wxStyledTextCtrl()
Retrieve the number of bits the current lexer needs for styling.

Deprecated:

getCurrentLine(This) -> integer()
Types:

This = wxStyledTextCtrl()
Returns the line number of the line with the caret.

styleSetSpec(This, StyleNum, Spec) -> ok
Types:

This = wxStyledTextCtrl()
StyleNum = integer()
Spec = unicode:chardata()

Extract style settings from a spec-string which is composed of one or more of the following comma separated elements:

bold turns on bold italic turns on italics fore:[name or #RRGGBB] sets the foreground colour back:[name or
#RRGGBB] sets the background colour face:[facename] sets the font face name to use size:[num] sets the font size
in points eol turns on eol filling underline turns on underlining

708 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

styleSetFont(This, StyleNum, Font) -> ok
Types:

This = wxStyledTextCtrl()
StyleNum = integer()
Font = wxFont:wxFont()

Set style size, face, bold, italic, and underline attributes from a wxFont's attributes.

styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic,
 Underline) ->
 ok
Types:

This = wxStyledTextCtrl()
StyleNum = Size = integer()
FaceName = unicode:chardata()
Bold = Italic = Underline = boolean()

styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic,
 Underline,
 Options :: [Option]) ->
 ok
Types:

This = wxStyledTextCtrl()
StyleNum = Size = integer()
FaceName = unicode:chardata()
Bold = Italic = Underline = boolean()
Option = {encoding, wx:wx_enum()}

Set all font style attributes at once.

styleSetCharacterSet(This, Style, CharacterSet) -> ok
Types:

This = wxStyledTextCtrl()
Style = CharacterSet = integer()

Set the character set of the font in a style.

Converts the Scintilla character set values to a wxFontEncoding.

styleSetFontEncoding(This, Style, Encoding) -> ok
Types:

This = wxStyledTextCtrl()
Style = integer()
Encoding = wx:wx_enum()

Set the font encoding to be used by a style.

Ericsson AB. All Rights Reserved.: wxErlang | 709

wxStyledTextCtrl

cmdKeyExecute(This, Cmd) -> ok
Types:

This = wxStyledTextCtrl()
Cmd = integer()

Perform one of the operations defined by the wxSTC_CMD_* constants.

setMargins(This, Left, Right) -> ok
Types:

This = wxStyledTextCtrl()
Left = Right = integer()

Set the left and right margin in the edit area, measured in pixels.

getSelection(This) -> {From :: integer(), To :: integer()}
Types:

This = wxStyledTextCtrl()
Gets the current selection span.

If the returned values are equal, there was no selection. Please note that the indices returned may be used
with the other wxTextCtrl methods but don't necessarily represent the correct indices into the string
returned by wxComboBox:getValue/1 for multiline controls under Windows (at least,) you should use
wxTextCtrl:getStringSelection/1 to get the selected text.

pointFromPosition(This, Pos) -> {X :: integer(), Y :: integer()}
Types:

This = wxStyledTextCtrl()
Pos = integer()

Retrieve the point in the window where a position is displayed.

scrollToLine(This, Line) -> ok
Types:

This = wxStyledTextCtrl()
Line = integer()

Scroll enough to make the given line visible.

scrollToColumn(This, Column) -> ok
Types:

This = wxStyledTextCtrl()
Column = integer()

Scroll enough to make the given column visible.

setVScrollBar(This, Bar) -> ok
Types:

710 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

This = wxStyledTextCtrl()
Bar = wxScrollBar:wxScrollBar()

Set the vertical scrollbar to use instead of the one that's built-in.

setHScrollBar(This, Bar) -> ok
Types:

This = wxStyledTextCtrl()
Bar = wxScrollBar:wxScrollBar()

Set the horizontal scrollbar to use instead of the one that's built-in.

getLastKeydownProcessed(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Can be used to prevent the EVT_CHAR handler from adding the char.

setLastKeydownProcessed(This, Val) -> ok
Types:

This = wxStyledTextCtrl()
Val = boolean()

Returns the line number of the line with the caret.

saveFile(This, Filename) -> boolean()
Types:

This = wxStyledTextCtrl()
Filename = unicode:chardata()

Write the contents of the editor to filename.

loadFile(This, Filename) -> boolean()
Types:

This = wxStyledTextCtrl()
Filename = unicode:chardata()

Load the contents of filename into the editor.

doDragOver(This, X, Y, DefaultRes) -> wx:wx_enum()
Types:

This = wxStyledTextCtrl()
X = Y = integer()
DefaultRes = wx:wx_enum()

Allow for simulating a DnD DragOver.

doDropText(This, X, Y, Data) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 711

wxStyledTextCtrl

This = wxStyledTextCtrl()
X = Y = integer()
Data = unicode:chardata()

Allow for simulating a DnD DropText.

getUseAntiAliasing(This) -> boolean()
Types:

This = wxStyledTextCtrl()
Returns the current UseAntiAliasing setting.

addTextRaw(This, Text) -> ok
Types:

This = wxStyledTextCtrl()
Text = binary()

addTextRaw(This, Text, Options :: [Option]) -> ok
Types:

This = wxStyledTextCtrl()
Text = binary()
Option = {length, integer()}

Add text to the document at current position.

insertTextRaw(This, Pos, Text) -> ok
Types:

This = wxStyledTextCtrl()
Pos = integer()
Text = binary()

Insert string at a position.

getCurLineRaw(This) -> Result
Types:

Result = {Res :: binary(), LinePos :: integer()}
This = wxStyledTextCtrl()

Retrieve the text of the line containing the caret.

Returns the index of the caret on the line.

getLineRaw(This, Line) -> binary()
Types:

This = wxStyledTextCtrl()
Line = integer()

Retrieve the contents of a line.

712 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextCtrl

getSelectedTextRaw(This) -> binary()
Types:

This = wxStyledTextCtrl()
Retrieve the selected text.

getTextRangeRaw(This, StartPos, EndPos) -> binary()
Types:

This = wxStyledTextCtrl()
StartPos = EndPos = integer()

Retrieve a range of text.

setTextRaw(This, Text) -> ok
Types:

This = wxStyledTextCtrl()
Text = binary()

Replace the contents of the document with the argument text.

getTextRaw(This) -> binary()
Types:

This = wxStyledTextCtrl()
Retrieve all the text in the document.

appendTextRaw(This, Text) -> ok
Types:

This = wxStyledTextCtrl()
Text = binary()

appendTextRaw(This, Text, Options :: [Option]) -> ok
Types:

This = wxStyledTextCtrl()
Text = binary()
Option = {length, integer()}

Append a string to the end of the document without changing the selection.

Ericsson AB. All Rights Reserved.: wxErlang | 713

wxStyledTextEvent

wxStyledTextEvent
Erlang module

The type of events sent from wxStyledTextCtrl.

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxStyledTextEvent

Events
Use wxEvtHandler:connect/3 with wxStyledTextEventType to subscribe to events of this type.

Data Types
wxStyledTextEvent() = wx:wx_object()
wxStyledText() =
 #wxStyledText{type =
 wxStyledTextEvent:wxStyledTextEventType(),
 position = integer(),
 key = integer(),
 modifiers = integer(),
 modificationType = integer(),
 text = unicode:chardata(),
 length = integer(),
 linesAdded = integer(),
 line = integer(),
 foldLevelNow = integer(),
 foldLevelPrev = integer(),
 margin = integer(),
 message = integer(),
 wParam = integer(),
 lParam = integer(),
 listType = integer(),
 x = integer(),
 y = integer(),
 dragText = unicode:chardata(),
 dragAllowMove = boolean(),
 dragResult = wx:wx_enum()}
wxStyledTextEventType() =
 stc_autocomp_cancelled | stc_autocomp_char_deleted |
 stc_autocomp_selection | stc_calltip_click | stc_change |
 stc_charadded | stc_do_drop | stc_doubleclick |
 stc_drag_over | stc_dwellend | stc_dwellstart |
 stc_hotspot_click | stc_hotspot_dclick |
 stc_hotspot_release_click | stc_indicator_click |
 stc_indicator_release | stc_macrorecord | stc_marginclick |
 stc_modified | stc_needshown | stc_painted |
 stc_romodifyattempt | stc_savepointleft |
 stc_savepointreached | stc_start_drag | stc_styleneeded |

714 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxStyledTextEvent

 stc_updateui | stc_userlistselection | stc_zoom

Exports

getPosition(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the zero-based text position associated this event.

This method is valid for the following event types:

getKey(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the key code of the key that generated this event.

This method is valid for the following event types:

getModifiers(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the modifiers of the key press or mouse click for this event.

The returned value is a bit list that may contain one or more of the following values:

In addition, the value can be checked for equality with ?wxSTC_KEYMOD_NORM to test if no modifiers are present.

This method is valid for the following event types:

getModificationType(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the modification type for this event.

The modification type is a bit list that describes the change that generated this event. It may contain one or more of
the following values:

This method is valid for wxEVT_STC_MODIFIED events.

getText(This) -> unicode:charlist()
Types:

This = wxStyledTextEvent()
Deprecated: Use wxCommandEvent:getString/1 instead.

getLength(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the length (number of characters) of this event.

This method is valid for wxEVT_STC_MODIFIED and wxEVT_STC_NEEDSHOWN events.

Ericsson AB. All Rights Reserved.: wxErlang | 715

wxStyledTextEvent

getLinesAdded(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the number of lines added or deleted with this event.

This method is valid for wxEVT_STC_MODIFIED events when the result of getModificationType/1
includes ?wxSTC_MOD_INSERTTEXT or ?wxSTC_MOD_DELETETEXT.

getLine(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns zero-based line number for this event.

This method is valid for wxEVT_STC_DOUBLECLICK and wxEVT_STC_MODIFIED events.

getFoldLevelNow(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the current fold level for the line.

This method is valid for wxEVT_STC_MODIFIED events when the result of getModificationType/1
includes ?wxSTC_MOD_CHANGEFOLD.

getFoldLevelPrev(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns previous fold level for the line.

This method is valid for wxEVT_STC_MODIFIED events when the result of getModificationType/1
includes ?wxSTC_MOD_CHANGEFOLD.

getMargin(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the zero-based index of the margin that generated this event.

This method is valid for wxEVT_STC_MARGINCLICK and wxEVT_STC_MARGIN_RIGHT_CLICK events.

getMessage(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns a message number while a macro is being recorded.

Many of the wxStyledTextCtrl methods such as wxStyledTextCtrl:insertText/3 and
wxStyledTextCtrl:paste/1 have an event number associated with them. This method returns that number
while a macro is being recorded so that the macro can be played back later.

This method is valid for wxEVT_STC_MACRORECORD events.

716 | Ericsson AB. All Rights Reserved.: wxErlang

wxStyledTextEvent

getWParam(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns value of the WParam field for this event.

This method is valid for wxEVT_STC_MACRORECORD events.

getLParam(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the value of the LParam field for this event.

This method is valid for wxEVT_STC_MACRORECORD events.

getListType(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the list type for this event.

The list type is an integer passed to a list when it is created with the wxStyledTextCtrl:userListShow/3
method and can be used to distinguish lists if more than one is used.

This method is valid for wxEVT_STC_AUTOCOMP_SELECTION_CHANGE and
wxEVT_STC_USERLISTSELECTION events.

getX(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the X coordinate of the mouse for this event.

This method is valid for the following event types:

getY(This) -> integer()
Types:

This = wxStyledTextEvent()
Returns the Y coordinate of the mouse for this event.

This method is valid for the following event types:

getDragText(This) -> unicode:charlist()
Types:

This = wxStyledTextEvent()
Deprecated: Use wxCommandEvent:getString/1 instead.

getDragAllowMove(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 717

wxStyledTextEvent

This = wxStyledTextEvent()

getDragResult(This) -> wx:wx_enum()
Types:

This = wxStyledTextEvent()
Returns drag result for this event.

This method is valid for wxEVT_STC_DRAG_OVER and wxEVT_STC_DO_DROP events.

getShift(This) -> boolean()
Types:

This = wxStyledTextEvent()
Returns true if the Shift key is pressed.

This method is valid for the following event types:

getControl(This) -> boolean()
Types:

This = wxStyledTextEvent()
Returns true if the Control key is pressed.

This method is valid for the following event types:

getAlt(This) -> boolean()
Types:

This = wxStyledTextEvent()
Returns true if the Alt key is pressed.

This method is valid for the following event types:

718 | Ericsson AB. All Rights Reserved.: wxErlang

wxSysColourChangedEvent

wxSysColourChangedEvent
Erlang module

This class is used for system colour change events, which are generated when the user changes the colour settings
using the control panel. This is only appropriate under Windows.

Remark: The default event handler for this event propagates the event to child windows, since Windows only sends
the events to top-level windows. If intercepting this event for a top-level window, remember to call the base class
handler, or to pass the event on to the window's children explicitly.

See: Overview events

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxSysColourChangedEvent

Events
Use wxEvtHandler:connect/3 with wxSysColourChangedEventType to subscribe to events of this type.

Data Types
wxSysColourChangedEvent() = wx:wx_object()
wxSysColourChanged() =
 #wxSysColourChanged{type =
 wxSysColourChangedEvent:wxSysColourChangedEventType()}
wxSysColourChangedEventType() = sys_colour_changed

Ericsson AB. All Rights Reserved.: wxErlang | 719

href
href

wxSystemOptions

wxSystemOptions
Erlang module

wxSystemOptions stores option/value pairs that wxWidgets itself or applications can use to alter behaviour at
run-time. It can be used to optimize behaviour that doesn't deserve a distinct API, but is still important to be able to
configure.

System options can be set by the program itself using setOption/2 method and they also can be set from the
program environment by defining an environment variable wx_option to set the given option for all wxWidgets
applications or wx_appname_option to set it just for the application with the given name (as returned by
wxApp::GetAppName() (not implemented in wx)). Notice that any characters not allowed in the environment
variables names, such as periods and dashes, should be replaced with underscores. E.g. to define a system option "foo-
bar" you need to define the environment variable "wx_foo_bar".

The program may use system options for its own needs but they are mostly used to control the behaviour of wxWidgets
library itself.

These options are currently recognised by wxWidgets:

All platforms

Windows

GTK+

Mac

Motif

The compile-time option to include or exclude this functionality is wxUSE_SYSTEM_OPTIONS.

See: wxSystemSettings

wxWidgets docs: wxSystemOptions

Data Types
wxSystemOptions() = wx:wx_object()

Exports

getOption(Name) -> unicode:charlist()
Types:

Name = unicode:chardata()
Gets an option.

The function is case-insensitive to name. Returns empty string if the option hasn't been set.

See: setOption/2, getOptionInt/1, hasOption/1

getOptionInt(Name) -> integer()
Types:

Name = unicode:chardata()
Gets an option as an integer.

The function is case-insensitive to name. If the option hasn't been set, this function returns 0.

720 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxSystemOptions

See: setOption/2, getOption/1, hasOption/1

hasOption(Name) -> boolean()
Types:

Name = unicode:chardata()
Returns true if the given option is present.

The function is case-insensitive to name.

See: setOption/2, getOption/1, getOptionInt/1

isFalse(Name) -> boolean()
Types:

Name = unicode:chardata()
Returns true if the option with the given name had been set to 0 value.

This is mostly useful for boolean options for which you can't use GetOptionInt(name) == 0 as this would also
be true if the option hadn't been set at all.

setOption(Name, Value) -> ok
setOption(Name, Value) -> ok
Types:

Name = Value = unicode:chardata()

Sets an option.

The function is case-insensitive to name.

Ericsson AB. All Rights Reserved.: wxErlang | 721

wxSystemSettings

wxSystemSettings
Erlang module

wxSystemSettings allows the application to ask for details about the system.

This can include settings such as standard colours, fonts, and user interface element sizes.

See: wxFont, wx_color(), wxSystemOptions

wxWidgets docs: wxSystemSettings

Data Types
wxSystemSettings() = wx:wx_object()

Exports

getColour(Index) -> wx:wx_colour4()
Types:

Index = wx:wx_enum()
Returns a system colour.

Return: The returned colour is always valid.

getFont(Index) -> wxFont:wxFont()
Types:

Index = wx:wx_enum()
Returns a system font.

Return: The returned font is always valid.

getMetric(Index) -> integer()
Types:

Index = wx:wx_enum()

getMetric(Index, Options :: [Option]) -> integer()
Types:

Index = wx:wx_enum()
Option = {win, wxWindow:wxWindow()}

Returns the value of a system metric, or -1 if the metric is not supported on the current system.

The value of win determines if the metric returned is a global value or a wxWindow based value, in which case it
might determine the widget, the display the window is on, or something similar. The window given should be as close
to the metric as possible (e.g. a wxTopLevelWindow in case of the wxSYS_CAPTION_Y metric).

index can be one of the ?wxSystemMetric enum values.

win is a pointer to the window for which the metric is requested. Specifying the win parameter is encouraged, because
some metrics on some ports are not supported without one,or they might be capable of reporting better values if given
one. If a window does not make sense for a metric, one should still be given, as for example it might determine which
displays cursor width is requested with wxSYS_CURSOR_X.

722 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxSystemSettings

getScreenType() -> wx:wx_enum()
Returns the screen type.

The return value is one of the ?wxSystemScreenType enum values.

Ericsson AB. All Rights Reserved.: wxErlang | 723

wxTaskBarIconEvent

wxTaskBarIconEvent
Erlang module

The event class used by wxTaskBarIcon. For a list of the event macros meant to be used with
wxTaskBarIconEvent, please look at wxTaskBarIcon description.

This class is derived (and can use functions) from: wxEvent

wxWidgets docs: wxTaskBarIconEvent

Data Types
wxTaskBarIconEvent() = wx:wx_object()
wxTaskBarIcon() =
 #wxTaskBarIcon{type =
 wxTaskBarIconEvent:wxTaskBarIconEventType()}
wxTaskBarIconEventType() =
 taskbar_move | taskbar_left_down | taskbar_left_up |
 taskbar_right_down | taskbar_right_up | taskbar_left_dclick |
 taskbar_right_dclick

724 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxTaskBarIcon

wxTaskBarIcon
Erlang module

This class represents a taskbar icon. A taskbar icon is an icon that appears in the 'system tray' and responds to mouse
clicks, optionally with a tooltip above it to help provide information.

X Window System Note

Under X Window System, the window manager must support either the "System Tray Protocol" (see
http://freedesktop.org/wiki/Specifications/systemtray-spec) by freedesktop.org (WMs used by modern desktop
environments such as GNOME >= 2, KDE >= 3 and XFCE >= 4 all do) or the older methods used in GNOME 1.2
and KDE 1 and 2.

If it doesn't, the icon will appear as a toplevel window on user's desktop. Because not all window managers have system
tray, there's no guarantee that wxTaskBarIcon will work correctly under X Window System and so the applications
should use it only as an optional component of their user interface. The user should be required to explicitly enable
the taskbar icon on Unix, it shouldn't be on by default.

This class is derived (and can use functions) from: wxEvtHandler

wxWidgets docs: wxTaskBarIcon

Events
Event types emitted from this class: taskbar_move, taskbar_left_down, taskbar_left_up,
taskbar_right_down, taskbar_right_up, taskbar_left_dclick, taskbar_right_dclick

Data Types
wxTaskBarIcon() = wx:wx_object()

Exports

new(Options :: [Option]) -> wxTaskBarIcon()
Types:

Option =
 {iconType, wx:wx_enum()} |
 {createPopupMenu, fun(() -> wxMenu:wxMenu())}

Default constructor.

The iconType is only applicable on wxOSX/Cocoa.

destroy(This :: wxTaskBarIcon()) -> ok
Destroys the wxTaskBarIcon object, removing the icon if not already removed.

popupMenu(This, Menu) -> boolean()
Types:

This = wxTaskBarIcon()
Menu = wxMenu:wxMenu()

Pops up a menu at the current mouse position.

The events can be handled by a class derived from wxTaskBarIcon.

Ericsson AB. All Rights Reserved.: wxErlang | 725

href
href

wxTaskBarIcon

Note: It is recommended to override CreatePopupMenu() (not implemented in wx) callback instead of calling
this method from event handler, because some ports (e.g. wxCocoa) may not implement popupMenu/2 and mouse
click events at all.

removeIcon(This) -> boolean()
Types:

This = wxTaskBarIcon()
Removes the icon previously set with setIcon/3.

setIcon(This, Icon) -> boolean()
Types:

This = wxTaskBarIcon()
Icon = wxIcon:wxIcon()

setIcon(This, Icon, Options :: [Option]) -> boolean()
Types:

This = wxTaskBarIcon()
Icon = wxIcon:wxIcon()
Option = {tooltip, unicode:chardata()}

Sets the icon, and optional tooltip text.

726 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextAttr

wxTextAttr
Erlang module

wxTextAttr represents the character and paragraph attributes, or style, for a range of text in a wxTextCtrl or
wxRichTextCtrl (not implemented in wx).

When setting up a wxTextAttr object, pass a bitlist mask to setFlags/2 to indicate which style elements should
be changed. As a convenience, when you call a setter such as SetFont, the relevant bit will be set.

See: wxTextCtrl, wxRichTextCtrl (not implemented in wx)

wxWidgets docs: wxTextAttr

Data Types
wxTextAttr() = wx:wx_object()

Exports

new() -> wxTextAttr()
Constructors.

new(ColText) -> wxTextAttr()
new(Attr) -> wxTextAttr()
Types:

Attr = wxTextAttr()

new(ColText, Options :: [Option]) -> wxTextAttr()
Types:

ColText = wx:wx_colour()
Option =
 {colBack, wx:wx_colour()} |
 {font, wxFont:wxFont()} |
 {alignment, wx:wx_enum()}

getAlignment(This) -> wx:wx_enum()
Types:

This = wxTextAttr()
Returns the alignment flags.

See ?wxTextAttrAlignment for a list of available styles.

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxTextAttr()
Returns the background colour.

Ericsson AB. All Rights Reserved.: wxErlang | 727

href

wxTextAttr

getFont(This) -> wxFont:wxFont()
Types:

This = wxTextAttr()
Creates and returns a font specified by the font attributes in the wxTextAttr object.

Note that wxTextAttr does not store a wxFont object, so this is only a temporary font.

For greater efficiency, access the font attributes directly.

getFontEncoding(This) -> wx:wx_enum()
Types:

This = wxTextAttr()
Returns the font encoding.

getFontFaceName(This) -> unicode:charlist()
Types:

This = wxTextAttr()
Returns the font face name.

getFontSize(This) -> integer()
Types:

This = wxTextAttr()
Returns the font size in points.

getFontStyle(This) -> wx:wx_enum()
Types:

This = wxTextAttr()
Returns the font style.

getFontUnderlined(This) -> boolean()
Types:

This = wxTextAttr()
Returns true if the font is underlined.

getFontWeight(This) -> wx:wx_enum()
Types:

This = wxTextAttr()
Returns the font weight.

getLeftIndent(This) -> integer()
Types:

This = wxTextAttr()
Returns the left indent in tenths of a millimetre.

728 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextAttr

getLeftSubIndent(This) -> integer()
Types:

This = wxTextAttr()
Returns the left sub-indent in tenths of a millimetre.

getRightIndent(This) -> integer()
Types:

This = wxTextAttr()
Returns the right indent in tenths of a millimeter.

getTabs(This) -> [integer()]
Types:

This = wxTextAttr()
Returns an array of tab stops, each expressed in tenths of a millimeter.

Each stop is measured from the left margin and therefore each value must be larger than the last.

getTextColour(This) -> wx:wx_colour4()
Types:

This = wxTextAttr()
Returns the text foreground colour.

hasBackgroundColour(This) -> boolean()
Types:

This = wxTextAttr()
Returns true if the attribute object specifies a background colour.

hasFont(This) -> boolean()
Types:

This = wxTextAttr()
Returns true if the attribute object specifies any font attributes.

hasTextColour(This) -> boolean()
Types:

This = wxTextAttr()
Returns true if the attribute object specifies a text foreground colour.

getFlags(This) -> integer()
Types:

This = wxTextAttr()
Returns flags indicating which attributes are applicable.

See setFlags/2 for a list of available flags.

Ericsson AB. All Rights Reserved.: wxErlang | 729

wxTextAttr

isDefault(This) -> boolean()
Types:

This = wxTextAttr()
Returns false if we have any attributes set, true otherwise.

setAlignment(This, Alignment) -> ok
Types:

This = wxTextAttr()
Alignment = wx:wx_enum()

Sets the paragraph alignment.

See ?wxTextAttrAlignment enumeration values.

Of these, wxTEXT_ALIGNMENT_JUSTIFIED is unimplemented. In future justification may be supported when
printing or previewing, only.

setBackgroundColour(This, ColBack) -> ok
Types:

This = wxTextAttr()
ColBack = wx:wx_colour()

Sets the background colour.

setFlags(This, Flags) -> ok
Types:

This = wxTextAttr()
Flags = integer()

Sets the flags determining which styles are being specified.

The ?wxTextAttrFlags values can be passed in a bitlist.

setFont(This, Font) -> ok
Types:

This = wxTextAttr()
Font = wxFont:wxFont()

setFont(This, Font, Options :: [Option]) -> ok
Types:

This = wxTextAttr()
Font = wxFont:wxFont()
Option = {flags, integer()}

Sets the attributes for the given font.

Note that wxTextAttr does not store an actual wxFont object.

setFontEncoding(This, Encoding) -> ok
Types:

730 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextAttr

This = wxTextAttr()
Encoding = wx:wx_enum()

Sets the font encoding.

setFontFaceName(This, FaceName) -> ok
Types:

This = wxTextAttr()
FaceName = unicode:chardata()

Sets the font face name.

setFontFamily(This, Family) -> ok
Types:

This = wxTextAttr()
Family = wx:wx_enum()

Sets the font family.

setFontSize(This, PointSize) -> ok
Types:

This = wxTextAttr()
PointSize = integer()

Sets the font size in points.

setFontPointSize(This, PointSize) -> ok
Types:

This = wxTextAttr()
PointSize = integer()

Sets the font size in points.

setFontPixelSize(This, PixelSize) -> ok
Types:

This = wxTextAttr()
PixelSize = integer()

Sets the font size in pixels.

setFontStyle(This, FontStyle) -> ok
Types:

This = wxTextAttr()
FontStyle = wx:wx_enum()

Sets the font style (normal, italic or slanted).

setFontUnderlined(This, Underlined) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 731

wxTextAttr

This = wxTextAttr()
Underlined = boolean()

Sets the font underlining (solid line, text colour).

setFontWeight(This, FontWeight) -> ok
Types:

This = wxTextAttr()
FontWeight = wx:wx_enum()

Sets the font weight.

setLeftIndent(This, Indent) -> ok
Types:

This = wxTextAttr()
Indent = integer()

setLeftIndent(This, Indent, Options :: [Option]) -> ok
Types:

This = wxTextAttr()
Indent = integer()
Option = {subIndent, integer()}

Sets the left indent and left subindent in tenths of a millimetre.

The sub-indent is an offset from the left of the paragraph, and is used for all but the first line in a paragraph.

A positive value will cause the first line to appear to the left of the subsequent lines, and a negative value will cause
the first line to be indented relative to the subsequent lines.

wxRichTextBuffer (not implemented in wx) uses indentation to render a bulleted item. The left indent is the
distance between the margin and the bullet. The content of the paragraph, including the first line, starts at leftMargin +
leftSubIndent. So the distance between the left edge of the bullet and the left of the actual paragraph is leftSubIndent.

setRightIndent(This, Indent) -> ok
Types:

This = wxTextAttr()
Indent = integer()

Sets the right indent in tenths of a millimetre.

setTabs(This, Tabs) -> ok
Types:

This = wxTextAttr()
Tabs = [integer()]

Sets the tab stops, expressed in tenths of a millimetre.

Each stop is measured from the left margin and therefore each value must be larger than the last.

setTextColour(This, ColText) -> ok
Types:

732 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextAttr

This = wxTextAttr()
ColText = wx:wx_colour()

Sets the text foreground colour.

destroy(This :: wxTextAttr()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 733

wxTextCtrl

wxTextCtrl
Erlang module

A text control allows text to be displayed and edited.

It may be single line or multi-line. Notice that a lot of methods of the text controls are found in the base wxTextEntry
(not implemented in wx) class which is a common base class for wxTextCtrl and other controls using a single line
text entry field (e.g. wxComboBox).

Styles

This class supports the following styles:

wxTextCtrl Text Format

The multiline text controls always store the text as a sequence of lines separated by '\n' characters, i.e. in the Unix
text format even on non-Unix platforms. This allows the user code to ignore the differences between the platforms
but at a price: the indices in the control such as those returned by getInsertionPoint/1 or getSelection/1
can not be used as indices into the string returned by getValue/1 as they're going to be slightly off for platforms
using "\\r\\n" as separator (as Windows does).

Instead, if you need to obtain a substring between the 2 indices obtained from the control with the help of the functions
mentioned above, you should use getRange/3. And the indices themselves can only be passed to other methods,
for example setInsertionPoint/2 or setSelection/3.

To summarize: never use the indices returned by (multiline) wxTextCtrl as indices into the string it contains, but
only as arguments to be passed back to the other wxTextCtrl methods. This problem doesn't arise for single-line
platforms however where the indices in the control do correspond to the positions in the value string.

wxTextCtrl Positions and Coordinates

It is possible to use either linear positions, i.e. roughly (but not always exactly, as explained in the previous section)
the index of the character in the text contained in the control or X-Y coordinates, i.e. column and line of the character
when working with this class and it provides the functions positionToXY/2 and xYToPosition/3 to convert
between the two.

Additionally, a position in the control can be converted to its coordinates in pixels using PositionToCoords()
(not implemented in wx) which can be useful to e.g. show a popup menu near the given character. And, in the other
direction, HitTest() (not implemented in wx) can be used to find the character under, or near, the given pixel
coordinates.

To be more precise, positions actually refer to the gaps between characters and not the characters themselves. Thus,
position 0 is the one before the very first character in the control and so is a valid position even when the control is
empty. And if the control contains a single character, it has two valid positions: 0 before this character and 1 - after
it. This, when the documentation of various functions mentions "invalid position", it doesn't consider the position just
after the last character of the line to be invalid, only the positions beyond that one (e.g. 2 and greater in the single
character example) are actually invalid.

wxTextCtrl Styles.

Multi-line text controls support styling, i.e. provide a possibility to set colours and font for individual characters in
it (note that under Windows wxTE_RICH style is required for style support). To use the styles you can either call
setDefaultStyle/2 before inserting the text or call setStyle/4 later to change the style of the text already
in the control (the first solution is much more efficient).

In either case, if the style doesn't specify some of the attributes (for example you only want to set the text colour but
without changing the font nor the text background), the values of the default style will be used for them. If there is no
default style, the attributes of the text control itself are used.

734 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextCtrl

So the following code correctly describes what it does: the second call to setDefaultStyle/2 doesn't change the
text foreground colour (which stays red) while the last one doesn't change the background colour (which stays grey):

wxTextCtrl and C++ Streams

This class multiply-inherits from std::streambuf (except for some really old compilers using non-standard
iostream library), allowing code such as the following:

Note that even if your build of wxWidgets doesn't support this (the symbol wxHAS_TEXT_WINDOW_STREAM has
value of 0 then) you can still use wxTextCtrl itself in a stream-like manner:

However the possibility to create a std::ostream associated with wxTextCtrl may be useful if you need to
redirect the output of a function taking a std::ostream as parameter to a text control.

Another commonly requested need is to redirect std::cout to the text control. This may be done in the following
way:

But wxWidgets provides a convenient class to make it even simpler so instead you may just do

See wxStreamToTextRedirector (not implemented in wx) for more details.

Event Handling.

The following commands are processed by default event handlers in wxTextCtrl: wxID_CUT, wxID_COPY,
wxID_PASTE, wxID_UNDO, wxID_REDO. The associated UI update events are also processed automatically, when
the control has the focus.

See: create/4, wxValidator (not implemented in wx)

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxTextCtrl

Events
Event types emitted from this class: command_text_updated, command_text_enter, text_maxlen

Data Types
wxTextCtrl() = wx:wx_object()

Exports

new() -> wxTextCtrl()
Default ctor.

new(Parent, Id) -> wxTextCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxTextCtrl()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {value, unicode:chardata()} |

Ericsson AB. All Rights Reserved.: wxErlang | 735

href

wxTextCtrl

 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a text control.

Remark: The horizontal scrollbar (wxHSCROLL style flag) will only be created for multi-line text controls. Without a
horizontal scrollbar, text lines that don't fit in the control's size will be wrapped (but no newline character is inserted).
Single line controls don't have a horizontal scrollbar, the text is automatically scrolled so that the insertion point is
always visible.

See: create/4, wxValidator (not implemented in wx)

destroy(This :: wxTextCtrl()) -> ok
Destructor, destroying the text control.

appendText(This, Text) -> ok
Types:

This = wxTextCtrl()
Text = unicode:chardata()

Appends the text to the end of the text control.

Remark: After the text is appended, the insertion point will be at the end of the text control. If this behaviour is not
desired, the programmer should use getInsertionPoint/1 and setInsertionPoint/2.

See: writeText/2

canCopy(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if the selection can be copied to the clipboard.

canCut(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if the selection can be cut to the clipboard.

canPaste(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if the contents of the clipboard can be pasted into the text control.

On some platforms (Motif, GTK) this is an approximation and returns true if the control is editable, false otherwise.

canRedo(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if there is a redo facility available and the last operation can be redone.

736 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextCtrl

canUndo(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if there is an undo facility available and the last operation can be undone.

clear(This) -> ok
Types:

This = wxTextCtrl()
Clears the text in the control.

Note that this function will generate a wxEVT_TEXT event, i.e. its effect is identical to calling SetValue("").

copy(This) -> ok
Types:

This = wxTextCtrl()
Copies the selected text to the clipboard.

create(This, Parent, Id) -> boolean()
Types:

This = wxTextCtrl()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxTextCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates the text control for two-step construction.

This method should be called if the default constructor was used for the control creation. Its parameters have the same
meaning as for the non-default constructor.

cut(This) -> ok
Types:

This = wxTextCtrl()
Copies the selected text to the clipboard and removes it from the control.

discardEdits(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 737

wxTextCtrl

This = wxTextCtrl()
Resets the internal modified flag as if the current changes had been saved.

changeValue(This, Value) -> ok
Types:

This = wxTextCtrl()
Value = unicode:chardata()

Sets the new text control value.

It also marks the control as not-modified which means that IsModified() would return false immediately after the call
to changeValue/2.

The insertion point is set to the start of the control (i.e. position 0) by this function.

This functions does not generate the wxEVT_TEXT event but otherwise is identical to setValue/2.

See overview_events_prog for more information.

Since: 2.7.1

emulateKeyPress(This, Event) -> boolean()
Types:

This = wxTextCtrl()
Event = wxKeyEvent:wxKeyEvent()

This function inserts into the control the character which would have been inserted if the given key event had occurred
in the text control.

The event object should be the same as the one passed to EVT_KEY_DOWN handler previously by wxWidgets. Please
note that this function doesn't currently work correctly for all keys under any platform but MSW.

Return: true if the event resulted in a change to the control, false otherwise.

getDefaultStyle(This) -> wxTextAttr:wxTextAttr()
Types:

This = wxTextCtrl()
Returns the style currently used for the new text.

See: setDefaultStyle/2

getInsertionPoint(This) -> integer()
Types:

This = wxTextCtrl()
Returns the insertion point, or cursor, position.

This is defined as the zero based index of the character position to the right of the insertion point. For example, if the
insertion point is at the end of the single-line text control, it is equal to getLastPosition/1.

Notice that insertion position is, in general, different from the index of the character the cursor position at in the string
returned by getValue/1. While this is always the case for the single line controls, multi-line controls can use two
characters "\\r\\n" as line separator (this is notably the case under MSW) meaning that indices in the control and
its string value are offset by 1 for every line.

738 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextCtrl

Hence to correctly get the character at the current cursor position, taking into account that there can be none if the
cursor is at the end of the string, you could do the following:

getLastPosition(This) -> integer()
Types:

This = wxTextCtrl()
Returns the zero based index of the last position in the text control, which is equal to the number of characters in
the control.

getLineLength(This, LineNo) -> integer()
Types:

This = wxTextCtrl()
LineNo = integer()

Gets the length of the specified line, not including any trailing newline character(s).

Return: The length of the line, or -1 if lineNo was invalid.

getLineText(This, LineNo) -> unicode:charlist()
Types:

This = wxTextCtrl()
LineNo = integer()

Returns the contents of a given line in the text control, not including any trailing newline character(s).

Return: The contents of the line.

getNumberOfLines(This) -> integer()
Types:

This = wxTextCtrl()
Returns the number of lines in the text control buffer.

The returned number is the number of logical lines, i.e. just the count of the number of newline characters in the control
+ 1, for wxGTK and wxOSX/Cocoa ports while it is the number of physical lines, i.e. the count of lines actually shown
in the control, in wxMSW. Because of this discrepancy, it is not recommended to use this function.

Remark: Note that even empty text controls have one line (where the insertion point is), so getNumberOfLines/1
never returns 0.

getRange(This, From, To) -> unicode:charlist()
Types:

This = wxTextCtrl()
From = To = integer()

Returns the string containing the text starting in the positions from and up to to in the control.

The positions must have been returned by another wxTextCtrl method. Please note that the positions in a multiline
wxTextCtrl do not correspond to the indices in the string returned by getValue/1 because of the different new
line representations (CR or CR LF) and so this method should be used to obtain the correct results instead of extracting
parts of the entire value. It may also be more efficient, especially if the control contains a lot of data.

Ericsson AB. All Rights Reserved.: wxErlang | 739

wxTextCtrl

getSelection(This) -> {From :: integer(), To :: integer()}
Types:

This = wxTextCtrl()
Gets the current selection span.

If the returned values are equal, there was no selection. Please note that the indices returned may be used with the other
wxTextCtrl methods but don't necessarily represent the correct indices into the string returned by getValue/1
for multiline controls under Windows (at least,) you should use getStringSelection/1 to get the selected text.

getStringSelection(This) -> unicode:charlist()
Types:

This = wxTextCtrl()
Gets the text currently selected in the control.

If there is no selection, the returned string is empty.

getStyle(This, Position, Style) -> boolean()
Types:

This = wxTextCtrl()
Position = integer()
Style = wxTextAttr:wxTextAttr()

Returns the style at this position in the text control.

Not all platforms support this function.

Return: true on success, false if an error occurred (this may also mean that the styles are not supported under this
platform).

See: setStyle/4, wxTextAttr

getValue(This) -> unicode:charlist()
Types:

This = wxTextCtrl()
Gets the contents of the control.

Notice that for a multiline text control, the lines will be separated by (Unix-style) \n characters, even under Windows
where they are separated by a \r\n sequence in the native control.

isEditable(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if the controls contents may be edited by user (note that it always can be changed by the program).

In other words, this functions returns true if the control hasn't been put in read-only mode by a previous call to
setEditable/2.

isModified(This) -> boolean()
Types:

740 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextCtrl

This = wxTextCtrl()
Returns true if the text has been modified by user.

Note that calling setValue/2 doesn't make the control modified.

See: markDirty/1

isMultiLine(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if this is a multi line edit control and false otherwise.

See: isSingleLine/1

isSingleLine(This) -> boolean()
Types:

This = wxTextCtrl()
Returns true if this is a single line edit control and false otherwise.

See: isSingleLine/1, isMultiLine/1

loadFile(This, Filename) -> boolean()
Types:

This = wxTextCtrl()
Filename = unicode:chardata()

loadFile(This, Filename, Options :: [Option]) -> boolean()
Types:

This = wxTextCtrl()
Filename = unicode:chardata()
Option = {fileType, integer()}

Loads and displays the named file, if it exists.

Return: true if successful, false otherwise.

markDirty(This) -> ok
Types:

This = wxTextCtrl()
Mark text as modified (dirty).

See: isModified/1

paste(This) -> ok
Types:

This = wxTextCtrl()
Pastes text from the clipboard to the text item.

Ericsson AB. All Rights Reserved.: wxErlang | 741

wxTextCtrl

positionToXY(This, Pos) -> Result
Types:

Result = {Res :: boolean(), X :: integer(), Y :: integer()}
This = wxTextCtrl()
Pos = integer()

Converts given position to a zero-based column, line number pair.

Return: true on success, false on failure (most likely due to a too large position parameter).

See: xYToPosition/3

redo(This) -> ok
Types:

This = wxTextCtrl()
If there is a redo facility and the last operation can be redone, redoes the last operation.

Does nothing if there is no redo facility.

remove(This, From, To) -> ok
Types:

This = wxTextCtrl()
From = To = integer()

Removes the text starting at the first given position up to (but not including) the character at the last position.

This function puts the current insertion point position at to as a side effect.

replace(This, From, To, Value) -> ok
Types:

This = wxTextCtrl()
From = To = integer()
Value = unicode:chardata()

Replaces the text starting at the first position up to (but not including) the character at the last position with the given
text.

This function puts the current insertion point position at to as a side effect.

saveFile(This) -> boolean()
Types:

This = wxTextCtrl()

saveFile(This, Options :: [Option]) -> boolean()
Types:

This = wxTextCtrl()
Option = {file, unicode:chardata()} | {fileType, integer()}

Saves the contents of the control in a text file.

Return: true if the operation was successful, false otherwise.

742 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextCtrl

setDefaultStyle(This, Style) -> boolean()
Types:

This = wxTextCtrl()
Style = wxTextAttr:wxTextAttr()

Changes the default style to use for the new text which is going to be added to the control.

This applies both to the text added programmatically using writeText/2 or appendText/2 and to the text entered
by the user interactively.

If either of the font, foreground, or background colour is not set in style, the values of the previous default style
are used for them. If the previous default style didn't set them neither, the global font or colours of the text control
itself are used as fall back.

However if the style parameter is the default wxTextAttr, then the default style is just reset (instead of being
combined with the new style which wouldn't change it at all).

Return: true on success, false if an error occurred (this may also mean that the styles are not supported under this
platform).

See: getDefaultStyle/1

setEditable(This, Editable) -> ok
Types:

This = wxTextCtrl()
Editable = boolean()

Makes the text item editable or read-only, overriding the wxTE_READONLY flag.

See: isEditable/1

setInsertionPoint(This, Pos) -> ok
Types:

This = wxTextCtrl()
Pos = integer()

Sets the insertion point at the given position.

setInsertionPointEnd(This) -> ok
Types:

This = wxTextCtrl()
Sets the insertion point at the end of the text control.

This is equivalent to calling setInsertionPoint/2 with getLastPosition/1 argument.

setMaxLength(This, Len) -> ok
Types:

This = wxTextCtrl()
Len = integer()

This function sets the maximum number of characters the user can enter into the control.

In other words, it allows limiting the text value length to len not counting the terminating NUL character.

Ericsson AB. All Rights Reserved.: wxErlang | 743

wxTextCtrl

If len is 0, the previously set max length limit, if any, is discarded and the user may enter as much text as the underlying
native text control widget supports (typically at least 32Kb). If the user tries to enter more characters into the text
control when it already is filled up to the maximal length, a wxEVT_TEXT_MAXLEN event is sent to notify the program
about it (giving it the possibility to show an explanatory message, for example) and the extra input is discarded.

Note that in wxGTK this function may only be used with single line text controls.

setSelection(This, From, To) -> ok
Types:

This = wxTextCtrl()
From = To = integer()

Selects the text starting at the first position up to (but not including) the character at the last position.

If both parameters are equal to -1 all text in the control is selected.

Notice that the insertion point will be moved to from by this function.

See: SelectAll() (not implemented in wx)

setStyle(This, Start, End, Style) -> boolean()
Types:

This = wxTextCtrl()
Start = End = integer()
Style = wxTextAttr:wxTextAttr()

Changes the style of the given range.

If any attribute within style is not set, the corresponding attribute from getDefaultStyle/1 is used.

Return: true on success, false if an error occurred (this may also mean that the styles are not supported under this
platform).

See: getStyle/3, wxTextAttr

setValue(This, Value) -> ok
Types:

This = wxTextCtrl()
Value = unicode:chardata()

Sets the new text control value.

It also marks the control as not-modified which means that IsModified() would return false immediately after the call
to setValue/2.

The insertion point is set to the start of the control (i.e. position 0) by this function unless the control value doesn't
change at all, in which case the insertion point is left at its original position.

Note that, unlike most other functions changing the controls values, this function generates a wxEVT_TEXT event.
To avoid this you can use changeValue/2 instead.

showPosition(This, Pos) -> ok
Types:

744 | Ericsson AB. All Rights Reserved.: wxErlang

wxTextCtrl

This = wxTextCtrl()
Pos = integer()

Makes the line containing the given position visible.

undo(This) -> ok
Types:

This = wxTextCtrl()
If there is an undo facility and the last operation can be undone, undoes the last operation.

Does nothing if there is no undo facility.

writeText(This, Text) -> ok
Types:

This = wxTextCtrl()
Text = unicode:chardata()

Writes the text into the text control at the current insertion position.

Remark: Newlines in the text string are the only control characters allowed, and they will cause appropriate line breaks.
See operator<<() and appendText/2 for more convenient ways of writing to the window. After the write operation,
the insertion point will be at the end of the inserted text, so subsequent write operations will be appended. To append
text after the user may have interacted with the control, call setInsertionPointEnd/1 before writing.

xYToPosition(This, X, Y) -> integer()
Types:

This = wxTextCtrl()
X = Y = integer()

Converts the given zero based column and line number to a position.

Return: The position value, or -1 if x or y was invalid.

Ericsson AB. All Rights Reserved.: wxErlang | 745

wxTextDataObject

wxTextDataObject
Erlang module

wxTextDataObject is a specialization of wxDataObjectSimple (not implemented in wx) for text data. It can
be used without change to paste data into the wxClipboard or a wxDropSource (not implemented in wx). A user
may wish to derive a new class from this class for providing text on-demand in order to minimize memory consumption
when offering data in several formats, such as plain text and RTF because by default the text is stored in a string in
this class, but it might as well be generated when requested. For this, getTextLength/1 and getText/1 will
have to be overridden.

Note that if you already have the text inside a string, you will not achieve any efficiency gain by overriding these
functions because copying wxStrings is already a very efficient operation (data is not actually copied because wxStrings
are reference counted).

See: Overview dnd, wxDataObject, wxDataObjectSimple (not implemented in wx), wxFileDataObject,
wxBitmapDataObject

This class is derived (and can use functions) from: wxDataObject

wxWidgets docs: wxTextDataObject

Data Types
wxTextDataObject() = wx:wx_object()

Exports

new() -> wxTextDataObject()

new(Options :: [Option]) -> wxTextDataObject()
Types:

Option = {text, unicode:chardata()}
Constructor, may be used to initialise the text (otherwise setText/2 should be used later).

getTextLength(This) -> integer()
Types:

This = wxTextDataObject()
Returns the data size.

By default, returns the size of the text data set in the constructor or using setText/2. This can be overridden to
provide text size data on-demand. It is recommended to return the text length plus 1 for a trailing zero, but this is
not strictly required.

getText(This) -> unicode:charlist()
Types:

This = wxTextDataObject()
Returns the text associated with the data object.

You may wish to override this method when offering data on-demand, but this is not required by wxWidgets' internals.
Use this method to get data in text form from the wxClipboard.

746 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxTextDataObject

setText(This, StrText) -> ok
Types:

This = wxTextDataObject()
StrText = unicode:chardata()

Sets the text associated with the data object.

This method is called when the data object receives the data and, by default, copies the text into the member variable.
If you want to process the text on the fly you may wish to override this function.

destroy(This :: wxTextDataObject()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 747

wxTextEntryDialog

wxTextEntryDialog
Erlang module

This class represents a dialog that requests a one-line text string from the user. It is implemented as a generic wxWidgets
dialog.

See: Overview cmndlg

This class is derived (and can use functions) from: wxDialog wxTopLevelWindow wxWindow wxEvtHandler

wxWidgets docs: wxTextEntryDialog

Data Types
wxTextEntryDialog() = wx:wx_object()

Exports

new() -> wxTextEntryDialog()
Default constructor.

Call Create() (not implemented in wx) to really create the dialog later.

Since: 2.9.5

new(Parent, Message) -> wxTextEntryDialog()
Types:

Parent = wxWindow:wxWindow()
Message = unicode:chardata()

new(Parent, Message, Options :: [Option]) -> wxTextEntryDialog()
Types:

Parent = wxWindow:wxWindow()
Message = unicode:chardata()
Option =
 {caption, unicode:chardata()} |
 {value, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}

Constructor.

Use wxDialog:showModal/1 to show the dialog.

See Create() (not implemented in wx) method for parameter description.

destroy(This :: wxTextEntryDialog()) -> ok
Destructor.

getValue(This) -> unicode:charlist()
Types:

748 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxTextEntryDialog

This = wxTextEntryDialog()
Returns the text that the user has entered if the user has pressed OK, or the original value if the user has pressed Cancel.

setValue(This, Value) -> ok
Types:

This = wxTextEntryDialog()
Value = unicode:chardata()

Sets the default text value.

Ericsson AB. All Rights Reserved.: wxErlang | 749

wxToggleButton

wxToggleButton
Erlang module

wxToggleButton is a button that stays pressed when clicked by the user. In other words, it is similar to
wxCheckBox in functionality but looks like a wxButton.

Since wxWidgets version 2.9.0 this control emits an update UI event.

You can see wxToggleButton in action in page_samples_widgets.

See: wxCheckBox, wxButton, wxBitmapToggleButton (not implemented in wx)

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxToggleButton

Events
Event types emitted from this class: command_togglebutton_clicked

Data Types
wxToggleButton() = wx:wx_object()

Exports

new() -> wxToggleButton()
Default constructor.

new(Parent, Id, Label) -> wxToggleButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

new(Parent, Id, Label, Options :: [Option]) -> wxToggleButton()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a toggle button.

See: create/5, wxValidator (not implemented in wx)

750 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxToggleButton

destroy(This :: wxToggleButton()) -> ok
Destructor, destroying the toggle button.

create(This, Parent, Id, Label) -> boolean()
Types:

This = wxToggleButton()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()

create(This, Parent, Id, Label, Options :: [Option]) -> boolean()
Types:

This = wxToggleButton()
Parent = wxWindow:wxWindow()
Id = integer()
Label = unicode:chardata()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates the toggle button for two-step construction.

See new/4 for details.

getValue(This) -> boolean()
Types:

This = wxToggleButton()
Gets the state of the toggle button.

Return: Returns true if it is pressed, false otherwise.

setValue(This, State) -> ok
Types:

This = wxToggleButton()
State = boolean()

Sets the toggle button to the given state.

This does not cause a EVT_TOGGLEBUTTON event to be emitted.

Ericsson AB. All Rights Reserved.: wxErlang | 751

wxToolBar

wxToolBar
Erlang module

A toolbar is a bar of buttons and/or other controls usually placed below the menu bar in a wxFrame.

You may create a toolbar that is managed by a frame calling wxFrame:createToolBar/2. Under Pocket PC,
you should always use this function for creating the toolbar to be managed by the frame, so that wxWidgets can use a
combined menubar and toolbar. Where you manage your own toolbars, create wxToolBar as usual.

There are several different types of tools you can add to a toolbar. These types are controlled by the ?wxItemKind
enumeration.

Note that many methods in wxToolBar such as addTool/6 return a wxToolBarToolBase* object. This should
be regarded as an opaque handle representing the newly added toolbar item, providing access to its id and position
within the toolbar. Changes to the item's state should be made through calls to wxToolBar methods, for example
enableTool/3. Calls to wxToolBarToolBase (not implemented in wx) methods (undocumented by purpose)
will not change the visible state of the item within the tool bar.

After you have added all the tools you need, you must call realize/1 to effectively construct and display the toolbar.

wxMSW note: Note that under wxMSW toolbar paints tools to reflect system-wide colours. If you use more than 16
colours in your tool bitmaps, you may wish to suppress this behaviour, otherwise system colours in your bitmaps will
inadvertently be mapped to system colours. To do this, set the msw.remap system option before creating the toolbar:
If you wish to use 32-bit images (which include an alpha channel for transparency) use: Then colour remapping is
switched off, and a transparent background used. But only use this option under Windows XP with true colour:

Styles

This class supports the following styles:

See: Overview toolbar

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxToolBar

Events
Event types emitted from this class: command_tool_rclicked, command_tool_enter, tool_dropdown

Data Types
wxToolBar() = wx:wx_object()

Exports

addControl(This, Control) -> wx:wx_object()
Types:

This = wxToolBar()
Control = wxControl:wxControl()

addControl(This, Control, Options :: [Option]) -> wx:wx_object()
Types:

752 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxToolBar

This = wxToolBar()
Control = wxControl:wxControl()
Option = {label, unicode:chardata()}

Adds any control to the toolbar, typically e.g. a wxComboBox.

Remark: wxMac: labels are only displayed if wxWidgets is built with wxMAC_USE_NATIVE_TOOLBAR set to 1

addSeparator(This) -> wx:wx_object()
Types:

This = wxToolBar()
Adds a separator for spacing groups of tools.

Notice that the separator uses the look appropriate for the current platform so it can be a vertical line (MSW, some
versions of GTK) or just an empty space or something else.

See: addTool/6, setToolSeparation/2, addStretchableSpace/1

addTool(This, Tool) -> wx:wx_object()
Types:

This = wxToolBar()
Tool = wx:wx_object()

Adds a tool to the toolbar.

Remark: After you have added tools to a toolbar, you must call realize/1 in order to have the tools appear.

See: addSeparator/1, addCheckTool/5, addRadioTool/5, insertTool/6, deleteTool/2,
realize/1, SetDropdownMenu() (not implemented in wx)

addTool(This, ToolId, Label, Bitmap) -> wx:wx_object()
Types:

This = wxToolBar()
ToolId = integer()
Label = unicode:chardata()
Bitmap = wxBitmap:wxBitmap()

addTool(This, ToolId, Label, Bitmap, BmpDisabled) ->
 wx:wx_object()
addTool(This, ToolId, Label, Bitmap, BmpDisabled :: [Option]) ->
 wx:wx_object()
Types:

This = wxToolBar()
ToolId = integer()
Label = unicode:chardata()
Bitmap = wxBitmap:wxBitmap()
Option = {shortHelp, unicode:chardata()} | {kind, wx:wx_enum()}

Adds a tool to the toolbar.

This most commonly used version has fewer parameters than the full version below which specifies the more rarely
used button features.

Ericsson AB. All Rights Reserved.: wxErlang | 753

wxToolBar

Remark: After you have added tools to a toolbar, you must call realize/1 in order to have the tools appear.

See: addSeparator/1, addCheckTool/5, addRadioTool/5, insertTool/6, deleteTool/2,
realize/1, SetDropdownMenu() (not implemented in wx)

addTool(This, ToolId, Label, Bitmap, BmpDisabled,
 Options :: [Option]) ->
 wx:wx_object()
Types:

This = wxToolBar()
ToolId = integer()
Label = unicode:chardata()
Bitmap = BmpDisabled = wxBitmap:wxBitmap()
Option =
 {kind, wx:wx_enum()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}

Adds a tool to the toolbar.

Remark: After you have added tools to a toolbar, you must call realize/1 in order to have the tools appear.

See: addSeparator/1, addCheckTool/5, addRadioTool/5, insertTool/6, deleteTool/2,
realize/1, SetDropdownMenu() (not implemented in wx)

addCheckTool(This, ToolId, Label, Bitmap1) -> wx:wx_object()
Types:

This = wxToolBar()
ToolId = integer()
Label = unicode:chardata()
Bitmap1 = wxBitmap:wxBitmap()

addCheckTool(This, ToolId, Label, Bitmap1, Options :: [Option]) ->
 wx:wx_object()
Types:

This = wxToolBar()
ToolId = integer()
Label = unicode:chardata()
Bitmap1 = wxBitmap:wxBitmap()
Option =
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}

Adds a new check (or toggle) tool to the toolbar.

The parameters are the same as in addTool/6.

See: addTool/6

754 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolBar

addRadioTool(This, ToolId, Label, Bitmap1) -> wx:wx_object()
Types:

This = wxToolBar()
ToolId = integer()
Label = unicode:chardata()
Bitmap1 = wxBitmap:wxBitmap()

addRadioTool(This, ToolId, Label, Bitmap1, Options :: [Option]) ->
 wx:wx_object()
Types:

This = wxToolBar()
ToolId = integer()
Label = unicode:chardata()
Bitmap1 = wxBitmap:wxBitmap()
Option =
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}

Adds a new radio tool to the toolbar.

Consecutive radio tools form a radio group such that exactly one button in the group is pressed at any moment, in other
words whenever a button in the group is pressed the previously pressed button is automatically released. You should
avoid having the radio groups of only one element as it would be impossible for the user to use such button.

By default, the first button in the radio group is initially pressed, the others are not.

See: addTool/6

addStretchableSpace(This) -> wx:wx_object()
Types:

This = wxToolBar()
Adds a stretchable space to the toolbar.

Any space not taken up by the fixed items (all items except for stretchable spaces) is distributed in equal measure
between the stretchable spaces in the toolbar. The most common use for this method is to add a single stretchable
space before the items which should be right-aligned in the toolbar, but more exotic possibilities are possible, e.g. a
stretchable space may be added in the beginning and the end of the toolbar to centre all toolbar items.

See: addTool/6, addSeparator/1, insertStretchableSpace/2

Since: 2.9.1

insertStretchableSpace(This, Pos) -> wx:wx_object()
Types:

This = wxToolBar()
Pos = integer()

Inserts a stretchable space at the given position.

See addStretchableSpace/1 for details about stretchable spaces.

Ericsson AB. All Rights Reserved.: wxErlang | 755

wxToolBar

See: insertTool/6, insertSeparator/2

Since: 2.9.1

deleteTool(This, ToolId) -> boolean()
Types:

This = wxToolBar()
ToolId = integer()

Removes the specified tool from the toolbar and deletes it.

If you don't want to delete the tool, but just to remove it from the toolbar (to possibly add it back later), you may use
removeTool/2 instead.

Note: It is unnecessary to call realize/1 for the change to take place, it will happen immediately.

Return: true if the tool was deleted, false otherwise.

See: deleteToolByPos/2

deleteToolByPos(This, Pos) -> boolean()
Types:

This = wxToolBar()
Pos = integer()

This function behaves like deleteTool/2 but it deletes the tool at the specified position and not the one with the
given id.

enableTool(This, ToolId, Enable) -> ok
Types:

This = wxToolBar()
ToolId = integer()
Enable = boolean()

Enables or disables the tool.

Remark: Some implementations will change the visible state of the tool to indicate that it is disabled.

See: getToolEnabled/2, toggleTool/3

findById(This, Id) -> wx:wx_object()
Types:

This = wxToolBar()
Id = integer()

Returns a pointer to the tool identified by id or NULL if no corresponding tool is found.

findControl(This, Id) -> wxControl:wxControl()
Types:

This = wxToolBar()
Id = integer()

Returns a pointer to the control identified by id or NULL if no corresponding control is found.

756 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolBar

findToolForPosition(This, X, Y) -> wx:wx_object()
Types:

This = wxToolBar()
X = Y = integer()

Finds a tool for the given mouse position.

Return: A pointer to a tool if a tool is found, or NULL otherwise.

Remark: Currently not implemented in wxGTK (always returns NULL there).

getToolSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxToolBar()
Returns the size of a whole button, which is usually larger than a tool bitmap because of added 3D effects.

See: setToolBitmapSize/2, getToolBitmapSize/1

getToolBitmapSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxToolBar()
Returns the size of bitmap that the toolbar expects to have.

The default bitmap size is platform-dependent: for example, it is 16*15 for MSW and 24*24 for GTK. This size
does not necessarily indicate the best size to use for the toolbars on the given platform, for this you should use
wxArtProvider::GetNativeSizeHint(wxART_TOOLBAR) but in any case, as the bitmap size is deduced
automatically from the size of the bitmaps associated with the tools added to the toolbar, it is usually unnecessary to
call setToolBitmapSize/2 explicitly.

Remark: Note that this is the size of the bitmap you pass to addTool/6, and not the eventual size of the tool button.

See: setToolBitmapSize/2, getToolSize/1

getMargins(This) -> {W :: integer(), H :: integer()}
Types:

This = wxToolBar()
Returns the left/right and top/bottom margins, which are also used for inter-toolspacing.

See: setMargins/3

getToolEnabled(This, ToolId) -> boolean()
Types:

This = wxToolBar()
ToolId = integer()

Called to determine whether a tool is enabled (responds to user input).

Return: true if the tool is enabled, false otherwise.

See: enableTool/3

getToolLongHelp(This, ToolId) -> unicode:charlist()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 757

wxToolBar

This = wxToolBar()
ToolId = integer()

Returns the long help for the given tool.

See: setToolLongHelp/3, setToolShortHelp/3

getToolPacking(This) -> integer()
Types:

This = wxToolBar()
Returns the value used for packing tools.

See: setToolPacking/2

getToolPos(This, ToolId) -> integer()
Types:

This = wxToolBar()
ToolId = integer()

Returns the tool position in the toolbar, or wxNOT_FOUND if the tool is not found.

getToolSeparation(This) -> integer()
Types:

This = wxToolBar()
Returns the default separator size.

See: setToolSeparation/2

getToolShortHelp(This, ToolId) -> unicode:charlist()
Types:

This = wxToolBar()
ToolId = integer()

Returns the short help for the given tool.

See: getToolLongHelp/2, setToolShortHelp/3

getToolState(This, ToolId) -> boolean()
Types:

This = wxToolBar()
ToolId = integer()

Gets the on/off state of a toggle tool.

Return: true if the tool is toggled on, false otherwise.

See: toggleTool/3

insertControl(This, Pos, Control) -> wx:wx_object()
Types:

758 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolBar

This = wxToolBar()
Pos = integer()
Control = wxControl:wxControl()

insertControl(This, Pos, Control, Options :: [Option]) ->
 wx:wx_object()
Types:

This = wxToolBar()
Pos = integer()
Control = wxControl:wxControl()
Option = {label, unicode:chardata()}

Inserts the control into the toolbar at the given position.

You must call realize/1 for the change to take place.

See: addControl/3, insertTool/6

insertSeparator(This, Pos) -> wx:wx_object()
Types:

This = wxToolBar()
Pos = integer()

Inserts the separator into the toolbar at the given position.

You must call realize/1 for the change to take place.

See: addSeparator/1, insertTool/6

insertTool(This, Pos, Tool) -> wx:wx_object()
Types:

This = wxToolBar()
Pos = integer()
Tool = wx:wx_object()

insertTool(This, Pos, ToolId, Label, Bitmap) -> wx:wx_object()
Types:

This = wxToolBar()
Pos = ToolId = integer()
Label = unicode:chardata()
Bitmap = wxBitmap:wxBitmap()

insertTool(This, Pos, ToolId, Label, Bitmap, Options :: [Option]) ->
 wx:wx_object()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 759

wxToolBar

This = wxToolBar()
Pos = ToolId = integer()
Label = unicode:chardata()
Bitmap = wxBitmap:wxBitmap()
Option =
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {kind, wx:wx_enum()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {clientData, wx:wx_object()}

Inserts the tool with the specified attributes into the toolbar at the given position.

You must call realize/1 for the change to take place.

See: addTool/6, insertControl/4, insertSeparator/2

Return: The newly inserted tool or NULL on failure. Notice that with the overload taking tool parameter the caller
is responsible for deleting the tool in the latter case.

realize(This) -> boolean()
Types:

This = wxToolBar()
This function should be called after you have added tools.

removeTool(This, Id) -> wx:wx_object()
Types:

This = wxToolBar()
Id = integer()

Removes the given tool from the toolbar but doesn't delete it.

This allows inserting/adding this tool back to this (or another) toolbar later.

Note: It is unnecessary to call realize/1 for the change to take place, it will happen immediately.

See: deleteTool/2

setMargins(This, X, Y) -> ok
Types:

This = wxToolBar()
X = Y = integer()

Set the values to be used as margins for the toolbar.

Remark: This must be called before the tools are added if absolute positioning is to be used, and the default (zero-
size) margins are to be overridden.

See: getMargins/1

setToolBitmapSize(This, Size) -> ok
Types:

760 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolBar

This = wxToolBar()
Size = {W :: integer(), H :: integer()}

Sets the default size of each tool bitmap.

The default bitmap size is 16 by 15 pixels.

Remark: This should be called to tell the toolbar what the tool bitmap size is. Call it before you add tools.

See: getToolBitmapSize/1, getToolSize/1

setToolLongHelp(This, ToolId, HelpString) -> ok
Types:

This = wxToolBar()
ToolId = integer()
HelpString = unicode:chardata()

Sets the long help for the given tool.

Remark: You might use the long help for displaying the tool purpose on the status line.

See: getToolLongHelp/2, setToolShortHelp/3

setToolPacking(This, Packing) -> ok
Types:

This = wxToolBar()
Packing = integer()

Sets the value used for spacing tools.

The default value is 1.

Remark: The packing is used for spacing in the vertical direction if the toolbar is horizontal, and for spacing in the
horizontal direction if the toolbar is vertical.

See: getToolPacking/1

setToolShortHelp(This, ToolId, HelpString) -> ok
Types:

This = wxToolBar()
ToolId = integer()
HelpString = unicode:chardata()

Sets the short help for the given tool.

Remark: An application might use short help for identifying the tool purpose in a tooltip.

See: getToolShortHelp/2, setToolLongHelp/3

setToolSeparation(This, Separation) -> ok
Types:

This = wxToolBar()
Separation = integer()

Sets the default separator size.

The default value is 5.

Ericsson AB. All Rights Reserved.: wxErlang | 761

wxToolBar

See: addSeparator/1

toggleTool(This, ToolId, Toggle) -> ok
Types:

This = wxToolBar()
ToolId = integer()
Toggle = boolean()

Toggles a tool on or off.

This does not cause any event to get emitted.

Remark: Only applies to a tool that has been specified as a toggle tool.

762 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolbook

wxToolbook
Erlang module

wxToolbook is a class similar to wxNotebook but which uses a wxToolBar to show the labels instead of the tabs.

There is no documentation for this class yet but its usage is identical to wxNotebook (except for the features clearly
related to tabs only), so please refer to that class documentation for now. You can also use the page_samples_notebook
to see wxToolbook in action.

One feature of this class not supported by wxBookCtrlBase is the support for disabling some of the pages, see
EnablePage() (not implemented in wx).

Styles

This class supports the following styles:

See: Overview bookctrl, wxBookCtrlBase, wxNotebook, Examples

This class is derived (and can use functions) from: wxBookCtrlBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxToolbook

Events
Event types emitted from this class: toolbook_page_changed, toolbook_page_changing

Data Types
wxToolbook() = wx:wx_object()

Exports

new() -> wxToolbook()
Constructs a choicebook control.

new(Parent, Id) -> wxToolbook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxToolbook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

addPage(This, Page, Text) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 763

href
href
href

wxToolbook

This = wxToolbook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

addPage(This, Page, Text, Options :: [Option]) -> boolean()
Types:

This = wxToolbook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Adds a new page.

The page must have the book control itself as the parent and must not have been added to this control previously.

The call to this function will generate the page changing and page changed events if select is true, but not when
inserting the very first page (as there is no previous page selection to switch from in this case and so it wouldn't make
sense to e.g. veto such event).

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: insertPage/5

advanceSelection(This) -> ok
Types:

This = wxToolbook()

advanceSelection(This, Options :: [Option]) -> ok
Types:

This = wxToolbook()
Option = {forward, boolean()}

Cycles through the tabs.

The call to this function generates the page changing events.

assignImageList(This, ImageList) -> ok
Types:

This = wxToolbook()
ImageList = wxImageList:wxImageList()

Sets the image list for the page control and takes ownership of the list.

See: wxImageList, setImageList/2

create(This, Parent, Id) -> boolean()
Types:

764 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolbook

This = wxToolbook()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = wxToolbook()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Create the tool book control that has already been constructed with the default constructor.

deleteAllPages(This) -> boolean()
Types:

This = wxToolbook()
Deletes all pages.

getCurrentPage(This) -> wxWindow:wxWindow()
Types:

This = wxToolbook()
Returns the currently selected page or NULL.

getImageList(This) -> wxImageList:wxImageList()
Types:

This = wxToolbook()
Returns the associated image list, may be NULL.

See: wxImageList, setImageList/2

getPage(This, Page) -> wxWindow:wxWindow()
Types:

This = wxToolbook()
Page = integer()

Returns the window at the given page position.

getPageCount(This) -> integer()
Types:

This = wxToolbook()
Returns the number of pages in the control.

Ericsson AB. All Rights Reserved.: wxErlang | 765

wxToolbook

getPageImage(This, NPage) -> integer()
Types:

This = wxToolbook()
NPage = integer()

Returns the image index for the given page.

getPageText(This, NPage) -> unicode:charlist()
Types:

This = wxToolbook()
NPage = integer()

Returns the string for the given page.

getSelection(This) -> integer()
Types:

This = wxToolbook()
Returns the currently selected page, or wxNOT_FOUND if none was selected.

Note that this method may return either the previously or newly selected page when
called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so
wxBookCtrlEvent:getSelection/1 should be used instead in this case.

hitTest(This, Pt) -> Result
Types:

Result = {Res :: integer(), Flags :: integer()}
This = wxToolbook()
Pt = {X :: integer(), Y :: integer()}

Returns the index of the tab at the specified position or wxNOT_FOUND if none.

If flags parameter is non-NULL, the position of the point inside the tab is returned as well.

Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the specified position.

insertPage(This, Index, Page, Text) -> boolean()
Types:

This = wxToolbook()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

insertPage(This, Index, Page, Text, Options :: [Option]) ->
 boolean()
Types:

766 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolbook

This = wxToolbook()
Index = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Inserts a new page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.

See: addPage/4

setImageList(This, ImageList) -> ok
Types:

This = wxToolbook()
ImageList = wxImageList:wxImageList()

Sets the image list to use.

It does not take ownership of the image list, you must delete it yourself.

See: wxImageList, assignImageList/2

setPageSize(This, Size) -> ok
Types:

This = wxToolbook()
Size = {W :: integer(), H :: integer()}

Sets the width and height of the pages.

Note: This method is currently not implemented for wxGTK.

setPageImage(This, Page, Image) -> boolean()
Types:

This = wxToolbook()
Page = Image = integer()

Sets the image index for the given page.

image is an index into the image list which was set with setImageList/2.

setPageText(This, Page, Text) -> boolean()
Types:

This = wxToolbook()
Page = integer()
Text = unicode:chardata()

Sets the text for the given page.

setSelection(This, Page) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 767

wxToolbook

This = wxToolbook()
Page = integer()

Sets the selection to the given page, returning the previous selection.

Notice that the call to this function generates the page changing events, use the changeSelection/2 function if
you don't want these events to be generated.

See: getSelection/1

changeSelection(This, Page) -> integer()
Types:

This = wxToolbook()
Page = integer()

Changes the selection to the given page, returning the previous selection.

This function behaves as setSelection/2 but does not generate the page changing events.

See overview_events_prog for more information.

destroy(This :: wxToolbook()) -> ok
Destroys the object.

768 | Ericsson AB. All Rights Reserved.: wxErlang

wxToolTip

wxToolTip
Erlang module

This class holds information about a tooltip associated with a window (see wxWindow:setToolTip/2).

The four static methods, enable/1, setDelay/1 wxToolTip::SetAutoPop() (not implemented in wx) and
wxToolTip::SetReshow() (not implemented in wx) can be used to globally alter tooltips behaviour.

wxWidgets docs: wxToolTip

Data Types
wxToolTip() = wx:wx_object()

Exports

enable(Flag) -> ok
Types:

Flag = boolean()
Enable or disable tooltips globally.

Note: May not be supported on all platforms (eg. wxCocoa).

setDelay(Msecs) -> ok
Types:

Msecs = integer()
Set the delay after which the tooltip appears.

Note: May not be supported on all platforms.

new(Tip) -> wxToolTip()
Types:

Tip = unicode:chardata()
Constructor.

setTip(This, Tip) -> ok
Types:

This = wxToolTip()
Tip = unicode:chardata()

Set the tooltip text.

getTip(This) -> unicode:charlist()
Types:

This = wxToolTip()
Get the tooltip text.

Ericsson AB. All Rights Reserved.: wxErlang | 769

href

wxToolTip

getWindow(This) -> wxWindow:wxWindow()
Types:

This = wxToolTip()
Get the associated window.

destroy(This :: wxToolTip()) -> ok
Destroys the object.

770 | Ericsson AB. All Rights Reserved.: wxErlang

wxTopLevelWindow

wxTopLevelWindow
Erlang module

wxTopLevelWindow is a common base class for wxDialog and wxFrame. It is an abstract base class meaning that
you never work with objects of this class directly, but all of its methods are also applicable for the two classes above.

Note that the instances of wxTopLevelWindow are managed by wxWidgets in the internal top level window list.

See: wxDialog, wxFrame

This class is derived (and can use functions) from: wxWindow wxEvtHandler

wxWidgets docs: wxTopLevelWindow

Events
Event types emitted from this class: maximize, move, show

Data Types
wxTopLevelWindow() = wx:wx_object()

Exports

getIcon(This) -> wxIcon:wxIcon()
Types:

This = wxTopLevelWindow()
Returns the standard icon of the window.

The icon will be invalid if it hadn't been previously set by setIcon/2.

See: getIcons/1

getIcons(This) -> wxIconBundle:wxIconBundle()
Types:

This = wxTopLevelWindow()
Returns all icons associated with the window, there will be none of them if neither setIcon/2 nor setIcons/2
had been called before.

Use getIcon/1 to get the main icon of the window.

See: wxIconBundle

getTitle(This) -> unicode:charlist()
Types:

This = wxTopLevelWindow()
Gets a string containing the window title.

See: setTitle/2

isActive(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 771

href

wxTopLevelWindow

This = wxTopLevelWindow()
Returns true if this window is currently active, i.e. if the user is currently working with it.

iconize(This) -> ok
Types:

This = wxTopLevelWindow()

iconize(This, Options :: [Option]) -> ok
Types:

This = wxTopLevelWindow()
Option = {iconize, boolean()}

Iconizes or restores the window.

Note that in wxGTK the change to the window state is not immediate, i.e. isIconized/1 will typically return false
right after a call to iconize/2 and its return value will only change after the control flow returns to the event loop
and the notification about the window being really iconized is received.

See: isIconized/1, Restore() (not implemented in wx), (), wxIconizeEvent

isFullScreen(This) -> boolean()
Types:

This = wxTopLevelWindow()
Returns true if the window is in fullscreen mode.

See: showFullScreen/3

isIconized(This) -> boolean()
Types:

This = wxTopLevelWindow()
Returns true if the window is iconized.

isMaximized(This) -> boolean()
Types:

This = wxTopLevelWindow()
Returns true if the window is maximized.

maximize(This) -> ok
Types:

This = wxTopLevelWindow()

maximize(This, Options :: [Option]) -> ok
Types:

This = wxTopLevelWindow()
Option = {maximize, boolean()}

Maximizes or restores the window.

Note that, just as with iconize/2, the change to the window state is not immediate in at least wxGTK port.

772 | Ericsson AB. All Rights Reserved.: wxErlang

wxTopLevelWindow

See: Restore() (not implemented in wx), iconize/2

requestUserAttention(This) -> ok
Types:

This = wxTopLevelWindow()

requestUserAttention(This, Options :: [Option]) -> ok
Types:

This = wxTopLevelWindow()
Option = {flags, integer()}

Use a system-dependent way to attract users attention to the window when it is in background.

flags may have the value of either ?wxUSER_ATTENTION_INFO (default) or ?wxUSER_ATTENTION_ERROR
which results in a more drastic action. When in doubt, use the default value.

Note: This function should normally be only used when the application is not already in foreground.

This function is currently implemented for Win32 where it flashes the window icon in the taskbar, and for wxGTK
with task bars supporting it.

setIcon(This, Icon) -> ok
Types:

This = wxTopLevelWindow()
Icon = wxIcon:wxIcon()

Sets the icon for this window.

Remark: The window takes a 'copy' of icon, but since it uses reference counting, the copy is very quick. It is safe
to delete icon after calling this function.

Note: In wxMSW, icon must be either 16x16 or 32x32 icon.

See: wxIcon, setIcons/2

setIcons(This, Icons) -> ok
Types:

This = wxTopLevelWindow()
Icons = wxIconBundle:wxIconBundle()

Sets several icons of different sizes for this window: this allows using different icons for different situations (e.g.

task switching bar, taskbar, window title bar) instead of scaling, with possibly bad looking results, the only icon set
by setIcon/2.

Note: In wxMSW, icons must contain a 16x16 or 32x32 icon, preferably both.

See: wxIconBundle

centerOnScreen(This) -> ok
Types:

This = wxTopLevelWindow()

centreOnScreen(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 773

wxTopLevelWindow

This = wxTopLevelWindow()

centerOnScreen(This, Options :: [Option]) -> ok
Types:

This = wxTopLevelWindow()
Option = {dir, integer()}

See: centreOnScreen/2.

centreOnScreen(This, Options :: [Option]) -> ok
Types:

This = wxTopLevelWindow()
Option = {dir, integer()}

Centres the window on screen.

See: wxWindow:centreOnParent/2

setShape(This, Region) -> boolean()
Types:

This = wxTopLevelWindow()
Region = wxRegion:wxRegion() | wxGraphicsPath:wxGraphicsPath()

If the platform supports it, sets the shape of the window to that depicted by region.

The system will not display or respond to any mouse event for the pixels that lie outside of the region. To reset the
window to the normal rectangular shape simply call setShape/2 again with an empty wxRegion. Returns true
if the operation is successful.

This method is available in this class only since wxWidgets 2.9.3, previous versions only provided it in
wxTopLevelWindow.

Note that windows with non default shape have a fixed size and can't be resized using wxWindow:setSize/6.

setTitle(This, Title) -> ok
Types:

This = wxTopLevelWindow()
Title = unicode:chardata()

Sets the window title.

See: getTitle/1

showFullScreen(This, Show) -> boolean()
Types:

This = wxTopLevelWindow()
Show = boolean()

showFullScreen(This, Show, Options :: [Option]) -> boolean()
Types:

774 | Ericsson AB. All Rights Reserved.: wxErlang

wxTopLevelWindow

This = wxTopLevelWindow()
Show = boolean()
Option = {style, integer()}

Depending on the value of show parameter the window is either shown full screen or restored to its normal state.

style is a bit list containing some or all of the following values, which indicate what elements of the window to
hide in full-screen mode:

This function has not been tested with MDI frames.

Note: Showing a window full screen also actually wxWindow:show/2s the window if it isn't shown.

See: EnableFullScreenView() (not implemented in wx), isFullScreen/1

Ericsson AB. All Rights Reserved.: wxErlang | 775

wxTreebook

wxTreebook
Erlang module

This class is an extension of the wxNotebook class that allows a tree structured set of pages to be shown in a control.
A classic example is a netscape preferences dialog that shows a tree of preference sections on the left and select section
page on the right.

To use the class simply create it and populate with pages using insertPage/5, insertSubPage/5,
addPage/4, AddSubPage() (not implemented in wx).

If your tree is no more than 1 level in depth then you could simply use addPage/4 and AddSubPage() (not
implemented in wx) to sequentially populate your tree by adding at every step a page or a subpage to the end of the tree.

See: ?wxBookCtrl, wxBookCtrlEvent, wxNotebook, wxTreeCtrl, wxImageList, Overview bookctrl,
Examples

This class is derived (and can use functions) from: wxBookCtrlBase wxControl wxWindow wxEvtHandler

wxWidgets docs: wxTreebook

Events
Event types emitted from this class: treebook_page_changed, treebook_page_changing

Data Types
wxTreebook() = wx:wx_object()

Exports

new() -> wxTreebook()
Default constructor.

new(Parent, Id) -> wxTreebook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxTreebook()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creates an empty wxTreebook.

destroy(This :: wxTreebook()) -> ok
Destroys the wxTreebook object.

776 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxTreebook

Also deletes all the pages owned by the control (inserted previously into it).

addPage(This, Page, Text) -> boolean()
Types:

This = wxTreebook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

addPage(This, Page, Text, Options :: [Option]) -> boolean()
Types:

This = wxTreebook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Adds a new page.

The page is placed at the topmost level after all other pages. NULL could be specified for page to create an empty page.

advanceSelection(This) -> ok
Types:

This = wxTreebook()

advanceSelection(This, Options :: [Option]) -> ok
Types:

This = wxTreebook()
Option = {forward, boolean()}

Cycles through the tabs.

The call to this function generates the page changing events.

assignImageList(This, ImageList) -> ok
Types:

This = wxTreebook()
ImageList = wxImageList:wxImageList()

Sets the image list for the page control and takes ownership of the list.

See: wxImageList, setImageList/2

create(This, Parent, Id) -> boolean()
Types:

This = wxTreebook()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 777

wxTreebook

This = wxTreebook()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Creates a treebook control.

See new/3 for the description of the parameters.

deleteAllPages(This) -> boolean()
Types:

This = wxTreebook()
Deletes all pages.

getCurrentPage(This) -> wxWindow:wxWindow()
Types:

This = wxTreebook()
Returns the currently selected page or NULL.

getImageList(This) -> wxImageList:wxImageList()
Types:

This = wxTreebook()
Returns the associated image list, may be NULL.

See: wxImageList, setImageList/2

getPage(This, Page) -> wxWindow:wxWindow()
Types:

This = wxTreebook()
Page = integer()

Returns the window at the given page position.

getPageCount(This) -> integer()
Types:

This = wxTreebook()
Returns the number of pages in the control.

getPageImage(This, NPage) -> integer()
Types:

This = wxTreebook()
NPage = integer()

Returns the image index for the given page.

778 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreebook

getPageText(This, NPage) -> unicode:charlist()
Types:

This = wxTreebook()
NPage = integer()

Returns the string for the given page.

getSelection(This) -> integer()
Types:

This = wxTreebook()
Returns the currently selected page, or wxNOT_FOUND if none was selected.

Note: This method may return either the previously or newly selected page when called
from the EVT_TREEBOOK_PAGE_CHANGED() handler depending on the platform and so
wxBookCtrlEvent:getSelection/1 should be used instead in this case.

expandNode(This, PageId) -> boolean()
Types:

This = wxTreebook()
PageId = integer()

expandNode(This, PageId, Options :: [Option]) -> boolean()
Types:

This = wxTreebook()
PageId = integer()
Option = {expand, boolean()}

Expands (collapses) the pageId node.

Returns the previous state. May generate page changing events (if selected page is under the collapsed branch, then
its parent is autoselected).

isNodeExpanded(This, PageId) -> boolean()
Types:

This = wxTreebook()
PageId = integer()

Returns true if the page represented by pageId is expanded.

hitTest(This, Pt) -> Result
Types:

Result = {Res :: integer(), Flags :: integer()}
This = wxTreebook()
Pt = {X :: integer(), Y :: integer()}

Returns the index of the tab at the specified position or wxNOT_FOUND if none.

If flags parameter is non-NULL, the position of the point inside the tab is returned as well.

Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the specified position.

Ericsson AB. All Rights Reserved.: wxErlang | 779

wxTreebook

insertPage(This, PagePos, Page, Text) -> boolean()
Types:

This = wxTreebook()
PagePos = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

insertPage(This, PagePos, Page, Text, Options :: [Option]) ->
 boolean()
Types:

This = wxTreebook()
PagePos = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Inserts a new page just before the page indicated by pagePos.

The new page is placed before pagePos page and on the same level. NULL could be specified for page to create
an empty page.

insertSubPage(This, PagePos, Page, Text) -> boolean()
Types:

This = wxTreebook()
PagePos = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

insertSubPage(This, PagePos, Page, Text, Options :: [Option]) ->
 boolean()
Types:

This = wxTreebook()
PagePos = integer()
Page = wxWindow:wxWindow()
Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageId, integer()}

Inserts a sub page under the specified page.

NULL could be specified for page to create an empty page.

setImageList(This, ImageList) -> ok
Types:

This = wxTreebook()
ImageList = wxImageList:wxImageList()

Sets the image list to use.

It does not take ownership of the image list, you must delete it yourself.

780 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreebook

See: wxImageList, assignImageList/2

setPageSize(This, Size) -> ok
Types:

This = wxTreebook()
Size = {W :: integer(), H :: integer()}

Sets the width and height of the pages.

Note: This method is currently not implemented for wxGTK.

setPageImage(This, Page, Image) -> boolean()
Types:

This = wxTreebook()
Page = Image = integer()

Sets the image index for the given page.

image is an index into the image list which was set with setImageList/2.

setPageText(This, Page, Text) -> boolean()
Types:

This = wxTreebook()
Page = integer()
Text = unicode:chardata()

Sets the text for the given page.

setSelection(This, Page) -> integer()
Types:

This = wxTreebook()
Page = integer()

Sets the selection to the given page, returning the previous selection.

Notice that the call to this function generates the page changing events, use the changeSelection/2 function if
you don't want these events to be generated.

See: wxBookCtrlBase:getSelection/1

changeSelection(This, Page) -> integer()
Types:

This = wxTreebook()
Page = integer()

Changes the selection to the given page, returning the previous selection.

This function behaves as setSelection/2 but does not generate the page changing events.

See overview_events_prog for more information.

Ericsson AB. All Rights Reserved.: wxErlang | 781

wxTreeCtrl

wxTreeCtrl
Erlang module

A tree control presents information as a hierarchy, with items that may be expanded to show further items. Items in
a tree control are referenced by wxTreeItemId (not implemented in wx) handles, which may be tested for validity
by calling wxTreeItemId::IsOk() (not implemented in wx).

A similar control with a fully native implementation for GTK+ and macOS as well is wxDataViewTreeCtrl (not
implemented in wx).

To intercept events from a tree control, use the event table macros described in wxTreeEvent.

Styles

This class supports the following styles:

See also overview_windowstyles.

Win32 notes:

wxTreeCtrl class uses the standard common treeview control under Win32 implemented in the system library
comctl32.dll. Some versions of this library are known to have bugs with handling the tree control colours:
the usual symptom is that the expanded items leave black (or otherwise incorrectly coloured) background
behind them, especially for the controls using non-default background colour. The recommended solution
is to upgrade the comctl32.dll to a newer version: see http://www.microsoft.com/downloads/details.aspx?
familyid=cb2cf3a2-8025-4e8f-8511-9b476a8d35d2

See: wxDataViewTreeCtrl (not implemented in wx), wxTreeEvent, wxTreeItemData (not implemented
in wx), Overview treectrl, wxListBox, wxListCtrl, wxImageList

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxTreeCtrl

Events
Event types emitted from this class: command_tree_begin_drag, command_tree_begin_rdrag,
command_tree_end_drag, command_tree_begin_label_edit,
command_tree_end_label_edit, command_tree_delete_item, command_tree_get_info,
command_tree_set_info, command_tree_item_activated, command_tree_item_collapsed,
command_tree_item_collapsing, command_tree_item_expanded,
command_tree_item_expanding, command_tree_item_right_click,
command_tree_item_middle_click, command_tree_sel_changed,
command_tree_sel_changing, command_tree_key_down, command_tree_item_gettooltip,
command_tree_item_menu, command_tree_state_image_click

Data Types
wxTreeCtrl() = wx:wx_object()

Exports

new() -> wxTreeCtrl()
Default Constructor.

782 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

wxTreeCtrl

new(Parent) -> wxTreeCtrl()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxTreeCtrl()
Types:

Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Constructor, creating and showing a tree control.

See: create/3, wxValidator (not implemented in wx)

destroy(This :: wxTreeCtrl()) -> ok
Destructor, destroying the tree control.

addRoot(This, Text) -> integer()
Types:

This = wxTreeCtrl()
Text = unicode:chardata()

addRoot(This, Text, Options :: [Option]) -> integer()
Types:

This = wxTreeCtrl()
Text = unicode:chardata()
Option =
 {image, integer()} |
 {selectedImage, integer()} |
 {data, term()}

Adds the root node to the tree, returning the new item.

The image and selImage parameters are an index within the normal image list specifying the image to use for
unselected and selected items, respectively. If image > -1 and selImage is -1, the same image is used for both
selected and unselected items.

appendItem(This, Parent, Text) -> integer()
Types:

This = wxTreeCtrl()
Parent = integer()
Text = unicode:chardata()

appendItem(This, Parent, Text, Options :: [Option]) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 783

wxTreeCtrl

This = wxTreeCtrl()
Parent = integer()
Text = unicode:chardata()
Option =
 {image, integer()} |
 {selectedImage, integer()} |
 {data, term()}

Appends an item to the end of the branch identified by parent, return a new item id.

The image and selImage parameters are an index within the normal image list specifying the image to use for
unselected and selected items, respectively. If image > -1 and selImage is -1, the same image is used for both
selected and unselected items.

assignImageList(This, ImageList) -> ok
Types:

This = wxTreeCtrl()
ImageList = wxImageList:wxImageList()

Sets the normal image list.

The image list assigned with this method will be automatically deleted by wxTreeCtrl as appropriate (i.e. it takes
ownership of the list).

See: setImageList/2

assignStateImageList(This, ImageList) -> ok
Types:

This = wxTreeCtrl()
ImageList = wxImageList:wxImageList()

Sets the state image list.

Image list assigned with this method will be automatically deleted by wxTreeCtrl as appropriate (i.e. it takes
ownership of the list).

See: setStateImageList/2

collapse(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Collapses the given item.

collapseAndReset(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Collapses the given item and removes all children.

784 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeCtrl

create(This, Parent) -> boolean()
Types:

This = wxTreeCtrl()
Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:

This = wxTreeCtrl()
Parent = wxWindow:wxWindow()
Option =
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}

Creates the tree control.

See new/2 for further details.

delete(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Deletes the specified item.

A EVT_TREE_DELETE_ITEM event will be generated.

This function may cause a subsequent call to getNextChild/3 to fail.

deleteAllItems(This) -> ok
Types:

This = wxTreeCtrl()
Deletes all items in the control.

This function generates wxEVT_TREE_DELETE_ITEM events for each item being deleted, including the root one if
it is shown, i.e. unless wxTR_HIDE_ROOT style is used.

deleteChildren(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Deletes all children of the given item (but not the item itself).

A wxEVT_TREE_DELETE_ITEM event will be generated for every item being deleted.

If you have called setItemHasChildren/3, you may need to call it again since deleteChildren/2 does not
automatically clear the setting.

Ericsson AB. All Rights Reserved.: wxErlang | 785

wxTreeCtrl

editLabel(This, Item) -> wxTextCtrl:wxTextCtrl()
Types:

This = wxTreeCtrl()
Item = integer()

Starts editing the label of the given item.

This function generates a EVT_TREE_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control without changes, a
EVT_TREE_END_LABEL_EDIT event will be sent which can be vetoed as well.

See: EndEditLabel() (not implemented in wx), wxTreeEvent

ensureVisible(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Scrolls and/or expands items to ensure that the given item is visible.

This method can be used, and will work, even while the window is frozen (see wxWindow:freeze/1).

expand(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Expands the given item.

getBoundingRect(This, Item) -> Result
Types:

Result =
 {Res :: boolean(),
 Rect ::
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}
This = wxTreeCtrl()
Item = integer()

getBoundingRect(This, Item, Options :: [Option]) -> Result
Types:

Result =
 {Res :: boolean(),
 Rect ::
 {X :: integer(),
 Y :: integer(),
 W :: integer(),

786 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeCtrl

 H :: integer()}}
This = wxTreeCtrl()
Item = integer()
Option = {textOnly, boolean()}

Retrieves the rectangle bounding the item.

If textOnly is true, only the rectangle around the item's label will be returned, otherwise the item's image is also
taken into account.

The return value is true if the rectangle was successfully retrieved or false if it was not (in this case rect is not
changed) - for example, if the item is currently invisible.

Notice that the rectangle coordinates are logical, not physical ones. So, for example, the x coordinate may be negative
if the tree has a horizontal scrollbar and its position is not 0.

getChildrenCount(This, Item) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()

getChildrenCount(This, Item, Options :: [Option]) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()
Option = {recursively, boolean()}

Returns the number of items in the branch.

If recursively is true, returns the total number of descendants, otherwise only one level of children is counted.

getCount(This) -> integer()
Types:

This = wxTreeCtrl()
Returns the number of items in the control.

getEditControl(This) -> wxTextCtrl:wxTextCtrl()
Types:

This = wxTreeCtrl()
Returns the edit control being currently used to edit a label.

Returns NULL if no label is being edited.

Note: This is currently only implemented for wxMSW.

getFirstChild(This, Item) -> Result
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 787

wxTreeCtrl

Result = {Res :: integer(), Cookie :: integer()}
This = wxTreeCtrl()
Item = integer()

Returns the first child; call getNextChild/3 for the next child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for the application but is necessary
for the library to make these functions reentrant (i.e. allow more than one enumeration on one and the same object
simultaneously). The cookie passed to getFirstChild/2 and getNextChild/3 should be the same variable.

Returns an invalid tree item (i.e. wxTreeItemId::IsOk() (not implemented in wx) returns false) if there are no
further children.

See: getNextChild/3, getNextSibling/2

getNextChild(This, Item, Cookie) -> Result
Types:

Result = {Res :: integer(), Cookie :: integer()}
This = wxTreeCtrl()
Item = Cookie = integer()

Returns the next child; call getFirstChild/2 for the first child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for the application but is necessary
for the library to make these functions reentrant (i.e. allow more than one enumeration on one and the same object
simultaneously). The cookie passed to getFirstChild/2 and getNextChild/3 should be the same.

Returns an invalid tree item if there are no further children.

See: getFirstChild/2

getFirstVisibleItem(This) -> integer()
Types:

This = wxTreeCtrl()
Returns the first visible item.

getImageList(This) -> wxImageList:wxImageList()
Types:

This = wxTreeCtrl()
Returns the normal image list.

getIndent(This) -> integer()
Types:

This = wxTreeCtrl()
Returns the current tree control indentation.

getItemBackgroundColour(This, Item) -> wx:wx_colour4()
Types:

788 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeCtrl

This = wxTreeCtrl()
Item = integer()

Returns the background colour of the item.

getItemData(This, Item) -> term()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the tree item data associated with the item.

See: wxTreeItemData (not implemented in wx)

getItemFont(This, Item) -> wxFont:wxFont()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the font of the item label.

If the font hadn't been explicitly set for the specified item with setItemFont/3, returns an invalid ?wxNullFont
font. wxWindow:getFont/1 can be used to retrieve the global tree control font used for the items without any
specific font.

getItemImage(This, Item) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()

getItemImage(This, Item, Options :: [Option]) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()
Option = {which, wx:wx_enum()}

Gets the specified item image.

The value of which may be:

getItemText(This, Item) -> unicode:charlist()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the item label.

getItemTextColour(This, Item) -> wx:wx_colour4()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 789

wxTreeCtrl

This = wxTreeCtrl()
Item = integer()

Returns the colour of the item label.

getLastChild(This, Item) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the last child of the item (or an invalid tree item if this item has no children).

See: getFirstChild/2, getNextSibling/2, getLastChild/2

getNextSibling(This, Item) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the next sibling of the specified item; call getPrevSibling/2 for the previous sibling.

Returns an invalid tree item if there are no further siblings.

See: getPrevSibling/2

getNextVisible(This, Item) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the next visible item or an invalid item if this item is the last visible one.

Note: The item itself must be visible.

getItemParent(This, Item) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the item's parent.

getPrevSibling(This, Item) -> integer()
Types:

This = wxTreeCtrl()
Item = integer()

Returns the previous sibling of the specified item; call getNextSibling/2 for the next sibling.

Returns an invalid tree item if there are no further children.

See: getNextSibling/2

getPrevVisible(This, Item) -> integer()
Types:

790 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeCtrl

This = wxTreeCtrl()
Item = integer()

Returns the previous visible item or an invalid item if this item is the first visible one.

Note: The item itself must be visible.

getRootItem(This) -> integer()
Types:

This = wxTreeCtrl()
Returns the root item for the tree control.

getSelection(This) -> integer()
Types:

This = wxTreeCtrl()
Returns the selection, or an invalid item if there is no selection.

This function only works with the controls without wxTR_MULTIPLE style, use getSelections/1 for the
controls which do have this style or, if a single item is wanted, use GetFocusedItem() (not implemented in wx).

getSelections(This) -> Result
Types:

Result = {Res :: integer(), Selection :: [integer()]}
This = wxTreeCtrl()

Fills the array of tree items passed in with the currently selected items.

This function can be called only if the control has the wxTR_MULTIPLE style.

Returns the number of selected items.

getStateImageList(This) -> wxImageList:wxImageList()
Types:

This = wxTreeCtrl()
Returns the state image list (from which application-defined state images are taken).

hitTest(This, Point) -> Result
Types:

Result = {Res :: integer(), Flags :: integer()}
This = wxTreeCtrl()
Point = {X :: integer(), Y :: integer()}

Calculates which (if any) item is under the given point, returning the tree item id at this point plus extra information
flags.

flags is a bitlist of the following:

insertItem(This, Parent, Previous, Text) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 791

wxTreeCtrl

This = wxTreeCtrl()
Parent = Previous = integer()
Text = unicode:chardata()

insertItem(This, Parent, Previous, Text, Options :: [Option]) ->
 integer()
Types:

This = wxTreeCtrl()
Parent = Previous = integer()
Text = unicode:chardata()
Option =
 {image, integer()} | {selImage, integer()} | {data, term()}

Inserts an item after a given one (previous).

The image and selImage parameters are an index within the normal image list specifying the image to use for
unselected and selected items, respectively. If image > -1 and selImage is -1, the same image is used for both
selected and unselected items.

isBold(This, Item) -> boolean()
Types:

This = wxTreeCtrl()
Item = integer()

Returns true if the given item is in bold state.

See: setItemBold/3

isExpanded(This, Item) -> boolean()
Types:

This = wxTreeCtrl()
Item = integer()

Returns true if the item is expanded (only makes sense if it has children).

isSelected(This, Item) -> boolean()
Types:

This = wxTreeCtrl()
Item = integer()

Returns true if the item is selected.

isVisible(This, Item) -> boolean()
Types:

This = wxTreeCtrl()
Item = integer()

Returns true if the item is visible on the screen.

792 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeCtrl

itemHasChildren(This, Item) -> boolean()
Types:

This = wxTreeCtrl()
Item = integer()

Returns true if the item has children.

isTreeItemIdOk(Item) -> boolean()
Types:

Item = integer()
Returns true if the item is valid.

prependItem(This, Parent, Text) -> integer()
Types:

This = wxTreeCtrl()
Parent = integer()
Text = unicode:chardata()

prependItem(This, Parent, Text, Options :: [Option]) -> integer()
Types:

This = wxTreeCtrl()
Parent = integer()
Text = unicode:chardata()
Option =
 {image, integer()} |
 {selectedImage, integer()} |
 {data, term()}

Appends an item as the first child of parent, return a new item id.

The image and selImage parameters are an index within the normal image list specifying the image to use for
unselected and selected items, respectively. If image > -1 and selImage is -1, the same image is used for both
selected and unselected items.

scrollTo(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Scrolls the specified item into view.

Note that this method doesn't work while the window is frozen (See wxWindow:freeze/1), at least under MSW.

See: ensureVisible/2

selectItem(This, Item) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 793

wxTreeCtrl

This = wxTreeCtrl()
Item = integer()

selectItem(This, Item, Options :: [Option]) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Option = {select, boolean()}

Selects the given item.

In multiple selection controls, can be also used to deselect a currently selected item if the value of select is false.

Notice that calling this method will generate wxEVT_TREE_SEL_CHANGING and wxEVT_TREE_SEL_CHANGED
events and that the change could be vetoed by the former event handler.

setIndent(This, Indent) -> ok
Types:

This = wxTreeCtrl()
Indent = integer()

Sets the indentation for the tree control.

setImageList(This, ImageList) -> ok
Types:

This = wxTreeCtrl()
ImageList = wxImageList:wxImageList()

Sets the normal image list.

The image list assigned with this method will not be deleted by wxTreeCtrl's destructor, you must delete it
yourself.

See: assignImageList/2

setItemBackgroundColour(This, Item, Col) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Col = wx:wx_colour()

Sets the colour of the item's background.

setItemBold(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

setItemBold(This, Item, Options :: [Option]) -> ok
Types:

794 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeCtrl

This = wxTreeCtrl()
Item = integer()
Option = {bold, boolean()}

Makes item appear in bold font if bold parameter is true or resets it to the normal state.

See: isBold/2

setItemData(This, Item, Data) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Data = term()

Sets the item client data.

Notice that the client data previously associated with the item (if any) is not freed by this function and so calling
this function multiple times for the same item will result in memory leaks unless you delete the old item data pointer
yourself.

setItemDropHighlight(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

setItemDropHighlight(This, Item, Options :: [Option]) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Option = {highlight, boolean()}

Gives the item the visual feedback for Drag'n'Drop actions, which is useful if something is dragged from the outside
onto the tree control (as opposed to a DnD operation within the tree control, which already is implemented internally).

setItemFont(This, Item, Font) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Font = wxFont:wxFont()

Sets the item's font.

All items in the tree should have the same height to avoid text clipping, so the fonts height should be the same for
all of them, although font attributes may vary.

See: setItemBold/3

setItemHasChildren(This, Item) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 795

wxTreeCtrl

This = wxTreeCtrl()
Item = integer()

setItemHasChildren(This, Item, Options :: [Option]) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Option = {has, boolean()}

Force appearance of the button next to the item.

This is useful to allow the user to expand the items which don't have any children now, but instead adding them only
when needed, thus minimizing memory usage and loading time.

setItemImage(This, Item, Image) -> ok
Types:

This = wxTreeCtrl()
Item = Image = integer()

setItemImage(This, Item, Image, Options :: [Option]) -> ok
Types:

This = wxTreeCtrl()
Item = Image = integer()
Option = {which, wx:wx_enum()}

Sets the specified item's image.

See getItemImage/3 for the description of the which parameter.

setItemText(This, Item, Text) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Text = unicode:chardata()

Sets the item label.

setItemTextColour(This, Item, Col) -> ok
Types:

This = wxTreeCtrl()
Item = integer()
Col = wx:wx_colour()

Sets the colour of the item's text.

setStateImageList(This, ImageList) -> ok
Types:

796 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeCtrl

This = wxTreeCtrl()
ImageList = wxImageList:wxImageList()

Sets the state image list (from which application-defined state images are taken).

Image list assigned with this method will not be deleted by wxTreeCtrl's destructor, you must delete it yourself.

See: assignStateImageList/2

setWindowStyle(This, Styles) -> ok
Types:

This = wxTreeCtrl()
Styles = integer()

Sets the mode flags associated with the display of the tree control.

The new mode takes effect immediately.

Note: Generic only; MSW ignores changes.

sortChildren(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Sorts the children of the given item using OnCompareItems() (not implemented in wx).

You should override that method to change the sort order (the default is ascending case-sensitive alphabetical order).

See: wxTreeItemData (not implemented in wx), OnCompareItems() (not implemented in wx)

toggle(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Toggles the given item between collapsed and expanded states.

toggleItemSelection(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Toggles the given item between selected and unselected states.

For multiselection controls only.

unselect(This) -> ok
Types:

This = wxTreeCtrl()
Removes the selection from the currently selected item (if any).

unselectAll(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 797

wxTreeCtrl

This = wxTreeCtrl()
This function either behaves the same as unselect/1 if the control doesn't have wxTR_MULTIPLE style, or
removes the selection from all items if it does have this style.

unselectItem(This, Item) -> ok
Types:

This = wxTreeCtrl()
Item = integer()

Unselects the given item.

This works in multiselection controls only.

798 | Ericsson AB. All Rights Reserved.: wxErlang

wxTreeEvent

wxTreeEvent
Erlang module

A tree event holds information about events associated with wxTreeCtrl objects.

To process input from a tree control, use these event handler macros to direct input to member functions that take a
wxTreeEvent argument.

See: wxTreeCtrl

This class is derived (and can use functions) from: wxNotifyEvent wxCommandEvent wxEvent

wxWidgets docs: wxTreeEvent

Events
Use wxEvtHandler:connect/3 with wxTreeEventType to subscribe to events of this type.

Data Types
wxTreeEvent() = wx:wx_object()
wxTree() =
 #wxTree{type = wxTreeEvent:wxTreeEventType(),
 item = integer(),
 itemOld = integer(),
 pointDrag = {X :: integer(), Y :: integer()}}
wxTreeEventType() =
 command_tree_begin_drag | command_tree_begin_rdrag |
 command_tree_begin_label_edit | command_tree_end_label_edit |
 command_tree_delete_item | command_tree_get_info |
 command_tree_set_info | command_tree_item_expanded |
 command_tree_item_expanding | command_tree_item_collapsed |
 command_tree_item_collapsing | command_tree_sel_changed |
 command_tree_sel_changing | command_tree_key_down |
 command_tree_item_activated | command_tree_item_right_click |
 command_tree_item_middle_click | command_tree_end_drag |
 command_tree_state_image_click |
 command_tree_item_gettooltip | command_tree_item_menu |
 dirctrl_selectionchanged | dirctrl_fileactivated

Exports

getKeyCode(This) -> integer()
Types:

This = wxTreeEvent()
Returns the key code if the event is a key event.

Use getKeyEvent/1 to get the values of the modifier keys for this event (i.e. Shift or Ctrl).

getItem(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 799

href

wxTreeEvent

This = wxTreeEvent()
Returns the item (valid for all events).

getKeyEvent(This) -> wxKeyEvent:wxKeyEvent()
Types:

This = wxTreeEvent()
Returns the key event for EVT_TREE_KEY_DOWN events.

getLabel(This) -> unicode:charlist()
Types:

This = wxTreeEvent()
Returns the label if the event is a begin or end edit label event.

getOldItem(This) -> integer()
Types:

This = wxTreeEvent()
Returns the old item index (valid for EVT_TREE_SEL_CHANGING and EVT_TREE_SEL_CHANGED events).

getPoint(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxTreeEvent()
Returns the position of the mouse pointer if the event is a drag or menu-context event.

In both cases the position is in client coordinates - i.e. relative to the wxTreeCtrl window (so that you can pass it
directly to e.g. wxWindow:popupMenu/4).

isEditCancelled(This) -> boolean()
Types:

This = wxTreeEvent()
Returns true if the label edit was cancelled.

This should be called from within an EVT_TREE_END_LABEL_EDIT handler.

setToolTip(This, Tooltip) -> ok
Types:

This = wxTreeEvent()
Tooltip = unicode:chardata()

Set the tooltip for the item (valid for EVT_TREE_ITEM_GETTOOLTIP events).

Windows only.

800 | Ericsson AB. All Rights Reserved.: wxErlang

wxUpdateUIEvent

wxUpdateUIEvent
Erlang module

This class is used for pseudo-events which are called by wxWidgets to give an application the chance to update various
user interface elements.

Without update UI events, an application has to work hard to check/uncheck, enable/disable, show/hide, and set the
text for elements such as menu items and toolbar buttons. The code for doing this has to be mixed up with the code
that is invoked when an action is invoked for a menu item or button.

With update UI events, you define an event handler to look at the state of the application and change UI elements
accordingly. wxWidgets will call your member functions in idle time, so you don't have to worry where to call this code.

In addition to being a clearer and more declarative method, it also means you don't have to worry whether you're
updating a toolbar or menubar identifier. The same handler can update a menu item and toolbar button, if the identifier is
the same. Instead of directly manipulating the menu or button, you call functions in the event object, such as check/2.
wxWidgets will determine whether such a call has been made, and which UI element to update.

These events will work for popup menus as well as menubars. Just before a menu is popped up, wxMenu::UpdateUI
(not implemented in wx) is called to process any UI events for the window that owns the menu.

If you find that the overhead of UI update processing is affecting your application, you can do one or both of the
following:

Note that although events are sent in idle time, defining a wxIdleEvent handler for a window does not affect this
because the events are sent from wxWindow::OnInternalIdle (not implemented in wx) which is always called
in idle time.

wxWidgets tries to optimize update events on some platforms. On Windows and GTK+, events for menubar items are
only sent when the menu is about to be shown, and not in idle time.

See: Overview events

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxUpdateUIEvent

Events
Use wxEvtHandler:connect/3 with wxUpdateUIEventType to subscribe to events of this type.

Data Types
wxUpdateUIEvent() = wx:wx_object()
wxUpdateUI() =
 #wxUpdateUI{type = wxUpdateUIEvent:wxUpdateUIEventType()}
wxUpdateUIEventType() = update_ui

Exports

canUpdate(Window) -> boolean()
Types:

Window = wxWindow:wxWindow()
Returns true if it is appropriate to update (send UI update events to) this window.

Ericsson AB. All Rights Reserved.: wxErlang | 801

href
href

wxUpdateUIEvent

This function looks at the mode used (see setMode/1), the wxWS_EX_PROCESS_UI_UPDATES flag in
window, the time update events were last sent in idle time, and the update interval, to determine whether events
should be sent to this window now. By default this will always return true because the update mode is initially
wxUPDATE_UI_PROCESS_ALL and the interval is set to 0; so update events will be sent as often as possible. You
can reduce the frequency that events are sent by changing the mode and/or setting an update interval.

See: resetUpdateTime/0, setUpdateInterval/1, setMode/1

check(This, Check) -> ok
Types:

This = wxUpdateUIEvent()
Check = boolean()

Check or uncheck the UI element.

enable(This, Enable) -> ok
Types:

This = wxUpdateUIEvent()
Enable = boolean()

Enable or disable the UI element.

show(This, Show) -> ok
Types:

This = wxUpdateUIEvent()
Show = boolean()

Show or hide the UI element.

getChecked(This) -> boolean()
Types:

This = wxUpdateUIEvent()
Returns true if the UI element should be checked.

getEnabled(This) -> boolean()
Types:

This = wxUpdateUIEvent()
Returns true if the UI element should be enabled.

getShown(This) -> boolean()
Types:

This = wxUpdateUIEvent()
Returns true if the UI element should be shown.

getSetChecked(This) -> boolean()
Types:

802 | Ericsson AB. All Rights Reserved.: wxErlang

wxUpdateUIEvent

This = wxUpdateUIEvent()
Returns true if the application has called check/2.

For wxWidgets internal use only.

getSetEnabled(This) -> boolean()
Types:

This = wxUpdateUIEvent()
Returns true if the application has called enable/2.

For wxWidgets internal use only.

getSetShown(This) -> boolean()
Types:

This = wxUpdateUIEvent()
Returns true if the application has called show/2.

For wxWidgets internal use only.

getSetText(This) -> boolean()
Types:

This = wxUpdateUIEvent()
Returns true if the application has called setText/2.

For wxWidgets internal use only.

getText(This) -> unicode:charlist()
Types:

This = wxUpdateUIEvent()
Returns the text that should be set for the UI element.

getMode() -> wx:wx_enum()
Static function returning a value specifying how wxWidgets will send update events: to all windows, or only to those
which specify that they will process the events.

See: setMode/1

getUpdateInterval() -> integer()
Returns the current interval between updates in milliseconds.

The value -1 disables updates, 0 updates as frequently as possible.

See: setUpdateInterval/1

resetUpdateTime() -> ok
Used internally to reset the last-updated time to the current time.

It is assumed that update events are normally sent in idle time, so this is called at the end of idle processing.

See: canUpdate/1, setUpdateInterval/1, setMode/1

Ericsson AB. All Rights Reserved.: wxErlang | 803

wxUpdateUIEvent

setMode(Mode) -> ok
Types:

Mode = wx:wx_enum()
Specify how wxWidgets will send update events: to all windows, or only to those which specify that they will process
the events.

setText(This, Text) -> ok
Types:

This = wxUpdateUIEvent()
Text = unicode:chardata()

Sets the text for this UI element.

setUpdateInterval(UpdateInterval) -> ok
Types:

UpdateInterval = integer()
Sets the interval between updates in milliseconds.

Set to -1 to disable updates, or to 0 to update as frequently as possible. The default is 0.

Use this to reduce the overhead of UI update events if your application has a lot of windows. If you set the value
to -1 or greater than 0, you may also need to call wxWindow:updateWindowUI/2 at appropriate points in your
application, such as when a dialog is about to be shown.

804 | Ericsson AB. All Rights Reserved.: wxErlang

wxWebViewEvent

wxWebViewEvent
Erlang module

A navigation event holds information about events associated with wxWebView objects.

Since: 2.9.3

See: wxWebView

This class is derived (and can use functions) from: wxNotifyEvent wxCommandEvent wxEvent

wxWidgets docs: wxWebViewEvent

Events
Use wxEvtHandler:connect/3 with wxWebViewEventType to subscribe to events of this type.

Data Types
wxWebViewEvent() = wx:wx_object()
wxWebView() =
 #wxWebView{type = wxWebViewEvent:wxWebViewEventType(),
 string = unicode:chardata(),
 int = integer(),
 target = unicode:chardata(),
 url = unicode:chardata()}
wxWebViewEventType() =
 webview_navigating | webview_navigated | webview_loaded |
 webview_error | webview_newwindow | webview_title_changed

Exports

getString(This) -> unicode:charlist()
Types:

This = wxWebViewEvent()
Returns item string for a listbox or choice selection event.

If one or several items have been deselected, returns the index of the first deselected item. If some items have been
selected and others deselected at the same time, it will return the index of the first selected item.

getInt(This) -> integer()
Types:

This = wxWebViewEvent()
Returns the integer identifier corresponding to a listbox, choice or radiobox selection (only if the event was a selection,
not a deselection), or a boolean value representing the value of a checkbox.

For a menu item, this method returns -1 if the item is not checkable or a boolean value (true or false) for checkable
items indicating the new state of the item.

getTarget(This) -> unicode:charlist()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 805

href

wxWebViewEvent

This = wxWebViewEvent()
Get the name of the target frame which the url of this event has been or will be loaded into.

This may return an empty string if the frame is not available.

getURL(This) -> unicode:charlist()
Types:

This = wxWebViewEvent()
Get the URL being visited.

806 | Ericsson AB. All Rights Reserved.: wxErlang

wxWebView

wxWebView
Erlang module

This control may be used to render web (HTML / CSS / javascript) documents. It is designed to allow the creation
of multiple backends for each port, although currently just one is available. It differs from wxHtmlWindow in that
each backend is actually a full rendering engine, Trident on MSW and Webkit on macOS and GTK. This allows the
correct viewing of complex pages with javascript and css.

Backend Descriptions

Par: The IE backend uses Microsoft's Trident rendering engine, specifically the version used by the locally installed
copy of Internet Explorer. As such it is only available for the MSW port. By default recent versions of the WebBrowser
control, which this backend uses, emulate Internet Explorer 7. This can be changed with a registry setting by
wxWebView::MSWSetEmulationLevel() see this article for more information. This backend has full support for
custom schemes and virtual file systems.

Par: The Edge (Chromium) backend uses Microsoft's Edge WebView2. It is available for Windows 7 and newer. The
following features are currently unsupported with this backend: virtual filesystems, custom urls, find.

This backend is not enabled by default, to build it follow these steps:

Par: Under GTK the WebKit backend uses WebKitGTK+. The current minimum version required is 1.3.1 which ships
by default with Ubuntu Natty and Debian Wheezy and has the package name libwebkitgtk-dev. Custom schemes and
virtual files systems are supported under this backend, however embedded resources such as images and stylesheets
are currently loaded using the data:// scheme.

Par: Under GTK3 the WebKit2 version of WebKitGTK+ is used. In Ubuntu the required package name is
libwebkit2gtk-4.0-dev and under Fedora it is webkitgtk4-devel. All wxWEBVIEW_WEBKIT features are supported
except for clearing and enabling / disabling the history.

Par: The macOS WebKit backend uses Apple's WebView class. This backend has full support for custom schemes
and virtual file systems.

Asynchronous Notifications

Many of the methods in wxWebView are asynchronous, i.e. they return immediately and perform their work
in the background. This includes functions such as loadURL/2 and reload/2. To receive notification
of the progress and completion of these functions you need to handle the events that are provided.
Specifically wxEVT_WEBVIEW_LOADED notifies when the page or a sub-frame has finished loading and
wxEVT_WEBVIEW_ERROR notifies that an error has occurred.

Virtual File Systems and Custom Schemes

wxWebView supports the registering of custom scheme handlers, for example file or http. To do this create a new
class which inherits from wxWebViewHandler (not implemented in wx), where wxWebHandler::GetFile() returns
a pointer to a wxFSFile (not implemented in wx) which represents the given url. You can then register your handler
with RegisterHandler() (not implemented in wx) it will be called for all pages and resources.

wxWebViewFSHandler (not implemented in wx) is provided to access the virtual file system encapsulated by
wxFileSystem (not implemented in wx). The wxMemoryFSHandler (not implemented in wx) documentation
gives an example of how this may be used.

wxWebViewArchiveHandler (not implemented in wx) is provided to allow the navigation of pages inside a zip
archive. It supports paths of the form: scheme:///C:/example/docs.zip;protocol=zip/main.htm

Since: 2.9.3

See: wxWebViewHandler (not implemented in wx), wxWebViewEvent

Ericsson AB. All Rights Reserved.: wxErlang | 807

href
href
href
href
href
href

wxWebView

This class is derived (and can use functions) from: wxControl wxWindow wxEvtHandler

wxWidgets docs: wxWebView

Events
Event types emitted from this class: webview_navigating, webview_navigated, webview_loaded,
webview_error, webview_newwindow, webview_title_changed

Data Types
wxWebView() = wx:wx_object()

Exports

new(Parent, Id) -> wxWebView()
Types:

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxWebView()
Types:

Parent = wxWindow:wxWindow()
Id = integer()
Option =
 {url, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {backend, unicode:chardata()} |
 {style, integer()}

Factory function to create a new wxWebView using a wxWebViewFactory (not implemented in wx).

Return: The created wxWebView, or NULL if the requested backend is not available

Since: 2.9.5

getCurrentTitle(This) -> unicode:charlist()
Types:

This = wxWebView()
Get the title of the current web page, or its URL/path if title is not available.

getCurrentURL(This) -> unicode:charlist()
Types:

This = wxWebView()
Get the URL of the currently displayed document.

getPageSource(This) -> unicode:charlist()
Types:

808 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWebView

This = wxWebView()
Get the HTML source code of the currently displayed document.

Return: The HTML source code, or an empty string if no page is currently shown.

getPageText(This) -> unicode:charlist()
Types:

This = wxWebView()
Get the text of the current page.

isBusy(This) -> boolean()
Types:

This = wxWebView()
Returns whether the web control is currently busy (e.g. loading a page).

isEditable(This) -> boolean()
Types:

This = wxWebView()
Returns whether the web control is currently editable.

loadURL(This, Url) -> ok
Types:

This = wxWebView()
Url = unicode:chardata()

Load a web page from a URL.

Note: Web engines generally report errors asynchronously, so if you wish to know whether loading the URL was
successful, register to receive navigation error events.

print(This) -> ok
Types:

This = wxWebView()
Opens a print dialog so that the user may print the currently displayed page.

reload(This) -> ok
Types:

This = wxWebView()

reload(This, Options :: [Option]) -> ok
Types:

This = wxWebView()
Option = {flags, wx:wx_enum()}

Reload the currently displayed URL.

Note: The flags are ignored by the edge backend.

Ericsson AB. All Rights Reserved.: wxErlang | 809

wxWebView

runScript(This, Javascript) -> Result
Types:

Result = {Res :: boolean(), Output :: unicode:charlist()}
This = wxWebView()
Javascript = unicode:chardata()

Runs the given JavaScript code.

JavaScript code is executed inside the browser control and has full access to DOM and other browser-provided
functionality. For example, this code will replace the current page contents with the provided string.

If output is non-null, it is filled with the result of executing this code on success, e.g. a JavaScript value such as a
string, a number (integer or floating point), a boolean or JSON representation for non-primitive types such as arrays
and objects. For example:

This function has a few platform-specific limitations:

Also notice that under MSW converting JavaScript objects to JSON is not supported in the default emulation mode.
wxWebView implements its own object-to-JSON conversion as a fallback for this case, however it is not as full-
featured, well-tested or performing as the implementation of this functionality in the browser control itself, so it is
recommended to use MSWSetEmulationLevel() to change emulation level to a more modern one in which JSON
conversion is done by the control itself.

Return: true if there is a result, false if there is an error.

setEditable(This) -> ok
Types:

This = wxWebView()

setEditable(This, Options :: [Option]) -> ok
Types:

This = wxWebView()
Option = {enable, boolean()}

Set the editable property of the web control.

Enabling allows the user to edit the page even if the contenteditable attribute is not set. The exact capabilities
vary with the backend being used.

setPage(This, Html, BaseUrl) -> ok
Types:

This = wxWebView()
Html = BaseUrl = unicode:chardata()

Set the displayed page source to the contents of the given string.

Note: When using wxWEBVIEW_BACKEND_IE you must wait for the current page to finish loading before calling
setPage/3. The baseURL parameter is not used in this backend and the edge backend.

stop(This) -> ok
Types:

This = wxWebView()
Stop the current page loading process, if any.

810 | Ericsson AB. All Rights Reserved.: wxErlang

wxWebView

May trigger an error event of type wxWEBVIEW_NAV_ERR_USER_CANCELLED. TODO: make
wxWEBVIEW_NAV_ERR_USER_CANCELLED errors uniform across ports.

canCopy(This) -> boolean()
Types:

This = wxWebView()
Returns true if the current selection can be copied.

Note: This always returns true on the macOS WebKit backend.

canCut(This) -> boolean()
Types:

This = wxWebView()
Returns true if the current selection can be cut.

Note: This always returns true on the macOS WebKit backend.

canPaste(This) -> boolean()
Types:

This = wxWebView()
Returns true if data can be pasted.

Note: This always returns true on the macOS WebKit backend.

copy(This) -> ok
Types:

This = wxWebView()
Copies the current selection.

cut(This) -> ok
Types:

This = wxWebView()
Cuts the current selection.

paste(This) -> ok
Types:

This = wxWebView()
Pastes the current data.

enableContextMenu(This) -> ok
Types:

This = wxWebView()

enableContextMenu(This, Options :: [Option]) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 811

wxWebView

This = wxWebView()
Option = {enable, boolean()}

Enable or disable the right click context menu.

By default the standard context menu is enabled, this method can be used to disable it or re-enable it later.

Since: 2.9.5

isContextMenuEnabled(This) -> boolean()
Types:

This = wxWebView()
Returns true if a context menu will be shown on right click.

Since: 2.9.5

canGoBack(This) -> boolean()
Types:

This = wxWebView()
Returns true if it is possible to navigate backward in the history of visited pages.

canGoForward(This) -> boolean()
Types:

This = wxWebView()
Returns true if it is possible to navigate forward in the history of visited pages.

clearHistory(This) -> ok
Types:

This = wxWebView()
Clear the history, this will also remove the visible page.

Note: This is not implemented on the WebKit2GTK+ backend.

enableHistory(This) -> ok
Types:

This = wxWebView()

enableHistory(This, Options :: [Option]) -> ok
Types:

This = wxWebView()
Option = {enable, boolean()}

Enable or disable the history.

This will also clear the history.

Note: This is not implemented on the WebKit2GTK+ backend.

goBack(This) -> ok
Types:

812 | Ericsson AB. All Rights Reserved.: wxErlang

wxWebView

This = wxWebView()
Navigate back in the history of visited pages.

Only valid if canGoBack/1 returns true.

goForward(This) -> ok
Types:

This = wxWebView()
Navigate forward in the history of visited pages.

Only valid if canGoForward/1 returns true.

clearSelection(This) -> ok
Types:

This = wxWebView()
Clears the current selection.

deleteSelection(This) -> ok
Types:

This = wxWebView()
Deletes the current selection.

Note that for wxWEBVIEW_BACKEND_WEBKIT the selection must be editable, either through SetEditable or the
correct HTML attribute.

getSelectedSource(This) -> unicode:charlist()
Types:

This = wxWebView()
Returns the currently selected source, if any.

getSelectedText(This) -> unicode:charlist()
Types:

This = wxWebView()
Returns the currently selected text, if any.

hasSelection(This) -> boolean()
Types:

This = wxWebView()
Returns true if there is a current selection.

selectAll(This) -> ok
Types:

This = wxWebView()
Selects the entire page.

Ericsson AB. All Rights Reserved.: wxErlang | 813

wxWebView

canRedo(This) -> boolean()
Types:

This = wxWebView()
Returns true if there is an action to redo.

canUndo(This) -> boolean()
Types:

This = wxWebView()
Returns true if there is an action to undo.

redo(This) -> ok
Types:

This = wxWebView()
Redos the last action.

undo(This) -> ok
Types:

This = wxWebView()
Undos the last action.

find(This, Text) -> integer()
Types:

This = wxWebView()
Text = unicode:chardata()

find(This, Text, Options :: [Option]) -> integer()
Types:

This = wxWebView()
Text = unicode:chardata()
Option = {flags, wx:wx_enum()}

Finds a phrase on the current page and if found, the control will scroll the phrase into view and select it.

Return: If search phrase was not found in combination with the flags then wxNOT_FOUND is returned. If called for
the first time with search phrase then the total number of results will be returned. Then for every time its called with
the same search phrase it will return the number of the current match.

Note: This function will restart the search if the flags wxWEBVIEW_FIND_ENTIRE_WORD or
wxWEBVIEW_FIND_MATCH_CASE are changed, since this will require a new search. To reset the search, for example
resetting the highlights call the function with an empty search phrase. This always returns wxNOT_FOUND on the
macOS WebKit backend.

Since: 2.9.5

canSetZoomType(This, Type) -> boolean()
Types:

814 | Ericsson AB. All Rights Reserved.: wxErlang

wxWebView

This = wxWebView()
Type = wx:wx_enum()

Retrieve whether the current HTML engine supports a zoom type.

Return: Whether this type of zoom is supported by this HTML engine (and thus can be set through setZoomType/2).

getZoom(This) -> wx:wx_enum()
Types:

This = wxWebView()
Get the zoom level of the page.

See getZoomFactor/1 to get more precise zoom scale value other than as provided by wxWebViewZoom.

Return: The current level of zoom.

getZoomType(This) -> wx:wx_enum()
Types:

This = wxWebView()
Get how the zoom factor is currently interpreted.

Return: How the zoom factor is currently interpreted by the HTML engine.

setZoom(This, Zoom) -> ok
Types:

This = wxWebView()
Zoom = wx:wx_enum()

Set the zoom level of the page.

See setZoomFactor/2 for more precise scaling other than the measured steps provided by wxWebViewZoom.

setZoomType(This, ZoomType) -> ok
Types:

This = wxWebView()
ZoomType = wx:wx_enum()

Set how to interpret the zoom factor.

Note: invoke canSetZoomType/2 first, some HTML renderers may not support all zoom types.

getZoomFactor(This) -> number()
Types:

This = wxWebView()
Get the zoom factor of the page.

Return: The current factor of zoom.

Since: 3.1.4

setZoomFactor(This, Zoom) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 815

wxWebView

This = wxWebView()
Zoom = number()

Set the zoom factor of the page.

Note: zoom scale in IE will be converted into wxWebViewZoom levels for wxWebViewZoomType of
wxWEBVIEW_ZOOM_TYPE_TEXT.

Since: 3.1.4

isBackendAvailable(Backend) -> boolean()
Types:

Backend = unicode:chardata()
Allows to check if a specific backend is currently available.

Since: 3.1.4

816 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindowCreateEvent

wxWindowCreateEvent
Erlang module

This event is sent just after the actual window associated with a wxWindow object has been created.

Since it is derived from wxCommandEvent, the event propagates up the window hierarchy.

See: Overview events, wxWindowDestroyEvent

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxWindowCreateEvent

Events
Use wxEvtHandler:connect/3 with wxWindowCreateEventType to subscribe to events of this type.

Data Types
wxWindowCreateEvent() = wx:wx_object()
wxWindowCreate() =
 #wxWindowCreate{type =
 wxWindowCreateEvent:wxWindowCreateEventType()}
wxWindowCreateEventType() = create

Ericsson AB. All Rights Reserved.: wxErlang | 817

href
href

wxWindowDC

wxWindowDC
Erlang module

A wxWindowDC must be constructed if an application wishes to paint on the whole area of a window (client and
decorations). This should normally be constructed as a temporary stack object; don't store a wxWindowDC object.

To draw on a window from inside an EVT_PAINT() handler, construct a wxPaintDC object instead.

To draw on the client area of a window from outside an EVT_PAINT() handler, construct a wxClientDC object.

A wxWindowDC object is initialized to use the same font and colours as the window it is associated with.

See: wxDC, wxMemoryDC, wxPaintDC, wxClientDC, wxScreenDC

This class is derived (and can use functions) from: wxDC

wxWidgets docs: wxWindowDC

Data Types
wxWindowDC() = wx:wx_object()

Exports

new(Window) -> wxWindowDC()
Types:

Window = wxWindow:wxWindow()
Constructor.

Pass a pointer to the window on which you wish to paint.

destroy(This :: wxWindowDC()) -> ok
Destroys the object.

818 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindowDestroyEvent

wxWindowDestroyEvent
Erlang module

This event is sent as early as possible during the window destruction process.

For the top level windows, as early as possible means that this is done by wxFrame or wxDialog destructor, i.e.
after the destructor of the derived class was executed and so any methods specific to the derived class can't be called
any more from this event handler. If you need to do this, you must call wxWindow::SendDestroyEvent() (not
implemented in wx) from your derived class destructor.

For the child windows, this event is generated just before deleting the window from wxWindow:'Destroy'/1
(which is also called when the parent window is deleted) or from the window destructor if operator delete was used
directly (which is not recommended for this very reason).

It is usually pointless to handle this event in the window itself but it ca be very useful to receive notifications about
the window destruction in the parent window or in any other object interested in this window.

See: Overview events, wxWindowCreateEvent

This class is derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxWindowDestroyEvent

Data Types
wxWindowDestroyEvent() = wx:wx_object()
wxWindowDestroy() =
 #wxWindowDestroy{type =
 wxWindowDestroyEvent:wxWindowDestroyEventType()}
wxWindowDestroyEventType() = destroy

Ericsson AB. All Rights Reserved.: wxErlang | 819

href
href

wxWindow

wxWindow
Erlang module

wxWindow is the base class for all windows and represents any visible object on screen. All controls, top level
windows and so on are windows. Sizers and device contexts are not, however, as they don't appear on screen
themselves.

Please note that all children of the window will be deleted automatically by the destructor before the window itself
is deleted which means that you don't have to worry about deleting them manually. Please see the window deletion
overview for more information.

Also note that in this, and many others, wxWidgets classes some GetXXX() methods may be overloaded (as, for
example, getSize/1 or getClientSize/1). In this case, the overloads are non-virtual because having multiple
virtual functions with the same name results in a virtual function name hiding at the derived class level (in English, this
means that the derived class has to override all overloaded variants if it overrides any of them). To allow overriding
them in the derived class, wxWidgets uses a unique protected virtual DoGetXXX() method and all GetXXX() ones
are forwarded to it, so overriding the former changes the behaviour of the latter.

Styles

This class supports the following styles:

Extra Styles

This class supports the following extra styles:

See: Overview events, Overview windowsizing

This class is derived (and can use functions) from: wxEvtHandler

wxWidgets docs: wxWindow

Events
Event types emitted from this class: activate, child_focus, context_menu, help,
drop_files, erase_background, set_focus, kill_focus, idle, joy_button_down,
joy_button_up, joy_move, joy_zmove, key_down, key_up, char, char_hook,
mouse_capture_lost, mouse_capture_changed, left_down, left_up, middle_down,
middle_up, right_down, right_up, motion, enter_window, leave_window, left_dclick,
middle_dclick, right_dclick, mousewheel, aux1_down, aux1_up, aux1_dclick, aux2_down,
aux2_up, aux2_dclick, paint, scrollwin_top, scrollwin_bottom, scrollwin_lineup,
scrollwin_linedown, scrollwin_pageup, scrollwin_pagedown, scrollwin_thumbtrack,
scrollwin_thumbrelease, set_cursor, size, sys_colour_changed

Data Types
wxWindow() = wx:wx_object()

Exports

new() -> wxWindow()
Default constructor.

new(Parent, Id) -> wxWindow()
Types:

820 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxWindow

Parent = wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxWindow()
Types:

Parent = wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Constructs a window, which can be a child of a frame, dialog or any other non-control window.

destroy(This :: wxWindow()) -> ok
Destructor.

Deletes all sub-windows, then deletes itself. Instead of using the delete operator explicitly, you should normally
use 'Destroy'/1 so that wxWidgets can delete a window only when it is safe to do so, in idle time.

See: Window Deletion Overview, 'Destroy'/1, wxCloseEvent

create(This, Parent, Id) -> boolean()
Types:

This = Parent = wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:

This = Parent = wxWindow()
Id = integer()
Option =
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}

Construct the actual window object after creating the C++ object.

The non-default constructor of wxWindow class does two things: it initializes the C++ object and it also creates the
window object in the underlying graphical toolkit. The create/4 method can be used to perform the second part
later, while the default constructor can be used to perform the first part only.

Please note that the underlying window must be created exactly once, i.e. if you use the default constructor, which
doesn't do this, you must call create/4 before using the window and if you use the non-default constructor, you
can not call create/4, as the underlying window is already created.

Note that it is possible and, in fact, useful, to call some methods on the object between creating the C++ object itself
and calling create/4 on it, e.g. a common pattern to avoid showing the contents of a window before it is fully
initialized is:

Also note that it is possible to create an object of a derived type and then call create/4 on it: This is notably used
by overview_xrc.

Ericsson AB. All Rights Reserved.: wxErlang | 821

wxWindow

The parameters of this method have exactly the same meaning as the non-default constructor parameters, please refer
to them for their description.

Return: true if window creation succeeded or false if it failed

cacheBestSize(This, Size) -> ok
Types:

This = wxWindow()
Size = {W :: integer(), H :: integer()}

Sets the cached best size value.

See: getBestSize/1

captureMouse(This) -> ok
Types:

This = wxWindow()
Directs all mouse input to this window.

Call releaseMouse/1 to release the capture.

Note that wxWidgets maintains the stack of windows having captured the mouse and when the mouse is released the
capture returns to the window which had had captured it previously and it is only really released if there were no
previous window. In particular, this means that you must release the mouse as many times as you capture it, unless
the window receives the wxMouseCaptureLostEvent event.

Any application which captures the mouse in the beginning of some operation must handle
wxMouseCaptureLostEvent and cancel this operation when it receives the event. The event handler must not
recapture mouse.

See: releaseMouse/1, wxMouseCaptureLostEvent

center(This) -> ok
Types:

This = wxWindow()

centre(This) -> ok
Types:

This = wxWindow()

center(This, Options :: [Option]) -> ok
Types:

This = wxWindow()
Option = {dir, integer()}

See: centre/2.

centre(This, Options :: [Option]) -> ok
Types:

822 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

This = wxWindow()
Option = {dir, integer()}

Centres the window.

Remark: If the window is a top level one (i.e. doesn't have a parent), it will be centred relative to the screen anyhow.

See: center/2

centerOnParent(This) -> ok
Types:

This = wxWindow()

centreOnParent(This) -> ok
Types:

This = wxWindow()

centerOnParent(This, Options :: [Option]) -> ok
Types:

This = wxWindow()
Option = {dir, integer()}

See: centreOnParent/2.

centreOnParent(This, Options :: [Option]) -> ok
Types:

This = wxWindow()
Option = {dir, integer()}

Centres the window on its parent.

This is a more readable synonym for centre/2.

Remark: This methods provides for a way to centre top level windows over their parents instead of the entire screen.
If there is no parent or if the window is not a top level window, then behaviour is the same as centre/2.

See: wxTopLevelWindow:centreOnScreen/2

clearBackground(This) -> ok
Types:

This = wxWindow()
Clears the window by filling it with the current background colour.

Does not cause an erase background event to be generated.

Notice that this uses wxClientDC to draw on the window and the results of doing it while also drawing on
wxPaintDC for this window are undefined. Hence this method shouldn't be used from EVT_PAINT handlers, just
use wxDC:clear/1 on the wxPaintDC you already use there instead.

clientToScreen(This, Pt) -> {X :: integer(), Y :: integer()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 823

wxWindow

This = wxWindow()
Pt = {X :: integer(), Y :: integer()}

Converts to screen coordinates from coordinates relative to this window.

clientToScreen(This, X, Y) -> {X :: integer(), Y :: integer()}
Types:

This = wxWindow()
X = Y = integer()

Converts to screen coordinates from coordinates relative to this window.

close(This) -> boolean()
Types:

This = wxWindow()

close(This, Options :: [Option]) -> boolean()
Types:

This = wxWindow()
Option = {force, boolean()}

This function simply generates a wxCloseEvent whose handler usually tries to close the window.

It doesn't close the window itself, however.

Return: true if the event was handled and not vetoed, false otherwise.

Remark: Close calls the close handler for the window, providing an opportunity for the window to choose whether to
destroy the window. Usually it is only used with the top level windows (wxFrame and wxDialog classes) as the
others are not supposed to have any special OnClose() logic. The close handler should check whether the window
is being deleted forcibly, using wxCloseEvent:canVeto/1, in which case it should destroy the window using
'Destroy'/1. Note that calling Close does not guarantee that the window will be destroyed; but it provides a way
to simulate a manual close of a window, which may or may not be implemented by destroying the window. The default
implementation of wxDialog::OnCloseWindow does not necessarily delete the dialog, since it will simply simulate
an wxID_CANCEL event which is handled by the appropriate button event handler and may do anything at all. To
guarantee that the window will be destroyed, call 'Destroy'/1 instead

See: Window Deletion Overview, 'Destroy'/1, wxCloseEvent

convertDialogToPixels(This, Sz) ->
 {W :: integer(), H :: integer()}
Types:

This = wxWindow()
Sz = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

convertPixelsToDialog(This, Sz) ->
 {W :: integer(), H :: integer()}
Types:

824 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

This = wxWindow()
Sz = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

'Destroy'(This) -> boolean()
Types:

This = wxWindow()
Destroys the window safely.

Use this function instead of the delete operator, since different window classes can be destroyed differently. Frames
and dialogs are not destroyed immediately when this function is called - they are added to a list of windows to be
deleted on idle time, when all the window's events have been processed. This prevents problems with events being
sent to non-existent windows.

Return: true if the window has either been successfully deleted, or it has been added to the list of windows pending
real deletion.

destroyChildren(This) -> boolean()
Types:

This = wxWindow()
Destroys all children of a window.

Called automatically by the destructor.

disable(This) -> boolean()
Types:

This = wxWindow()
Disables the window.

Same as enable/2 Enable(false).

Return: Returns true if the window has been disabled, false if it had been already disabled before the call to this function.

dragAcceptFiles(This, Accept) -> ok
Types:

This = wxWindow()
Accept = boolean()

Enables or disables eligibility for drop file events (OnDropFiles).

Remark: Windows only until version 2.8.9, available on all platforms since 2.8.10. Cannot be used together with
setDropTarget/2 on non-Windows platforms.

See: setDropTarget/2

enable(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 825

wxWindow

This = wxWindow()

enable(This, Options :: [Option]) -> boolean()
Types:

This = wxWindow()
Option = {enable, boolean()}

Enable or disable the window for user input.

Note that when a parent window is disabled, all of its children are disabled as well and they are re-enabled again
when the parent is.

A window can be created initially disabled by calling this method on it before calling create/4 to create the
actual underlying window, e.g.

Return: Returns true if the window has been enabled or disabled, false if nothing was done, i.e. if the window had
already been in the specified state.

See: isEnabled/1, disable/1, wxRadioBox:enable/3

findFocus() -> wxWindow()
Finds the window or control which currently has the keyboard focus.

Remark: Note that this is a static function, so it can be called without needing a wxWindow pointer.

See: setFocus/1, HasFocus() (not implemented in wx)

findWindow(This, Id) -> wxWindow()
findWindow(This, Name) -> wxWindow()
Types:

This = wxWindow()
Name = unicode:chardata()

Find a child of this window, by name.

May return this if it matches itself.

Notice that only real children, not top level windows using this window as parent, are searched by this function.

findWindowById(Id) -> wxWindow()
Types:

Id = integer()

findWindowById(Id, Options :: [Option]) -> wxWindow()
Types:

Id = integer()
Option = {parent, wxWindow()}

Find the first window with the given id.

If parent is NULL, the search will start from all top-level frames and dialog boxes; if non-NULL, the search will
be limited to the given window hierarchy. The search is recursive in both cases.

See: findWindow/2

Return: Window with the given id or NULL if not found.

826 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

findWindowByName(Name) -> wxWindow()
Types:

Name = unicode:chardata()

findWindowByName(Name, Options :: [Option]) -> wxWindow()
Types:

Name = unicode:chardata()
Option = {parent, wxWindow()}

Find a window by its name (as given in a window constructor or create/4 function call).

If parent is NULL, the search will start from all top-level frames and dialog boxes; if non-NULL, the search will
be limited to the given window hierarchy.

The search is recursive in both cases and, unlike findWindow/2, recurses into top level child windows too.

If no window with such name is found, findWindowByLabel/2 is called, i.e. the name is interpreted as (internal)
name first but if this fails, it's internal as (user-visible) label. As this behaviour may be confusing, it is usually better
to use either the findWindow/2 overload taking the name or findWindowByLabel/2 directly.

Return: Window with the given name or NULL if not found.

findWindowByLabel(Label) -> wxWindow()
Types:

Label = unicode:chardata()

findWindowByLabel(Label, Options :: [Option]) -> wxWindow()
Types:

Label = unicode:chardata()
Option = {parent, wxWindow()}

Find a window by its label.

Depending on the type of window, the label may be a window title or panel item label. If parent is NULL, the
search will start from all top-level frames and dialog boxes; if non-NULL, the search will be limited to the given
window hierarchy.

The search is recursive in both cases and, unlike with findWindow/2, recurses into top level child windows too.

See: findWindow/2

Return: Window with the given label or NULL if not found.

fit(This) -> ok
Types:

This = wxWindow()
Sizes the window to fit its best size.

Using this function is equivalent to setting window size to the return value of getBestSize/1.

Note that, unlike setSizerAndFit/3, this function only changes the current window size and doesn't change its
minimal size.

See: Overview windowsizing

Ericsson AB. All Rights Reserved.: wxErlang | 827

href

wxWindow

fitInside(This) -> ok
Types:

This = wxWindow()
Similar to fit/1, but sizes the interior (virtual) size of a window.

Mainly useful with scrolled windows to reset scrollbars after sizing changes that do not trigger a size event, and/or
scrolled windows without an interior sizer. This function similarly won't do anything if there are no subwindows.

freeze(This) -> ok
Types:

This = wxWindow()
Freezes the window or, in other words, prevents any updates from taking place on screen, the window is not redrawn
at all.

thaw/1 must be called to re-enable window redrawing. Calls to these two functions may be nested but to ensure that
the window is properly repainted again, you must thaw it exactly as many times as you froze it.

If the window has any children, they are recursively frozen too.

This method is useful for visual appearance optimization (for example, it is a good idea to use it before doing many
large text insertions in a row into a wxTextCtrl under wxGTK) but is not implemented on all platforms nor for all
controls so it is mostly just a hint to wxWidgets and not a mandatory directive.

See: wxWindowUpdateLocker (not implemented in wx), thaw/1, isFrozen/1

getAcceleratorTable(This) ->
 wxAcceleratorTable:wxAcceleratorTable()
Types:

This = wxWindow()
Gets the accelerator table for this window.

See wxAcceleratorTable.

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxWindow()
Returns the background colour of the window.

See: setBackgroundColour/2, setForegroundColour/2, getForegroundColour/1

getBackgroundStyle(This) -> wx:wx_enum()
Types:

This = wxWindow()
Returns the background style of the window.

See: setBackgroundColour/2, getForegroundColour/1, setBackgroundStyle/2,
setTransparent/2

getBestSize(This) -> {W :: integer(), H :: integer()}
Types:

828 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

This = wxWindow()
This functions returns the best acceptable minimal size for the window.

For example, for a static control, it will be the minimal size such that the control label is not truncated. For windows
containing subwindows (typically wxPanel), the size returned by this function will be the same as the size the window
would have had after calling fit/1.

Override virtual DoGetBestSize() (not implemented in wx) or, better, because it's usually more convenient,
DoGetBestClientSize() (not implemented in wx) when writing your own custom window class to change the
value returned by this public non-virtual method.

Notice that the best size respects the minimal and maximal size explicitly set for the window, if any. So even if some
window believes that it needs 200 pixels horizontally, calling setMaxSize/2 with a width of 100 would ensure that
getBestSize/1 returns the width of at most 100 pixels.

See: cacheBestSize/2, Overview windowsizing

getCaret(This) -> wxCaret:wxCaret()
Types:

This = wxWindow()
Returns the caret() associated with the window.

getCapture() -> wxWindow()
Returns the currently captured window.

See: hasCapture/1, captureMouse/1, releaseMouse/1, wxMouseCaptureLostEvent,
wxMouseCaptureChangedEvent

getCharHeight(This) -> integer()
Types:

This = wxWindow()
Returns the character height for this window.

getCharWidth(This) -> integer()
Types:

This = wxWindow()
Returns the average character width for this window.

getChildren(This) -> [wxWindow()]
Types:

This = wxWindow()
Returns a const reference to the list of the window's children.

wxWindowList is a type-safe wxList-like class whose elements are of type wxWindow*.

getClientSize(This) -> {W :: integer(), H :: integer()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 829

href

wxWindow

This = wxWindow()
This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

getContainingSizer(This) -> wxSizer:wxSizer()
Types:

This = wxWindow()
Returns the sizer of which this window is a member, if any, otherwise NULL.

getCursor(This) -> wxCursor:wxCursor()
Types:

This = wxWindow()
Return the cursor associated with this window.

See: setCursor/2

getDropTarget(This) -> wx:wx_object()
Types:

This = wxWindow()
Returns the associated drop target, which may be NULL.

See: setDropTarget/2, Overview dnd

getDPIScaleFactor(This) -> number()
Types:

This = wxWindow()
Returns the ratio of the DPI used by this window to the standard DPI.

The returned value is 1 for standard DPI screens or 2 for "200% scaling" and, unlike for
getContentScaleFactor/1, is the same under all platforms.

This factor should be used to increase the size of icons and similar windows whose best size is not based on text
metrics when using DPI scaling.

E.g. the program may load a 32px bitmap if the content scale factor is 1.0 or 64px version of the same bitmap if it
is 2.0 or bigger.

Notice that this method should not be used for window sizes expressed in pixels, as they are already scaled by this
factor by the underlying toolkit under some platforms. Use fromDIP/2 for anything window-related instead.

Since: 3.1.4

getExtraStyle(This) -> integer()
Types:

This = wxWindow()
Returns the extra style bits for the window.

getFont(This) -> wxFont:wxFont()
Types:

830 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindow

This = wxWindow()
Returns the font for this window.

See: setFont/2

getForegroundColour(This) -> wx:wx_colour4()
Types:

This = wxWindow()
Returns the foreground colour of the window.

Remark: The meaning of foreground colour varies according to the window class; it may be the text colour or other
colour, or it may not be used at all.

See: setForegroundColour/2, setBackgroundColour/2, getBackgroundColour/1

getGrandParent(This) -> wxWindow()
Types:

This = wxWindow()
Returns the grandparent of a window, or NULL if there isn't one.

getHandle(This) -> integer()
Types:

This = wxWindow()
Returns the platform-specific handle of the physical window.

Cast it to an appropriate handle, such as HWND for Windows, Widget for Motif or GtkWidget for GTK.

getHelpText(This) -> unicode:charlist()
Types:

This = wxWindow()
Gets the help text to be used as context-sensitive help for this window.

Note that the text is actually stored by the current wxHelpProvider (not implemented in wx) implementation, and
not in the window object itself.

See: setHelpText/2, GetHelpTextAtPoint() (not implemented in wx), wxHelpProvider (not
implemented in wx)

getId(This) -> integer()
Types:

This = wxWindow()
Returns the identifier of the window.

Remark: Each window has an integer identifier. If the application has not provided one (or the default wxID_ANY)
a unique identifier with a negative value will be generated.

See: setId/2, Overview windowids

getLabel(This) -> unicode:charlist()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 831

href

wxWindow

This = wxWindow()
Generic way of getting a label from any window, for identification purposes.

Remark: The interpretation of this function differs from class to class. For frames and dialogs, the value returned is
the title. For buttons or static text controls, it is the button text. This function can be useful for meta-programs (such
as testing tools or special-needs access programs) which need to identify windows by name.

getMaxSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxWindow()
Returns the maximum size of the window.

This is an indication to the sizer layout mechanism that this is the maximum possible size as well as the upper bound
on window's size settable using setSize/6.

See: GetMaxClientSize() (not implemented in wx), Overview windowsizing

getMinSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxWindow()
Returns the minimum size of the window, an indication to the sizer layout mechanism that this is the minimum required
size.

This method normally just returns the value set by setMinSize/2, but it can be overridden to do the calculation
on demand.

See: GetMinClientSize() (not implemented in wx), Overview windowsizing

getName(This) -> unicode:charlist()
Types:

This = wxWindow()
Returns the window's name.

Remark: This name is not guaranteed to be unique; it is up to the programmer to supply an appropriate name in the
window constructor or via setName/2.

See: setName/2

getParent(This) -> wxWindow()
Types:

This = wxWindow()
Returns the parent of the window, or NULL if there is no parent.

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxWindow()
This gets the position of the window in pixels, relative to the parent window for the child windows or relative to the
display origin for the top level windows.

See: getScreenPosition/1

832 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxWindow

getRect(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxWindow()
Returns the position and size of the window as a {X,Y,W,H} object.

See: getScreenRect/1

getScreenPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxWindow()
Returns the window position in screen coordinates, whether the window is a child window or a top level one.

See: getPosition/1

getScreenRect(This) ->
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Types:

This = wxWindow()
Returns the position and size of the window on the screen as a {X,Y,W,H} object.

See: getRect/1

getScrollPos(This, Orientation) -> integer()
Types:

This = wxWindow()
Orientation = integer()

Returns the built-in scrollbar position.

See: setScrollbar/6

getScrollRange(This, Orientation) -> integer()
Types:

This = wxWindow()
Orientation = integer()

Returns the built-in scrollbar range.

See: setScrollbar/6

getScrollThumb(This, Orientation) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 833

wxWindow

This = wxWindow()
Orientation = integer()

Returns the built-in scrollbar thumb size.

See: setScrollbar/6

getSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxWindow()
See the GetSize(int*,int*) overload for more info.

getSizer(This) -> wxSizer:wxSizer()
Types:

This = wxWindow()
Returns the sizer associated with the window by a previous call to setSizer/3, or NULL.

getTextExtent(This, String) -> Result
Types:

Result =
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()}
This = wxWindow()
String = unicode:chardata()

getTextExtent(This, String, Options :: [Option]) -> Result
Types:

Result =
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()}
This = wxWindow()
String = unicode:chardata()
Option = {theFont, wxFont:wxFont()}

Gets the dimensions of the string as it would be drawn on the window with the currently selected font.

The text extent is returned in the w and h pointers.

getThemeEnabled(This) -> boolean()
Types:

This = wxWindow()
Returns true if the window uses the system theme for drawing its background.

See: setThemeEnabled/2

834 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

getToolTip(This) -> wxToolTip:wxToolTip()
Types:

This = wxWindow()
Get the associated tooltip or NULL if none.

getUpdateRegion(This) -> wxRegion:wxRegion()
Types:

This = wxWindow()
Gets the dimensions of the string as it would be drawn on the window with the currently selected font.

Returns the region specifying which parts of the window have been damaged. Should only be called within an
wxPaintEvent handler.

See: wxRegion, wxRegionIterator (not implemented in wx)

getVirtualSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxWindow()
This gets the virtual size of the window in pixels.

By default it returns the client size of the window, but after a call to setVirtualSize/3 it will return the size
set with that method.

See: Overview windowsizing

getWindowStyleFlag(This) -> integer()
Types:

This = wxWindow()
Gets the window style that was passed to the constructor or create/4 method.

GetWindowStyle() (not implemented in wx) is another name for the same function.

getWindowVariant(This) -> wx:wx_enum()
Types:

This = wxWindow()
Returns the value previously passed to setWindowVariant/2.

hasCapture(This) -> boolean()
Types:

This = wxWindow()
Returns true if this window has the current mouse capture.

See: captureMouse/1, releaseMouse/1, wxMouseCaptureLostEvent,
wxMouseCaptureChangedEvent

hasScrollbar(This, Orient) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 835

href

wxWindow

This = wxWindow()
Orient = integer()

Returns true if this window currently has a scroll bar for this orientation.

This method may return false even when CanScroll() (not implemented in wx) for the same orientation returns
true, but if CanScroll() (not implemented in wx) returns false, i.e. scrolling in this direction is not enabled at all,
hasScrollbar/2 always returns false as well.

hasTransparentBackground(This) -> boolean()
Types:

This = wxWindow()
Returns true if this window background is transparent (as, for example, for wxStaticText) and should show the
parent window background.

This method is mostly used internally by the library itself and you normally shouldn't have to call it. You may, however,
have to override it in your wxWindow-derived class to ensure that background is painted correctly.

hide(This) -> boolean()
Types:

This = wxWindow()
Equivalent to calling show/2(false).

inheritAttributes(This) -> ok
Types:

This = wxWindow()
This function is (or should be, in case of custom controls) called during window creation to intelligently set up the
window visual attributes, that is the font and the foreground and background colours.

By "intelligently" the following is meant: by default, all windows use their own
GetClassDefaultAttributes() (not implemented in wx) default attributes. However if some of the parents
attributes are explicitly (that is, using setFont/2 and not setOwnFont/2) changed and if the corresponding
attribute hadn't been explicitly set for this window itself, then this window takes the same value as used by the parent.
In addition, if the window overrides shouldInheritColours/1 to return false, the colours will not be changed
no matter what and only the font might.

This rather complicated logic is necessary in order to accommodate the different usage scenarios. The most common
one is when all default attributes are used and in this case, nothing should be inherited as in modern GUIs different
controls use different fonts (and colours) than their siblings so they can't inherit the same value from the parent.
However it was also deemed desirable to allow to simply change the attributes of all children at once by just changing
the font or colour of their common parent, hence in this case we do inherit the parents attributes.

initDialog(This) -> ok
Types:

This = wxWindow()
Sends an wxEVT_INIT_DIALOG event, whose handler usually transfers data to the dialog via validators.

invalidateBestSize(This) -> ok
Types:

836 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

This = wxWindow()
Resets the cached best size value so it will be recalculated the next time it is needed.

See: cacheBestSize/2

isFrozen(This) -> boolean()
Types:

This = wxWindow()
Returns true if the window is currently frozen by a call to freeze/1.

See: freeze/1, thaw/1

isEnabled(This) -> boolean()
Types:

This = wxWindow()
Returns true if the window is enabled, i.e. if it accepts user input, false otherwise.

Notice that this method can return false even if this window itself hadn't been explicitly disabled when one of its parent
windows is disabled. To get the intrinsic status of this window, use IsThisEnabled() (not implemented in wx)

See: enable/2

isExposed(This, Pt) -> boolean()
isExposed(This, Rect) -> boolean()
Types:

This = wxWindow()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

isExposed(This, X, Y) -> boolean()
Types:

This = wxWindow()
X = Y = integer()

Returns true if the given point or rectangle area has been exposed since the last repaint.

Call this in an paint event handler to optimize redrawing by only redrawing those areas, which have been exposed.

isExposed(This, X, Y, W, H) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 837

wxWindow

This = wxWindow()
X = Y = W = H = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

isRetained(This) -> boolean()
Types:

This = wxWindow()
Returns true if the window is retained, false otherwise.

Remark: Retained windows are only available on X platforms.

isShown(This) -> boolean()
Types:

This = wxWindow()
Returns true if the window is shown, false if it has been hidden.

See: isShownOnScreen/1

isTopLevel(This) -> boolean()
Types:

This = wxWindow()
Returns true if the given window is a top-level one.

Currently all frames and dialogs are considered to be top-level windows (even if they have a parent window).

isShownOnScreen(This) -> boolean()
Types:

This = wxWindow()
Returns true if the window is physically visible on the screen, i.e. it is shown and all its parents up to the toplevel
window are shown as well.

See: isShown/1

layout(This) -> boolean()
Types:

This = wxWindow()
Lays out the children of this window using the associated sizer.

If a sizer hadn't been associated with this window (see setSizer/3), this function doesn't do anything, unless this
is a top level window (see layout/1).

Note that this method is called automatically when the window size changes if it has the associated sizer (or if
setAutoLayout/2 with true argument had been explicitly called), ensuring that it is always laid out correctly.

See: Overview windowsizing

Return: Always returns true, the return value is not useful.

838 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindow

lineDown(This) -> boolean()
Types:

This = wxWindow()
Same as scrollLines/2 (1).

lineUp(This) -> boolean()
Types:

This = wxWindow()
Same as scrollLines/2 (-1).

lower(This) -> ok
Types:

This = wxWindow()
Lowers the window to the bottom of the window hierarchy (Z-order).

Remark: This function only works for wxTopLevelWindow-derived classes.

See: raise/1

move(This, Pt) -> ok
Types:

This = wxWindow()
Pt = {X :: integer(), Y :: integer()}

move(This, X, Y) -> ok
move(This, Pt, Y :: [Option]) -> ok
Types:

This = wxWindow()
Pt = {X :: integer(), Y :: integer()}
Option = {flags, integer()}

Moves the window to the given position.

Remark: Implementations of setSize/6 can also implicitly implement the move/4 function, which is defined in
the base wxWindow class as the call:

See: setSize/6

move(This, X, Y, Options :: [Option]) -> ok
Types:

This = wxWindow()
X = Y = integer()
Option = {flags, integer()}

Moves the window to the given position.

Remark: Implementations of SetSize can also implicitly implement the move/4 function, which is defined in the base
wxWindow class as the call:

See: setSize/6

Ericsson AB. All Rights Reserved.: wxErlang | 839

wxWindow

moveAfterInTabOrder(This, Win) -> ok
Types:

This = Win = wxWindow()

Moves this window in the tab navigation order after the specified win.

This means that when the user presses TAB key on that other window, the focus switches to this window.

Default tab order is the same as creation order, this function and moveBeforeInTabOrder/2 allow to change it
after creating all the windows.

moveBeforeInTabOrder(This, Win) -> ok
Types:

This = Win = wxWindow()

Same as moveAfterInTabOrder/2 except that it inserts this window just before win instead of putting it right
after it.

navigate(This) -> boolean()
Types:

This = wxWindow()

navigate(This, Options :: [Option]) -> boolean()
Types:

This = wxWindow()
Option = {flags, integer()}

Performs a keyboard navigation action starting from this window.

This method is equivalent to calling NavigateIn() (not implemented in wx) method on the parent window.

Return: Returns true if the focus was moved to another window or false if nothing changed.

Remark: You may wish to call this from a text control custom keypress handler to do the default navigation behaviour
for the tab key, since the standard default behaviour for a multiline text control with the wxTE_PROCESS_TAB
style is to insert a tab and not navigate to the next control. See also wxNavigationKeyEvent and
HandleAsNavigationKey.

pageDown(This) -> boolean()
Types:

This = wxWindow()
Same as scrollPages/2 (1).

pageUp(This) -> boolean()
Types:

This = wxWindow()
Same as scrollPages/2 (-1).

popupMenu(This, Menu) -> boolean()
Types:

840 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

This = wxWindow()
Menu = wxMenu:wxMenu()

popupMenu(This, Menu, Options :: [Option]) -> boolean()
Types:

This = wxWindow()
Menu = wxMenu:wxMenu()
Option = {pos, {X :: integer(), Y :: integer()}}

Pops up the given menu at the specified coordinates, relative to this window, and returns control when the user has
dismissed the menu.

If a menu item is selected, the corresponding menu event is generated and will be processed as usual. If coordinates
are not specified, the current mouse cursor position is used.

menu is the menu to pop up.

The position where the menu will appear can be specified either as a {X,Y} pos or by two integers (x and y).

Note that this function switches focus to this window before showing the menu.

Remark: Just before the menu is popped up, wxMenu::UpdateUI (not implemented in wx) is called to ensure that
the menu items are in the correct state. The menu does not get deleted by the window. It is recommended to not
explicitly specify coordinates when calling PopupMenu in response to mouse click, because some of the ports (namely,
wxGTK) can do a better job of positioning the menu in that case.

See: wxMenu

popupMenu(This, Menu, X, Y) -> boolean()
Types:

This = wxWindow()
Menu = wxMenu:wxMenu()
X = Y = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

raise(This) -> ok
Types:

This = wxWindow()
Raises the window to the top of the window hierarchy (Z-order).

Notice that this function only requests the window manager to raise this window to the top of Z-order. Depending on
its configuration, the window manager may raise the window, not do it at all or indicate that a window requested to
be raised in some other way, e.g. by flashing its icon if it is minimized.

Remark: This function only works for wxTopLevelWindow-derived classes.

See: lower/1

refresh(This) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 841

wxWindow

This = wxWindow()

refresh(This, Options :: [Option]) -> ok
Types:

This = wxWindow()
Option =
 {eraseBackground, boolean()} |
 {rect,
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}

Causes this window, and all of its children recursively (except under wxGTK1 where this is not implemented), to
be repainted.

Note that repainting doesn't happen immediately but only during the next event loop iteration, if you need to update
the window immediately you should use update/1 instead.

See: refreshRect/3

refreshRect(This, Rect) -> ok
Types:

This = wxWindow()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

refreshRect(This, Rect, Options :: [Option]) -> ok
Types:

This = wxWindow()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Option = {eraseBackground, boolean()}

Redraws the contents of the given rectangle: only the area inside it will be repainted.

This is the same as refresh/2 but has a nicer syntax as it can be called with a temporary {X,Y,W,H} object as
argument like this RefreshRect(wxRect(x, y, w, h)).

releaseMouse(This) -> ok
Types:

This = wxWindow()
Releases mouse input captured with captureMouse/1.

See: captureMouse/1, hasCapture/1, releaseMouse/1, wxMouseCaptureLostEvent,
wxMouseCaptureChangedEvent

842 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

removeChild(This, Child) -> ok
Types:

This = Child = wxWindow()

Removes a child window.

This is called automatically by window deletion functions so should not be required by the application programmer.
Notice that this function is mostly internal to wxWidgets and shouldn't be called by the user code.

reparent(This, NewParent) -> boolean()
Types:

This = NewParent = wxWindow()

Reparents the window, i.e. the window will be removed from its current parent window (e.g.

a non-standard toolbar in a wxFrame) and then re-inserted into another.

Notice that currently you need to explicitly call wxBookCtrlBase:removePage/2 before reparenting a notebook
page.

screenToClient(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxWindow()
Converts from screen to client window coordinates.

screenToClient(This, Pt) -> {X :: integer(), Y :: integer()}
Types:

This = wxWindow()
Pt = {X :: integer(), Y :: integer()}

Converts from screen to client window coordinates.

scrollLines(This, Lines) -> boolean()
Types:

This = wxWindow()
Lines = integer()

Scrolls the window by the given number of lines down (if lines is positive) or up.

Return: Returns true if the window was scrolled, false if it was already on top/bottom and nothing was done.

Remark: This function is currently only implemented under MSW and wxTextCtrl under wxGTK (it also works
for wxScrolled (not implemented in wx) classes under all platforms).

See: scrollPages/2

scrollPages(This, Pages) -> boolean()
Types:

This = wxWindow()
Pages = integer()

Scrolls the window by the given number of pages down (if pages is positive) or up.

Return: Returns true if the window was scrolled, false if it was already on top/bottom and nothing was done.

Ericsson AB. All Rights Reserved.: wxErlang | 843

wxWindow

Remark: This function is currently only implemented under MSW and wxGTK.

See: scrollLines/2

scrollWindow(This, Dx, Dy) -> ok
Types:

This = wxWindow()
Dx = Dy = integer()

scrollWindow(This, Dx, Dy, Options :: [Option]) -> ok
Types:

This = wxWindow()
Dx = Dy = integer()
Option =
 {rect,
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}}

Physically scrolls the pixels in the window and move child windows accordingly.

Remark: Note that you can often use wxScrolled (not implemented in wx) instead of using this function directly.

setAcceleratorTable(This, Accel) -> ok
Types:

This = wxWindow()
Accel = wxAcceleratorTable:wxAcceleratorTable()

Sets the accelerator table for this window.

See wxAcceleratorTable.

setAutoLayout(This, AutoLayout) -> ok
Types:

This = wxWindow()
AutoLayout = boolean()

Determines whether the layout/1 function will be called automatically when the window is resized.

This method is called implicitly by setSizer/3 but if you use SetConstraints() (not implemented in wx)
you should call it manually or otherwise the window layout won't be correctly updated when its size changes.

See: setSizer/3, SetConstraints() (not implemented in wx)

setBackgroundColour(This, Colour) -> boolean()
Types:

This = wxWindow()
Colour = wx:wx_colour()

Sets the background colour of the window.

844 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

Notice that as with setForegroundColour/2, setting the background colour of a native control may not affect
the entire control and could be not supported at all depending on the control and platform.

Please see inheritAttributes/1 for explanation of the difference between this method and
setOwnBackgroundColour/2.

Remark: The background colour is usually painted by the default wxEraseEvent event handler function under
Windows and automatically under GTK. Note that setting the background colour does not cause an immediate refresh,
so you may wish to call clearBackground/1 or refresh/2 after calling this function. Using this function will
disable attempts to use themes for this window, if the system supports them. Use with care since usually the themes
represent the appearance chosen by the user to be used for all applications on the system.

Return: true if the colour was really changed, false if it was already set to this colour and nothing was done.

See: getBackgroundColour/1, setForegroundColour/2, getForegroundColour/1,
clearBackground/1, refresh/2, wxEraseEvent, wxSystemSettings

setBackgroundStyle(This, Style) -> boolean()
Types:

This = wxWindow()
Style = wx:wx_enum()

Sets the background style of the window.

The default background style is wxBG_STYLE_ERASE which indicates that the window background may be erased
in EVT_ERASE_BACKGROUND handler. This is a safe, compatibility default; however you may want to change it
to wxBG_STYLE_SYSTEM if you don't define any erase background event handlers at all, to avoid unnecessary
generation of erase background events and always let system erase the background. And you should change the
background style to wxBG_STYLE_PAINT if you define an EVT_PAINT handler which completely overwrites the
window background as in this case erasing it previously, either in EVT_ERASE_BACKGROUND handler or in the
system default handler, would result in flicker as the background pixels will be repainted twice every time the window
is redrawn. Do ensure that the background is entirely erased by your EVT_PAINT handler in this case however as
otherwise garbage may be left on screen.

Notice that in previous versions of wxWidgets a common way to work around the above mentioned flickering problem
was to define an empty EVT_ERASE_BACKGROUND handler. Setting background style to wxBG_STYLE_PAINT is
a simpler and more efficient solution to the same problem.

Under wxGTK and wxOSX, you can use ?wxBG_STYLE_TRANSPARENT to obtain full transparency of the
window background. Note that wxGTK supports this only since GTK 2.12 with a compositing manager enabled, call
IsTransparentBackgroundSupported() (not implemented in wx) to check whether this is the case.

Also, in order for SetBackgroundStyle(wxBG_STYLE_TRANSPARENT) to work, it must be called before
create/4. If you're using your own wxWindow-derived class you should write your code in the following way:

See: setBackgroundColour/2, getForegroundColour/1, setTransparent/2,
IsTransparentBackgroundSupported() (not implemented in wx)

setCaret(This, Caret) -> ok
Types:

This = wxWindow()
Caret = wxCaret:wxCaret()

Sets the caret() associated with the window.

Ericsson AB. All Rights Reserved.: wxErlang | 845

wxWindow

setClientSize(This, Size) -> ok
setClientSize(This, Rect) -> ok
Types:

This = wxWindow()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setClientSize(This, Width, Height) -> ok
Types:

This = wxWindow()
Width = Height = integer()

This sets the size of the window client area in pixels.

Using this function to size a window tends to be more device-independent than setSize/6, since the application
need not worry about what dimensions the border or title bar have when trying to fit the window around panel items,
for example.

See: Overview windowsizing

setContainingSizer(This, Sizer) -> ok
Types:

This = wxWindow()
Sizer = wxSizer:wxSizer()

Used by wxSizer internally to notify the window about being managed by the given sizer.

This method should not be called from outside the library, unless you're implementing a custom sizer class - and in
the latter case you must call this method with the pointer to the sizer itself whenever a window is added to it and with
NULL argument when the window is removed from it.

setCursor(This, Cursor) -> boolean()
Types:

This = wxWindow()
Cursor = wxCursor:wxCursor()

Sets the window's cursor.

Notice that the window cursor also sets it for the children of the window implicitly.

The cursor may be wxNullCursor in which case the window cursor will be reset back to default.

See: wx_misc:setCursor/1, wxCursor

setMaxSize(This, Size) -> ok
Types:

846 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindow

This = wxWindow()
Size = {W :: integer(), H :: integer()}

Sets the maximum size of the window, to indicate to the sizer layout mechanism that this is the maximum possible size.

See: SetMaxClientSize() (not implemented in wx), Overview windowsizing

setMinSize(This, Size) -> ok
Types:

This = wxWindow()
Size = {W :: integer(), H :: integer()}

Sets the minimum size of the window, to indicate to the sizer layout mechanism that this is the minimum required size.

You may need to call this if you change the window size after construction and before adding to its parent sizer.

Notice that calling this method doesn't prevent the program from making the window explicitly smaller than the
specified size by calling setSize/6, it just ensures that it won't become smaller than this size during the automatic
layout.

See: SetMinClientSize() (not implemented in wx), Overview windowsizing

setOwnBackgroundColour(This, Colour) -> ok
Types:

This = wxWindow()
Colour = wx:wx_colour()

Sets the background colour of the window but prevents it from being inherited by the children of this window.

See: setBackgroundColour/2, inheritAttributes/1

setOwnFont(This, Font) -> ok
Types:

This = wxWindow()
Font = wxFont:wxFont()

Sets the font of the window but prevents it from being inherited by the children of this window.

See: setFont/2, inheritAttributes/1

setOwnForegroundColour(This, Colour) -> ok
Types:

This = wxWindow()
Colour = wx:wx_colour()

Sets the foreground colour of the window but prevents it from being inherited by the children of this window.

See: setForegroundColour/2, inheritAttributes/1

setDropTarget(This, Target) -> ok
Types:

This = wxWindow()
Target = wx:wx_object()

Associates a drop target with this window.

Ericsson AB. All Rights Reserved.: wxErlang | 847

href
href

wxWindow

If the window already has a drop target, it is deleted.

See: getDropTarget/1, Overview dnd

setExtraStyle(This, ExStyle) -> ok
Types:

This = wxWindow()
ExStyle = integer()

Sets the extra style bits for the window.

The currently defined extra style bits are reported in the class description.

setFocus(This) -> ok
Types:

This = wxWindow()
This sets the window to receive keyboard input.

See: HasFocus() (not implemented in wx), wxFocusEvent, setFocus/1,
wxPanel:setFocusIgnoringChildren/1

setFocusFromKbd(This) -> ok
Types:

This = wxWindow()
This function is called by wxWidgets keyboard navigation code when the user gives the focus to this window from
keyboard (e.g. using TAB key).

By default this method simply calls setFocus/1 but can be overridden to do something in addition to this in the
derived classes.

setFont(This, Font) -> boolean()
Types:

This = wxWindow()
Font = wxFont:wxFont()

Sets the font for this window.

This function should not be called for the parent window if you don't want its font to be inherited by its children, use
setOwnFont/2 instead in this case and see inheritAttributes/1 for more explanations.

Please notice that the given font is not automatically used for wxPaintDC objects associated with this window, you
need to call wxDC:setFont/2 too. However this font is used by any standard controls for drawing their text as
well as by getTextExtent/3.

Return: true if the font was really changed, false if it was already set to this font and nothing was done.

See: getFont/1, inheritAttributes/1

setForegroundColour(This, Colour) -> boolean()
Types:

This = wxWindow()
Colour = wx:wx_colour()

Sets the foreground colour of the window.

848 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindow

The meaning of foreground colour varies according to the window class; it may be the text colour or other colour, or
it may not be used at all. Additionally, not all native controls support changing their foreground colour so this method
may change their colour only partially or even not at all.

Please see inheritAttributes/1 for explanation of the difference between this method and
setOwnForegroundColour/2.

Return: true if the colour was really changed, false if it was already set to this colour and nothing was done.

See: getForegroundColour/1, setBackgroundColour/2, getBackgroundColour/1,
shouldInheritColours/1

setHelpText(This, HelpText) -> ok
Types:

This = wxWindow()
HelpText = unicode:chardata()

Sets the help text to be used as context-sensitive help for this window.

Note that the text is actually stored by the current wxHelpProvider (not implemented in wx) implementation, and
not in the window object itself.

See: getHelpText/1, wxHelpProvider::AddHelp() (not implemented in wx)

setId(This, Winid) -> ok
Types:

This = wxWindow()
Winid = integer()

Sets the identifier of the window.

Remark: Each window has an integer identifier. If the application has not provided one, an identifier will be generated.
Normally, the identifier should be provided on creation and should not be modified subsequently.

See: getId/1, Overview windowids

setLabel(This, Label) -> ok
Types:

This = wxWindow()
Label = unicode:chardata()

Sets the window's label.

See: getLabel/1

setName(This, Name) -> ok
Types:

This = wxWindow()
Name = unicode:chardata()

Sets the window's name.

See: getName/1

setPalette(This, Pal) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 849

href

wxWindow

This = wxWindow()
Pal = wxPalette:wxPalette()

Deprecated: use wxDC:setPalette/2 instead.

setScrollbar(This, Orientation, Position, ThumbSize, Range) -> ok
Types:

This = wxWindow()
Orientation = Position = ThumbSize = Range = integer()

setScrollbar(This, Orientation, Position, ThumbSize, Range,
 Options :: [Option]) ->
 ok
Types:

This = wxWindow()
Orientation = Position = ThumbSize = Range = integer()
Option = {refresh, boolean()}

Sets the scrollbar properties of a built-in scrollbar.

Remark: Let's say you wish to display 50 lines of text, using the same font. The window is sized so that you can only
see 16 lines at a time. You would use: Note that with the window at this size, the thumb position can never go above
50 minus 16, or 34. You can determine how many lines are currently visible by dividing the current view size by
the character height in pixels. When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar calculations and SetScrollbar
call into a function named AdjustScrollbars, which can be called initially and also from your wxSizeEvent handler
function.

See: Overview scrolling, wxScrollBar, wxScrolled (not implemented in wx), wxScrollWinEvent

setScrollPos(This, Orientation, Pos) -> ok
Types:

This = wxWindow()
Orientation = Pos = integer()

setScrollPos(This, Orientation, Pos, Options :: [Option]) -> ok
Types:

This = wxWindow()
Orientation = Pos = integer()
Option = {refresh, boolean()}

Sets the position of one of the built-in scrollbars.

Remark: This function does not directly affect the contents of the window: it is up to the application to take note of
scrollbar attributes and redraw contents accordingly.

See: setScrollbar/6, getScrollPos/2, getScrollThumb/2, wxScrollBar, wxScrolled (not
implemented in wx)

850 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindow

setSize(This, Rect) -> ok
setSize(This, Size) -> ok
Types:

This = wxWindow()
Size = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setSize(This, Width, Height) -> ok
setSize(This, Rect, Height :: [Option]) -> ok
Types:

This = wxWindow()
Rect =
 {X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer()}
Option = {sizeFlags, integer()}

Sets the size of the window in pixels.

The size is specified using a {X,Y,W,H}, {Width,Height} or by a couple of int objects.

Remark: This form must be used with non-default width and height values.

See: move/4, Overview windowsizing

setSize(This, X, Y, Width, Height) -> ok
Types:

This = wxWindow()
X = Y = Width = Height = integer()

setSize(This, X, Y, Width, Height, Options :: [Option]) -> ok
Types:

This = wxWindow()
X = Y = Width = Height = integer()
Option = {sizeFlags, integer()}

Sets the size of the window in pixels.

Remark: This overload sets the position and optionally size, of the window. Parameters may be wxDefaultCoord to
indicate either that a default should be supplied by wxWidgets, or that the current value of the dimension should be
used.

See: move/4, Overview windowsizing

setSizeHints(This, MinSize) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 851

href
href

wxWindow

This = wxWindow()
MinSize = {W :: integer(), H :: integer()}

setSizeHints(This, MinW, MinH) -> ok
setSizeHints(This, MinSize, MinH :: [Option]) -> ok
Types:

This = wxWindow()
MinSize = {W :: integer(), H :: integer()}
Option =
 {maxSize, {W :: integer(), H :: integer()}} |
 {incSize, {W :: integer(), H :: integer()}}

Use of this function for windows which are not toplevel windows (such as wxDialog or wxFrame) is discouraged.

Please use setMinSize/2 and setMaxSize/2 instead.

See: setSizeHints/4, Overview windowsizing

setSizeHints(This, MinW, MinH, Options :: [Option]) -> ok
Types:

This = wxWindow()
MinW = MinH = integer()
Option =
 {maxW, integer()} |
 {maxH, integer()} |
 {incW, integer()} |
 {incH, integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setSizer(This, Sizer) -> ok
Types:

This = wxWindow()
Sizer = wxSizer:wxSizer()

setSizer(This, Sizer, Options :: [Option]) -> ok
Types:

This = wxWindow()
Sizer = wxSizer:wxSizer()
Option = {deleteOld, boolean()}

Sets the window to have the given layout sizer.

The window will then own the object, and will take care of its deletion. If an existing layout constraints object is
already owned by the window, it will be deleted if the deleteOld parameter is true.

Note that this function will also call setAutoLayout/2 implicitly with true parameter if the sizer is non-NULL
and false otherwise so that the sizer will be effectively used to layout the window children whenever it is resized.

Remark: SetSizer enables and disables Layout automatically.

852 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindow

setSizerAndFit(This, Sizer) -> ok
Types:

This = wxWindow()
Sizer = wxSizer:wxSizer()

setSizerAndFit(This, Sizer, Options :: [Option]) -> ok
Types:

This = wxWindow()
Sizer = wxSizer:wxSizer()
Option = {deleteOld, boolean()}

Associate the sizer with the window and set the window size and minimal size accordingly.

This method calls setSizer/3 and then wxSizer:setSizeHints/2 which sets the initial window size to the
size needed to accommodate all sizer elements and sets the minimal size to the same size, this preventing the user
from resizing this window to be less than this minimal size (if it's a top-level window which can be directly resized
by the user).

setThemeEnabled(This, Enable) -> ok
Types:

This = wxWindow()
Enable = boolean()

This function tells a window if it should use the system's "theme" code to draw the windows' background instead of
its own background drawing code.

This does not always have any effect since the underlying platform obviously needs to support the notion of themes
in user defined windows. One such platform is GTK+ where windows can have (very colourful) backgrounds defined
by a user's selected theme.

Dialogs, notebook pages and the status bar have this flag set to true by default so that the default look and feel is
simulated best.

See: getThemeEnabled/1

setToolTip(This, TipString) -> ok
setToolTip(This, Tip) -> ok
Types:

This = wxWindow()
Tip = wxToolTip:wxToolTip()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setVirtualSize(This, Size) -> ok
Types:

This = wxWindow()
Size = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

Ericsson AB. All Rights Reserved.: wxErlang | 853

wxWindow

setVirtualSize(This, Width, Height) -> ok
Types:

This = wxWindow()
Width = Height = integer()

Sets the virtual size of the window in pixels.

See: Overview windowsizing

setWindowStyle(This, Style) -> ok
Types:

This = wxWindow()
Style = integer()

See setWindowStyleFlag/2 for more info.

setWindowStyleFlag(This, Style) -> ok
Types:

This = wxWindow()
Style = integer()

Sets the style of the window.

Please note that some styles cannot be changed after the window creation and that refresh/2 might need to be
called after changing the others for the change to take place immediately.

See Window styles for more information about flags.

See: getWindowStyleFlag/1

setWindowVariant(This, Variant) -> ok
Types:

This = wxWindow()
Variant = wx:wx_enum()

Chooses a different variant of the window display to use.

Window variants currently just differ in size, as can be seen from ?wxWindowVariant documentation. Under all
platforms but macOS, this function does nothing more than change the font used by the window. However under
macOS it is implemented natively and selects the appropriate variant of the native widget, which has better appearance
than just scaled down or up version of the normal variant, so it should be preferred to directly tweaking the font size.

By default the controls naturally use the normal variant.

shouldInheritColours(This) -> boolean()
Types:

This = wxWindow()
Return true from here to allow the colours of this window to be changed by inheritAttributes/1.

Returning false forbids inheriting them from the parent window.

The base class version returns false, but this method is overridden in wxControl where it returns true.

854 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxWindow

show(This) -> boolean()
Types:

This = wxWindow()

show(This, Options :: [Option]) -> boolean()
Types:

This = wxWindow()
Option = {show, boolean()}

Shows or hides the window.

You may need to call raise/1 for a top level window if you want to bring it to top, although this is not needed if
show/2 is called immediately after the frame creation.

Notice that the default state of newly created top level windows is hidden (to allow you to create their contents without
flicker) unlike for all the other, not derived from wxTopLevelWindow, windows that are by default created in the
shown state.

Return: true if the window has been shown or hidden or false if nothing was done because it already was in the
requested state.

See: isShown/1, hide/1, wxRadioBox:show/3, wxShowEvent

thaw(This) -> ok
Types:

This = wxWindow()
Re-enables window updating after a previous call to freeze/1.

To really thaw the control, it must be called exactly the same number of times as freeze/1.

If the window has any children, they are recursively thawed too.

See: wxWindowUpdateLocker (not implemented in wx), freeze/1, isFrozen/1

transferDataFromWindow(This) -> boolean()
Types:

This = wxWindow()
Transfers values from child controls to data areas specified by their validators.

Returns false if a transfer failed.

Notice that this also calls transferDataFromWindow/1 for all children recursively.

See: transferDataToWindow/1, wxValidator (not implemented in wx), validate/1

transferDataToWindow(This) -> boolean()
Types:

This = wxWindow()
Transfers values to child controls from data areas specified by their validators.

Notice that this also calls transferDataToWindow/1 for all children recursively.

Return: Returns false if a transfer failed.

See: transferDataFromWindow/1, wxValidator (not implemented in wx), validate/1

Ericsson AB. All Rights Reserved.: wxErlang | 855

wxWindow

update(This) -> ok
Types:

This = wxWindow()
Calling this method immediately repaints the invalidated area of the window and all of its children recursively (this
normally only happens when the flow of control returns to the event loop).

Notice that this function doesn't invalidate any area of the window so nothing happens if nothing has been
invalidated (i.e. marked as requiring a redraw). Use refresh/2 first if you want to immediately redraw the window
unconditionally.

updateWindowUI(This) -> ok
Types:

This = wxWindow()

updateWindowUI(This, Options :: [Option]) -> ok
Types:

This = wxWindow()
Option = {flags, integer()}

This function sends one or more wxUpdateUIEvent to the window.

The particular implementation depends on the window; for example a wxToolBar will send an update UI event for
each toolbar button, and a wxFrame will send an update UI event for each menubar menu item.

You can call this function from your application to ensure that your UI is up-to-date at this point (as
far as your wxUpdateUIEvent handlers are concerned). This may be necessary if you have called
wxUpdateUIEvent:setMode/1 or wxUpdateUIEvent:setUpdateInterval/1 to limit the overhead
that wxWidgets incurs by sending update UI events in idle time. flags should be a bitlist of one or more of the ?
wxUpdateUI enumeration.

If you are calling this function from an OnInternalIdle or OnIdle function, make sure you pass the
wxUPDATE_UI_FROMIDLE flag, since this tells the window to only update the UI elements that need to be updated
in idle time. Some windows update their elements only when necessary, for example when a menu is about to be
shown. The following is an example of how to call UpdateWindowUI from an idle function.

See: wxUpdateUIEvent, DoUpdateWindowUI() (not implemented in wx), OnInternalIdle() (not
implemented in wx)

validate(This) -> boolean()
Types:

This = wxWindow()
Validates the current values of the child controls using their validators.

Notice that this also calls validate/1 for all children recursively.

Return: Returns false if any of the validations failed.

See: transferDataFromWindow/1, transferDataToWindow/1, wxValidator (not implemented in wx)

warpPointer(This, X, Y) -> ok
Types:

856 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

This = wxWindow()
X = Y = integer()

Moves the pointer to the given position on the window.

Note: Apple Human Interface Guidelines forbid moving the mouse cursor programmatically so you should avoid using
this function in Mac applications (and probably avoid using it under the other platforms without good reason as well).

setTransparent(This, Alpha) -> boolean()
Types:

This = wxWindow()
Alpha = integer()

Set the transparency of the window.

If the system supports transparent windows, returns true, otherwise returns false and the window remains fully opaque.
See also canSetTransparent/1.

The parameter alpha is in the range 0..255 where 0 corresponds to a fully transparent window and 255 to the fully
opaque one. The constants wxIMAGE_ALPHA_TRANSPARENT and wxIMAGE_ALPHA_OPAQUE can be used.

canSetTransparent(This) -> boolean()
Types:

This = wxWindow()
Returns true if the system supports transparent windows and calling setTransparent/2 may succeed.

If this function returns false, transparent windows are definitely not supported by the current system.

isDoubleBuffered(This) -> boolean()
Types:

This = wxWindow()
Returns true if the window contents is double-buffered by the system, i.e. if any drawing done on the window is really
done on a temporary backing surface and transferred to the screen all at once later.

See: wxBufferedDC

setDoubleBuffered(This, On) -> ok
Types:

This = wxWindow()
On = boolean()

Turn on or off double buffering of the window if the system supports it.

getContentScaleFactor(This) -> number()
Types:

This = wxWindow()
Returns the factor mapping logical pixels of this window to physical pixels.

This function can be used to portably determine the number of physical pixels in a window of the given size, by
multiplying the window size by the value returned from it. I.e. it returns the factor converting window coordinates to
"content view" coordinates, where the view can be just a simple window displaying a wxBitmap or wxGLCanvas
or any other kind of window rendering arbitrary "content" on screen.

Ericsson AB. All Rights Reserved.: wxErlang | 857

wxWindow

For the platforms not doing any pixel mapping, i.e. where logical and physical pixels are one and the same, this function
always returns 1.0 and so using it is, in principle, unnecessary and could be avoided by using preprocessor check for
wxHAVE_DPI_INDEPENDENT_PIXELS not being defined, however using this function unconditionally under all
platforms is usually simpler and so preferable.

Note: Current behaviour of this function is compatible with wxWidgets 3.0, but different from its behaviour in versions
3.1.0 to 3.1.3, where it returned the same value as getDPIScaleFactor/1. Please use the other function if you
need to use a scaling factor greater than 1.0 even for the platforms without wxHAVE_DPI_INDEPENDENT_PIXELS,
such as wxMSW.

Since: 2.9.5

getDPI(This) -> {W :: integer(), H :: integer()}
Types:

This = wxWindow()
Return the DPI of the display used by this window.

The returned value can be different for different windows on systems with support for per-monitor DPI values, such
as Microsoft Windows 10.

If the DPI is not available, returns {Width,Height} object.

See: wxDisplay:getPPI/1, wxDPIChangedEvent (not implemented in wx)

Since: 3.1.3

fromDIP(D, W) -> integer()
fromDIP(Sz, W) -> {W :: integer(), H :: integer()}
fromDIP(This, D) -> integer()
fromDIP(This, Sz) -> {W :: integer(), H :: integer()}
Types:

This = wxWindow()
Sz = {W :: integer(), H :: integer()}

Convert DPI-independent pixel values to the value in pixels appropriate for the current toolkit.

A DPI-independent pixel is just a pixel at the standard 96 DPI resolution. To keep the same physical size at higher
resolution, the physical pixel value must be scaled by getDPIScaleFactor/1 but this scaling may be already
done by the underlying toolkit (GTK+, Cocoa, ...) automatically. This method performs the conversion only if it is
not already done by the lower level toolkit and so by using it with pixel values you can guarantee that the physical
size of the corresponding elements will remain the same in all resolutions under all platforms. For example, instead of
creating a bitmap of the hard coded size of 32 pixels you should use to avoid using tiny bitmaps on high DPI screens.

Notice that this function is only needed when using hard coded pixel values. It is not necessary if the sizes are already
based on the DPI-independent units such as dialog units or if you are relying on the controls automatic best size
determination and using sizers to lay out them.

Also note that if either component of sz has the special value of -1, it is returned unchanged independently of the
current DPI, to preserve the special value of -1 in wxWidgets API (it is often used to mean "unspecified").

Since: 3.1.0

858 | Ericsson AB. All Rights Reserved.: wxErlang

wxWindow

toDIP(D, W) -> integer()
toDIP(Sz, W) -> {W :: integer(), H :: integer()}
toDIP(This, D) -> integer()
toDIP(This, Sz) -> {W :: integer(), H :: integer()}
Types:

This = wxWindow()
Sz = {W :: integer(), H :: integer()}

Convert pixel values of the current toolkit to DPI-independent pixel values.

A DPI-independent pixel is just a pixel at the standard 96 DPI resolution. To keep the same physical size at higher
resolution, the physical pixel value must be scaled by getDPIScaleFactor/1 but this scaling may be already
done by the underlying toolkit (GTK+, Cocoa, ...) automatically. This method performs the conversion only if it is not
already done by the lower level toolkit, For example, you may want to use this to store window sizes and positions
so that they can be re-used regardless of the display DPI:

Also note that if either component of sz has the special value of -1, it is returned unchanged independently of the
current DPI, to preserve the special value of -1 in wxWidgets API (it is often used to mean "unspecified").

Since: 3.1.0

Ericsson AB. All Rights Reserved.: wxErlang | 859

wxXmlResource

wxXmlResource
Erlang module

This is the main class for interacting with the XML-based resource system.

The class holds XML resources from one or more .xml files, binary files or zip archive files.

Note that this is a singleton class and you'll never allocate/deallocate it. Just use the static get/0 getter.

See: Overview xrc, Overview xrcformat

wxWidgets docs: wxXmlResource

Data Types
wxXmlResource() = wx:wx_object()

Exports

new() -> wxXmlResource()

new(Options :: [Option]) -> wxXmlResource()
Types:

Option = {flags, integer()} | {domain, unicode:chardata()}
Constructor.

new(Filemask, Options :: [Option]) -> wxXmlResource()
Types:

Filemask = unicode:chardata()
Option = {flags, integer()} | {domain, unicode:chardata()}

Constructor.

destroy(This :: wxXmlResource()) -> ok
Destructor.

attachUnknownControl(This, Name, Control) -> boolean()
Types:

This = wxXmlResource()
Name = unicode:chardata()
Control = wxWindow:wxWindow()

attachUnknownControl(This, Name, Control, Options :: [Option]) ->
 boolean()
Types:

860 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxXmlResource

This = wxXmlResource()
Name = unicode:chardata()
Control = wxWindow:wxWindow()
Option = {parent, wxWindow:wxWindow()}

Attaches an unknown control to the given panel/window/dialog.

Unknown controls are used in conjunction with <object class="unknown">.

clearHandlers(This) -> ok
Types:

This = wxXmlResource()
Removes all handlers and deletes them (this means that any handlers added using AddHandler() (not implemented
in wx) must be allocated on the heap).

compareVersion(This, Major, Minor, Release, Revision) -> integer()
Types:

This = wxXmlResource()
Major = Minor = Release = Revision = integer()

Compares the XRC version to the argument.

Returns -1 if the XRC version is less than the argument, +1 if greater, and 0 if they are equal.

get() -> wxXmlResource()
Gets the global resources object or creates one if none exists.

getFlags(This) -> integer()
Types:

This = wxXmlResource()
Returns flags, which may be a bitlist of ?wxXmlResourceFlags enumeration values.

getVersion(This) -> integer()
Types:

This = wxXmlResource()
Returns version information (a.b.c.d = d + 256*c + 2562*b + 2563*a).

getXRCID(Str_id) -> integer()
Types:

Str_id = unicode:chardata()

getXRCID(Str_id, Options :: [Option]) -> integer()
Types:

Str_id = unicode:chardata()
Option = {value_if_not_found, integer()}

Returns a numeric ID that is equivalent to the string ID used in an XML resource.

Ericsson AB. All Rights Reserved.: wxErlang | 861

wxXmlResource

If an unknown str_id is requested (i.e. other than wxID_XXX or integer), a new record is created which associates
the given string with a number.

If value_if_not_found is wxID_NONE, the number is obtained via wx_misc:newId/0. Otherwise
value_if_not_found is used.

Macro XRCID(name) is provided for convenient use in event tables.

Note: IDs returned by XRCID() cannot be used with the EVT_*_RANGE macros, because the order in which they are
assigned to symbolic name values is not guaranteed.

initAllHandlers(This) -> ok
Types:

This = wxXmlResource()
Initializes handlers for all supported controls/windows.

This will make the executable quite big because it forces linking against most of the wxWidgets library.

load(This, Filemask) -> boolean()
Types:

This = wxXmlResource()
Filemask = unicode:chardata()

Loads resources from XML files that match given filemask.

Example:

Note: If wxUSE_FILESYS is enabled, this method understands wxFileSystem (not implemented in wx) URLs
(see wxFileSystem::FindFirst() (not implemented in wx)).

Note: If you are sure that the argument is name of single XRC file (rather than an URL or a wildcard), use
LoadFile() (not implemented in wx) instead.

See: LoadFile() (not implemented in wx), LoadAllFiles() (not implemented in wx)

loadBitmap(This, Name) -> wxBitmap:wxBitmap()
Types:

This = wxXmlResource()
Name = unicode:chardata()

Loads a bitmap resource from a file.

loadDialog(This, Parent, Name) -> wxDialog:wxDialog()
Types:

This = wxXmlResource()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads a dialog.

parent points to parent window (if any).

loadDialog(This, Dlg, Parent, Name) -> boolean()
Types:

862 | Ericsson AB. All Rights Reserved.: wxErlang

wxXmlResource

This = wxXmlResource()
Dlg = wxDialog:wxDialog()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads a dialog.

parent points to parent window (if any).

This form is used to finish creation of an already existing instance (the main reason for this is that you may want to
use derived class with a new event table). Example:

loadFrame(This, Parent, Name) -> wxFrame:wxFrame()
Types:

This = wxXmlResource()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads a frame from the resource.

parent points to parent window (if any).

loadFrame(This, Frame, Parent, Name) -> boolean()
Types:

This = wxXmlResource()
Frame = wxFrame:wxFrame()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads the contents of a frame onto an existing wxFrame.

This form is used to finish creation of an already existing instance (the main reason for this is that you may want to
use derived class with a new event table).

loadIcon(This, Name) -> wxIcon:wxIcon()
Types:

This = wxXmlResource()
Name = unicode:chardata()

Loads an icon resource from a file.

loadMenu(This, Name) -> wxMenu:wxMenu()
Types:

This = wxXmlResource()
Name = unicode:chardata()

Loads menu from resource.

Returns NULL on failure.

loadMenuBar(This, Name) -> wxMenuBar:wxMenuBar()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 863

wxXmlResource

This = wxXmlResource()
Name = unicode:chardata()

loadMenuBar(This, Parent, Name) -> wxMenuBar:wxMenuBar()
Types:

This = wxXmlResource()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads a menubar from resource.

Returns NULL on failure.

loadPanel(This, Parent, Name) -> wxPanel:wxPanel()
Types:

This = wxXmlResource()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads a panel.

parent points to the parent window.

loadPanel(This, Panel, Parent, Name) -> boolean()
Types:

This = wxXmlResource()
Panel = wxPanel:wxPanel()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads a panel.

parent points to the parent window. This form is used to finish creation of an already existing instance.

loadToolBar(This, Parent, Name) -> wxToolBar:wxToolBar()
Types:

This = wxXmlResource()
Parent = wxWindow:wxWindow()
Name = unicode:chardata()

Loads a toolbar.

set(Res) -> wxXmlResource()
Types:

Res = wxXmlResource()
Sets the global resources object and returns a pointer to the previous one (may be NULL).

setFlags(This, Flags) -> ok
Types:

864 | Ericsson AB. All Rights Reserved.: wxErlang

wxXmlResource

This = wxXmlResource()
Flags = integer()

Sets flags (bitlist of ?wxXmlResourceFlags enumeration values).

unload(This, Filename) -> boolean()
Types:

This = wxXmlResource()
Filename = unicode:chardata()

This function unloads a resource previously loaded by load/2.

Returns true if the resource was successfully unloaded and false if it hasn't been found in the list of loaded resources.

xrcctrl(Window, Name, Type) -> wx:wx_object()
Types:

Window = wxWindow:wxWindow()
Name = string()
Type = atom()

Looks up a control.

Get a control with Name in a window created with XML resources. You can use it to set/get values from controls.
The object is type casted to Type. Example:

Ericsson AB. All Rights Reserved.: wxErlang | 865

wx_misc

wx_misc
Erlang module

Miscellaneous functions.

Exports

displaySize() -> {Width :: integer(), Height :: integer()}
Returns the display size in pixels.

Note: Use of this function is not recommended in the new code as it only works for the primary display. Use
wxDisplay:getGeometry/1 to retrieve the size of the appropriate display instead.

Either of output pointers can be NULL if the caller is not interested in the corresponding value.

See: wxGetDisplaySize() (not implemented in wx), wxDisplay

setCursor(Cursor) -> ok
Types:

Cursor = wxCursor:wxCursor()
Globally sets the cursor; only has an effect on Windows, Mac and GTK+.

You should call this function with wxNullCursor to restore the system cursor.

See: wxCursor, wxWindow:setCursor/2

getKeyState(Key) -> boolean()
Types:

Key = wx:wx_enum()
For normal keys, returns true if the specified key is currently down.

For togglable keys (Caps Lock, Num Lock and Scroll Lock), returns true if the key is toggled such that its LED
indicator is lit. There is currently no way to test whether togglable keys are up or down.

Even though there are virtual key codes defined for mouse buttons, they cannot be used with this function currently.

In wxGTK, this function can be only used with modifier keys (WXK_ALT, WXK_CONTROL and WXK_SHIFT) when
not using X11 backend currently.

getMousePosition() -> {X :: integer(), Y :: integer()}
Returns the mouse position in screen coordinates.

getMouseState() -> wx:wx_wxMouseState()
Returns the current state of the mouse.

Returns a wx_wxMouseState() instance that contains the current position of the mouse pointer in screen
coordinates, as well as boolean values indicating the up/down status of the mouse buttons and the modifier keys.

setDetectableAutoRepeat(Flag) -> boolean()
Types:

866 | Ericsson AB. All Rights Reserved.: wxErlang

wx_misc

Flag = boolean()
Don't synthesize KeyUp events holding down a key and producing KeyDown events with autorepeat.

On by default and always on in wxMSW.

bell() -> ok
Ring the system bell.

Note: This function is categorized as a GUI one and so is not thread-safe.

findMenuItemId(Frame, MenuString, ItemString) -> integer()
Types:

Frame = wxFrame:wxFrame()
MenuString = ItemString = unicode:chardata()

Find a menu item identifier associated with the given frame's menu bar.

findWindowAtPoint(Pt) -> wxWindow:wxWindow()
Types:

Pt = {X :: integer(), Y :: integer()}
Find the deepest window at the given mouse position in screen coordinates, returning the window if found, or NULL
if not.

This function takes child windows at the given position into account even if they are disabled. The hidden children
are however skipped by it.

beginBusyCursor() -> ok

beginBusyCursor(Options :: [Option]) -> ok
Types:

Option = {cursor, wxCursor:wxCursor()}
Changes the cursor to the given cursor for all windows in the application.

Use endBusyCursor/0 to revert the cursor back to its previous state. These two calls can be nested, and a counter
ensures that only the outer calls take effect.

See: isBusy/0, wxBusyCursor (not implemented in wx)

endBusyCursor() -> ok
Changes the cursor back to the original cursor, for all windows in the application.

Use with beginBusyCursor/1.

See: isBusy/0, wxBusyCursor (not implemented in wx)

isBusy() -> boolean()
Returns true if between two beginBusyCursor/1 and endBusyCursor/0 calls.

See: wxBusyCursor (not implemented in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 867

wx_misc

shutdown() -> boolean()

shutdown(Options :: [Option]) -> boolean()
Types:

Option = {flags, integer()}
This function shuts down or reboots the computer depending on the value of the flags.

Note: Note that performing the shutdown requires the corresponding access rights (superuser under Unix,
SE_SHUTDOWN privilege under Windows) and that this function is only implemented under Unix and MSW.

Return: true on success, false if an error occurred.

shell() -> boolean()

shell(Options :: [Option]) -> boolean()
Types:

Option = {command, unicode:chardata()}
Executes a command in an interactive shell window.

If no command is specified, then just the shell is spawned.

See: wxExecute() (not implemented in wx), Examples

launchDefaultBrowser(Url) -> boolean()
Types:

Url = unicode:chardata()

launchDefaultBrowser(Url, Options :: [Option]) -> boolean()
Types:

Url = unicode:chardata()
Option = {flags, integer()}

Opens the url in user's default browser.

If the flags parameter contains wxBROWSER_NEW_WINDOW flag, a new window is opened for the URL (currently
this is only supported under Windows).

And unless the flags parameter contains wxBROWSER_NOBUSYCURSOR flag, a busy cursor is shown while the
browser is being launched (using wxBusyCursor (not implemented in wx)).

The parameter url is interpreted as follows:

Returns true if the application was successfully launched.

Note: For some configurations of the running user, the application which is launched to open the given URL may be
URL-dependent (e.g. a browser may be used for local URLs while another one may be used for remote URLs).

See: wxLaunchDefaultApplication() (not implemented in wx), wxExecute() (not implemented in wx)

getEmailAddress() -> unicode:charlist()
Copies the user's email address into the supplied buffer, by concatenating the values returned by
wxGetFullHostName() (not implemented in wx) and getUserId/0.

Return: true if successful, false otherwise.

868 | Ericsson AB. All Rights Reserved.: wxErlang

href

wx_misc

getUserId() -> unicode:charlist()
This function returns the "user id" also known as "login name" under Unix (i.e.

something like "jsmith"). It uniquely identifies the current user (on this system). Under Windows or NT, this function
first looks in the environment variables USER and LOGNAME; if neither of these is found, the entry UserId in the
wxWidgets section of the WIN.INI file is tried.

Return: The login name if successful or an empty string otherwise.

See: wxGetUserName() (not implemented in wx)

getHomeDir() -> unicode:charlist()
Return the (current) user's home directory.

See: wxGetUserHome() (not implemented in wx), wxStandardPaths (not implemented in wx)

newId() -> integer()
Deprecated: Ids generated by it can conflict with the Ids defined by the user code, use wxID_ANY to assign ids which
are guaranteed to not conflict with the user-defined ids for the controls and menu items you create instead of using
this function.

Generates an integer identifier unique to this run of the program.

registerId(Id) -> ok
Types:

Id = integer()
Ensures that Ids subsequently generated by newId/0 do not clash with the given id.

getCurrentId() -> integer()
Returns the current id.

getOsDescription() -> unicode:charlist()
Returns the string containing the description of the current platform in a user-readable form.

For example, this function may return strings like "Windows 10 (build 10240), 64-bit edition" or "Linux 4.1.4 i386".

See: wxGetOsVersion() (not implemented in wx)

isPlatformLittleEndian() -> boolean()
Returns true if the current platform is little endian (instead of big endian).

The check is performed at run-time.

isPlatform64Bit() -> boolean()
Returns true if the operating system the program is running under is 64 bit.

The check is performed at run-time and may differ from the value available at compile-time (at compile-time you can
just check if sizeof(void*) == 8) since the program could be running in emulation mode or in a mixed 32/64
bit system (bi-architecture operating system).

Note: This function is not 100% reliable on some systems given the fact that there isn't always a standard way to do
a reliable check on the OS architecture.

Ericsson AB. All Rights Reserved.: wxErlang | 869

gl

gl
Erlang module

Standard OpenGL API

This documents the functions as a brief version of the complete OpenGL reference pages.

Data Types
clamp() = float()
offset() = integer() >= 0
i() = integer()
f() = float()
enum() = integer() >= 0
matrix() = m12() | m16()
m12() =
 {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}
m16() =
 {f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}
mem() = binary() | tuple()

Exports

accum(Op :: enum(), Value :: f()) -> ok
The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather, images rendered
into one of the color buffers are added to the contents of the accumulation buffer after rendering. Effects such as
antialiasing (of points, lines, and polygons), motion blur, and depth of field can be created by accumulating images
generated with different transformation matrices.

External documentation.

870 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

gl

activeShaderProgram(Pipeline :: i(), Program :: i()) -> ok
gl:activeShaderProgram/2 sets the linked program named by Program to be the active program for the
program pipeline object Pipeline. The active program in the active program pipeline object is the target of calls to
gl:uniform() when no program has been made current through a call to gl:useProgram/1.

External documentation.

activeTexture(Texture :: enum()) -> ok
gl:activeTexture/1 selects which texture unit subsequent texture state calls will affect. The number of texture
units an implementation supports is implementation dependent, but must be at least 80.

External documentation.

alphaFunc(Func :: enum(), Ref :: clamp()) -> ok
The alpha test discards fragments depending on the outcome of a comparison between an incoming fragment's alpha
value and a constant reference value. gl:alphaFunc/2 specifies the reference value and the comparison function.
The comparison is performed only if alpha testing is enabled. By default, it is not enabled. (See gl:enable/1 and
gl:disable/1 of ?GL_ALPHA_TEST.)

External documentation.

areTexturesResident(Textures :: [i()]) ->
 {0 | 1, Residences :: [0 | 1]}
GL establishes a ̀ `working set'' of textures that are resident in texture memory. These textures can be bound to a texture
target much more efficiently than textures that are not resident.

External documentation.

arrayElement(I :: i()) -> ok
gl:arrayElement/1 commands are used within gl:'begin'/1/gl:'end'/0 pairs to specify vertex
and attribute data for point, line, and polygon primitives. If ?GL_VERTEX_ARRAY is enabled when
gl:arrayElement/1 is called, a single vertex is drawn, using vertex and attribute data taken from location I of
the enabled arrays. If ?GL_VERTEX_ARRAY is not enabled, no drawing occurs but the attributes corresponding to
the enabled arrays are modified.

External documentation.

attachShader(Program :: i(), Shader :: i()) -> ok
In order to create a complete shader program, there must be a way to specify the list of things that will be linked
together. Program objects provide this mechanism. Shaders that are to be linked together in a program object must
first be attached to that program object. gl:attachShader/2 attaches the shader object specified by Shader to
the program object specified by Program. This indicates that Shader will be included in link operations that will
be performed on Program.

External documentation.

'begin'(Mode :: enum()) -> ok
'end'() -> ok
gl:'begin'/1 and gl:'end'/0 delimit the vertices that define a primitive or a group of like primitives.
gl:'begin'/1 accepts a single argument that specifies in which of ten ways the vertices are interpreted. Taking n
as an integer count starting at one, and N as the total number of vertices specified, the interpretations are as follows:

Ericsson AB. All Rights Reserved.: wxErlang | 871

href
href
href
href
href
href

gl

External documentation.

beginConditionalRender(Id :: i(), Mode :: enum()) -> ok
endConditionalRender() -> ok
Conditional rendering is started using gl:beginConditionalRender/2 and ended using
gl:endConditionalRender/0. During conditional rendering, all vertex array commands, as well as
gl:clear/1 and gl:clearBuffer() have no effect if the (?GL_SAMPLES_PASSED) result of the query
object Id is zero, or if the (?GL_ANY_SAMPLES_PASSED) result is ?GL_FALSE. The results of commands setting
the current vertex state, such as gl:vertexAttrib() are undefined. If the (?GL_SAMPLES_PASSED) result is
non-zero or if the (?GL_ANY_SAMPLES_PASSED) result is ?GL_TRUE, such commands are not discarded. The
Id parameter to gl:beginConditionalRender/2 must be the name of a query object previously returned
from a call to gl:genQueries/1. Mode specifies how the results of the query object are to be interpreted. If
Mode is ?GL_QUERY_WAIT, the GL waits for the results of the query to be available and then uses the results to
determine if subsequent rendering commands are discarded. If Mode is ?GL_QUERY_NO_WAIT, the GL may choose
to unconditionally execute the subsequent rendering commands without waiting for the query to complete.

External documentation.

beginQuery(Target :: enum(), Id :: i()) -> ok
endQuery(Target :: enum()) -> ok
gl:beginQuery/2 and gl:endQuery/1 delimit the boundaries of a query object. Query must
be a name previously returned from a call to gl:genQueries/1. If a query object with name
Id does not yet exist it is created with the type determined by Target. Target must be
one of ?GL_SAMPLES_PASSED, ?GL_ANY_SAMPLES_PASSED, ?GL_PRIMITIVES_GENERATED, ?
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or ?GL_TIME_ELAPSED. The behavior of the query
object depends on its type and is as follows.

External documentation.

beginQueryIndexed(Target :: enum(), Index :: i(), Id :: i()) -> ok
endQueryIndexed(Target :: enum(), Index :: i()) -> ok
gl:beginQueryIndexed/3 and gl:endQueryIndexed/2 delimit the boundaries of a query object.
Query must be a name previously returned from a call to gl:genQueries/1. If a query object
with name Id does not yet exist it is created with the type determined by Target. Target must
be one of ?GL_SAMPLES_PASSED, ?GL_ANY_SAMPLES_PASSED, ?GL_PRIMITIVES_GENERATED, ?
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or ?GL_TIME_ELAPSED. The behavior of the query
object depends on its type and is as follows.

External documentation.

beginTransformFeedback(PrimitiveMode :: enum()) -> ok
endTransformFeedback() -> ok
Transform feedback mode captures the values of varying variables written by the vertex shader (or, if active, the
geometry shader). Transform feedback is said to be active after a call to gl:beginTransformFeedback/1 until
a subsequent call to gl:endTransformFeedback/0. Transform feedback commands must be paired.

External documentation.

bindAttribLocation(Program :: i(), Index :: i(), Name :: string()) ->

872 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

 ok
gl:bindAttribLocation/3 is used to associate a user-defined attribute variable in the program object specified
by Program with a generic vertex attribute index. The name of the user-defined attribute variable is passed as a null
terminated string in Name. The generic vertex attribute index to be bound to this variable is specified by Index.
When Program is made part of current state, values provided via the generic vertex attribute Index will modify the
value of the user-defined attribute variable specified by Name.

External documentation.

bindBuffer(Target :: enum(), Buffer :: i()) -> ok
gl:bindBuffer/2 binds a buffer object to the specified buffer binding point. Calling gl:bindBuffer/2 with
Target set to one of the accepted symbolic constants and Buffer set to the name of a buffer object binds that buffer
object name to the target. If no buffer object with name Buffer exists, one is created with that name. When a buffer
object is bound to a target, the previous binding for that target is automatically broken.

External documentation.

bindBufferBase(Target :: enum(), Index :: i(), Buffer :: i()) ->
 ok
gl:bindBufferBase/3 binds the buffer object Buffer to the binding point at index Index of the array of
targets specified by Target. Each Target represents an indexed array of buffer binding points, as well as a single
general binding point that can be used by other buffer manipulation functions such as gl:bindBuffer/2 or
glMapBuffer. In addition to binding Buffer to the indexed buffer binding target, gl:bindBufferBase/3
also binds Buffer to the generic buffer binding point specified by Target.

External documentation.

bindBufferRange(Target :: enum(),
 Index :: i(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->
 ok
gl:bindBufferRange/5 binds a range the buffer object Buffer represented by Offset and Size to the
binding point at index Index of the array of targets specified by Target. Each Target represents an indexed
array of buffer binding points, as well as a single general binding point that can be used by other buffer manipulation
functions such as gl:bindBuffer/2 or glMapBuffer. In addition to binding a range of Buffer to the indexed
buffer binding target, gl:bindBufferRange/5 also binds the range to the generic buffer binding point specified
by Target.

External documentation.

bindBuffersBase(Target :: enum(), First :: i(), Buffers :: [i()]) ->
 ok
gl:bindBuffersBase/3 binds a set of Count buffer objects whose names are given in the array Buffers
to the Count consecutive binding points starting from index First of the array of targets specified by Target.
If Buffers is ?NULL then gl:bindBuffersBase/3 unbinds any buffers that are currently bound to the
referenced binding points. Assuming no errors are generated, it is equivalent to the following pseudo-code,
which calls gl:bindBufferBase/3, with the exception that the non-indexed Target is not changed by
gl:bindBuffersBase/3:

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 873

href
href
href
href
href

gl

bindBuffersRange(Target :: enum(),
 First :: i(),
 Buffers :: [i()],
 Offsets :: [i()],
 Sizes :: [i()]) ->
 ok
gl:bindBuffersRange/5 binds a set of Count ranges from buffer objects whose names are given in the
array Buffers to the Count consecutive binding points starting from index First of the array of targets
specified by Target. Offsets specifies the address of an array containing Count starting offsets within the
buffers, and Sizes specifies the address of an array of Count sizes of the ranges. If Buffers is ?NULL then
Offsets and Sizes are ignored and gl:bindBuffersRange/5 unbinds any buffers that are currently bound
to the referenced binding points. Assuming no errors are generated, it is equivalent to the following pseudo-code,
which calls gl:bindBufferRange/5, with the exception that the non-indexed Target is not changed by
gl:bindBuffersRange/5:

External documentation.

bindFragDataLocation(Program :: i(),
 Color :: i(),
 Name :: string()) ->
 ok
gl:bindFragDataLocation/3 explicitly specifies the binding of the user-defined varying out variable Name
to fragment shader color number ColorNumber for program Program. If Name was bound previously, its assigned
binding is replaced with ColorNumber. Name must be a null-terminated string. ColorNumber must be less than
?GL_MAX_DRAW_BUFFERS.

External documentation.

bindFragDataLocationIndexed(Program :: i(),
 ColorNumber :: i(),
 Index :: i(),
 Name :: string()) ->
 ok
gl:bindFragDataLocationIndexed/4 specifies that the varying out variable Name in Program should be
bound to fragment color ColorNumber when the program is next linked. Index may be zero or one to specify that
the color be used as either the first or second color input to the blend equation, respectively.

External documentation.

bindFramebuffer(Target :: enum(), Framebuffer :: i()) -> ok
gl:bindFramebuffer/2 binds the framebuffer object with name Framebuffer to the framebuffer target
specified by Target. Target must be either ?GL_DRAW_FRAMEBUFFER, ?GL_READ_FRAMEBUFFER
or ?GL_FRAMEBUFFER. If a framebuffer object is bound to ?GL_DRAW_FRAMEBUFFER or ?
GL_READ_FRAMEBUFFER, it becomes the target for rendering or readback operations, respectively, until it is deleted
or another framebuffer is bound to the corresponding bind point. Calling gl:bindFramebuffer/2 with Target
set to ?GL_FRAMEBUFFER binds Framebuffer to both the read and draw framebuffer targets. Framebuffer
is the name of a framebuffer object previously returned from a call to gl:genFramebuffers/1, or zero to break
the existing binding of a framebuffer object to Target.

External documentation.

bindImageTexture(Unit, Texture, Level, Layered, Layer, Access,

874 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

 Format) ->
 ok
Types:

Unit = Texture = Level = i()
Layered = 0 | 1
Layer = i()
Access = Format = enum()

gl:bindImageTexture/7 binds a single level of a texture to an image unit for the purpose of reading and writing
it from shaders. Unit specifies the zero-based index of the image unit to which to bind the texture level. Texture
specifies the name of an existing texture object to bind to the image unit. If Texture is zero, then any existing binding
to the image unit is broken. Level specifies the level of the texture to bind to the image unit.

External documentation.

bindImageTextures(First :: i(), Textures :: [i()]) -> ok
gl:bindImageTextures/2 binds images from an array of existing texture objects to a specified number of
consecutive image units. Count specifies the number of texture objects whose names are stored in the array
Textures. That number of texture names are read from the array and bound to the Count consecutive texture units
starting from First. If the name zero appears in the Textures array, any existing binding to the image unit is
reset. Any non-zero entry in Textures must be the name of an existing texture object. When a non-zero entry in
Textures is present, the image at level zero is bound, the binding is considered layered, with the first layer set to
zero, and the image is bound for read-write access. The image unit format parameter is taken from the internal format
of the image at level zero of the texture object. For cube map textures, the internal format of the positive X image
of level zero is used. If Textures is ?NULL then it is as if an appropriately sized array containing only zeros had
been specified.

External documentation.

bindProgramPipeline(Pipeline :: i()) -> ok
gl:bindProgramPipeline/1 binds a program pipeline object to the current context. Pipeline must be a
name previously returned from a call to gl:genProgramPipelines/1. If no program pipeline exists with name
Pipeline then a new pipeline object is created with that name and initialized to the default state vector.

External documentation.

bindRenderbuffer(Target :: enum(), Renderbuffer :: i()) -> ok
gl:bindRenderbuffer/2 binds the renderbuffer object with name Renderbuffer to the renderbuffer target
specified by Target. Target must be ?GL_RENDERBUFFER. Renderbuffer is the name of a renderbuffer
object previously returned from a call to gl:genRenderbuffers/1, or zero to break the existing binding of a
renderbuffer object to Target.

External documentation.

bindSampler(Unit :: i(), Sampler :: i()) -> ok
gl:bindSampler/2 binds Sampler to the texture unit at index Unit. Sampler must be zero or the name of
a sampler object previously returned from a call to gl:genSamplers/1. Unit must be less than the value of ?
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 875

href
href
href
href
href

gl

bindSamplers(First :: i(), Samplers :: [i()]) -> ok
gl:bindSamplers/2 binds samplers from an array of existing sampler objects to a specified number of
consecutive sampler units. Count specifies the number of sampler objects whose names are stored in the array
Samplers. That number of sampler names is read from the array and bound to the Count consecutive sampler units
starting from First.

External documentation.

bindTexture(Target :: enum(), Texture :: i()) -> ok
gl:bindTexture/2 lets you create or use a named texture. Calling
gl:bindTexture/2 with Target set to ?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?
GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE,
?GL_TEXTURE_CUBE_MAP, ?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_BUFFER, ?
GL_TEXTURE_2D_MULTISAMPLE or ?GL_TEXTURE_2D_MULTISAMPLE_ARRAY and Texture set to the
name of the new texture binds the texture name to the target. When a texture is bound to a target, the previous binding
for that target is automatically broken.

External documentation.

bindTextureUnit(Unit :: i(), Texture :: i()) -> ok
gl:bindTextureUnit/2 binds an existing texture object to the texture unit numbered Unit.

External documentation.

bindTextures(First :: i(), Textures :: [i()]) -> ok
gl:bindTextures/2 binds an array of existing texture objects to a specified number of consecutive texture units.
Count specifies the number of texture objects whose names are stored in the array Textures. That number of
texture names are read from the array and bound to the Count consecutive texture units starting from First. The
target, or type of texture is deduced from the texture object and each texture is bound to the corresponding target of
the texture unit. If the name zero appears in the Textures array, any existing binding to any target of the texture
unit is reset and the default texture for that target is bound in its place. Any non-zero entry in Textures must be
the name of an existing texture object. If Textures is ?NULL then it is as if an appropriately sized array containing
only zeros had been specified.

External documentation.

bindTransformFeedback(Target :: enum(), Id :: i()) -> ok
gl:bindTransformFeedback/2 binds the transform feedback object with name Id to the current GL state. Id
must be a name previously returned from a call to gl:genTransformFeedbacks/1. If Id has not previously
been bound, a new transform feedback object with name Id and initialized with the default transform state vector
is created.

External documentation.

bindVertexArray(Array :: i()) -> ok
gl:bindVertexArray/1 binds the vertex array object with name Array. Array is the name of a vertex array
object previously returned from a call to gl:genVertexArrays/1, or zero to break the existing vertex array object
binding.

External documentation.

876 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

bindVertexBuffer(Bindingindex :: i(),
 Buffer :: i(),
 Offset :: i(),
 Stride :: i()) ->
 ok
vertexArrayVertexBuffer(Vaobj :: i(),
 Bindingindex :: i(),
 Buffer :: i(),
 Offset :: i(),
 Stride :: i()) ->
 ok
gl:bindVertexBuffer/4 and gl:vertexArrayVertexBuffer/5 bind the buffer named Buffer to the
vertex buffer binding point whose index is given by Bindingindex. gl:bindVertexBuffer/4 modifies the
binding of the currently bound vertex array object, whereas gl:vertexArrayVertexBuffer/5 allows the caller
to specify ID of the vertex array object with an argument named Vaobj, for which the binding should be modified.
Offset and Stride specify the offset of the first element within the buffer and the distance between elements
within the buffer, respectively, and are both measured in basic machine units. Bindingindex must be less than the
value of ?GL_MAX_VERTEX_ATTRIB_BINDINGS. Offset and Stride must be greater than or equal to zero.
If Buffer is zero, then any buffer currently bound to the specified binding point is unbound.

External documentation.

bindVertexBuffers(First :: i(),
 Buffers :: [i()],
 Offsets :: [i()],
 Strides :: [i()]) ->
 ok
vertexArrayVertexBuffers(Vaobj :: i(),
 First :: i(),
 Buffers :: [i()],
 Offsets :: [i()],
 Strides :: [i()]) ->
 ok
gl:bindVertexBuffers/4 and gl:vertexArrayVertexBuffers/5 bind storage from an array of
existing buffer objects to a specified number of consecutive vertex buffer binding points units in a vertex array
object. For gl:bindVertexBuffers/4, the vertex array object is the currently bound vertex array object. For
gl:vertexArrayVertexBuffers/5, Vaobj is the name of the vertex array object.

External documentation.

bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap) -> ok
Types:

Width = Height = i()
Xorig = Yorig = Xmove = Ymove = f()
Bitmap = offset() | mem()

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster position, and frame
buffer pixels corresponding to 1's in the bitmap are written using the current raster color or index. Frame buffer pixels
corresponding to 0's in the bitmap are not modified.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 877

href
href
href

gl

blendColor(Red :: clamp(),
 Green :: clamp(),
 Blue :: clamp(),
 Alpha :: clamp()) ->
 ok
The ?GL_BLEND_COLOR may be used to calculate the source and destination blending factors. The color components
are clamped to the range [0 1] before being stored. See gl:blendFunc/2 for a complete description of the blending
operations. Initially the ?GL_BLEND_COLOR is set to (0, 0, 0, 0).

External documentation.

blendEquation(Mode :: enum()) -> ok
blendEquationi(Buf :: i(), Mode :: enum()) -> ok
The blend equations determine how a new pixel (the ''source'' color) is combined with a pixel already in the
framebuffer (the ''destination'' color). This function sets both the RGB blend equation and the alpha blend equation
to a single equation. gl:blendEquationi/2 specifies the blend equation for a single draw buffer whereas
gl:blendEquation/1 sets the blend equation for all draw buffers.

External documentation.

blendEquationSeparate(ModeRGB :: enum(), ModeAlpha :: enum()) ->
 ok
blendEquationSeparatei(Buf :: i(),
 ModeRGB :: enum(),
 ModeAlpha :: enum()) ->
 ok
The blend equations determines how a new pixel (the ''source'' color) is combined with a pixel already in the
framebuffer (the ''destination'' color). These functions specify one blend equation for the RGB-color components and
one blend equation for the alpha component. gl:blendEquationSeparatei/3 specifies the blend equations
for a single draw buffer whereas gl:blendEquationSeparate/2 sets the blend equations for all draw buffers.

External documentation.

blendFunc(Sfactor :: enum(), Dfactor :: enum()) -> ok
blendFunci(Buf :: i(), Src :: enum(), Dst :: enum()) -> ok
Pixels can be drawn using a function that blends the incoming (source) RGBA values with the RGBA values that
are already in the frame buffer (the destination values). Blending is initially disabled. Use gl:enable/1 and
gl:disable/1 with argument ?GL_BLEND to enable and disable blending.

External documentation.

blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha,
 DfactorAlpha) ->
 ok
blendFuncSeparatei(Buf :: i(),
 SrcRGB :: enum(),
 DstRGB :: enum(),
 SrcAlpha :: enum(),
 DstAlpha :: enum()) ->

878 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

 ok
Pixels can be drawn using a function that blends the incoming (source) RGBA values with the RGBA values that
are already in the frame buffer (the destination values). Blending is initially disabled. Use gl:enable/1 and
gl:disable/1 with argument ?GL_BLEND to enable and disable blending.

External documentation.

blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1,
 DstY1, Mask, Filter) ->
 ok
Types:

SrcX0 = SrcY0 = SrcX1 = SrcY1 = DstX0 = DstY0 = DstX1 = DstY1 = Mask = i()
Filter = enum()

gl:blitFramebuffer/10 and glBlitNamedFramebuffer transfer a rectangle of pixel values from one
region of a read framebuffer to another region of a draw framebuffer.

External documentation.

bufferData(Target :: enum(),
 Size :: i(),
 Data :: offset() | mem(),
 Usage :: enum()) ->
 ok
gl:bufferData/4 and glNamedBufferData create a new data store for a buffer object. In case of
gl:bufferData/4, the buffer object currently bound to Target is used. For glNamedBufferData, a buffer
object associated with ID specified by the caller in Buffer will be used instead.

External documentation.

bufferStorage(Target :: enum(),
 Size :: i(),
 Data :: offset() | mem(),
 Flags :: i()) ->
 ok
gl:bufferStorage/4 and glNamedBufferStorage create a new immutable data store. For
gl:bufferStorage/4, the buffer object currently bound to Target will be initialized. For
glNamedBufferStorage, Buffer is the name of the buffer object that will be configured. The size of the data
store is specified by Size. If an initial data is available, its address may be supplied in Data. Otherwise, to create
an uninitialized data store, Data should be ?NULL.

External documentation.

bufferSubData(Target :: enum(),
 Offset :: i(),
 Size :: i(),
 Data :: offset() | mem()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 879

href
href
href
href

gl

 ok
gl:bufferSubData/4 and glNamedBufferSubData redefine some or all of the data store for the specified
buffer object. Data starting at byte offset Offset and extending for Size bytes is copied to the data store from the
memory pointed to by Data. Offset and Size must define a range lying entirely within the buffer object's data store.

External documentation.

callList(List :: i()) -> ok
gl:callList/1 causes the named display list to be executed. The commands saved in the display list are executed
in order, just as if they were called without using a display list. If List has not been defined as a display list,
gl:callList/1 is ignored.

External documentation.

callLists(Lists :: [i()]) -> ok
gl:callLists/1 causes each display list in the list of names passed as Lists to be executed. As a result, the
commands saved in each display list are executed in order, just as if they were called without using a display list.
Names of display lists that have not been defined are ignored.

External documentation.

checkFramebufferStatus(Target :: enum()) -> enum()
gl:checkFramebufferStatus/1 and glCheckNamedFramebufferStatus return the completeness
status of a framebuffer object when treated as a read or draw framebuffer, depending on the value of Target.

External documentation.

clampColor(Target :: enum(), Clamp :: enum()) -> ok
gl:clampColor/2 controls color clamping that is performed during gl:readPixels/7. Target must be ?
GL_CLAMP_READ_COLOR. If Clamp is ?GL_TRUE, read color clamping is enabled; if Clamp is ?GL_FALSE,
read color clamping is disabled. If Clamp is ?GL_FIXED_ONLY, read color clamping is enabled only if the selected
read buffer has fixed point components and disabled otherwise.

External documentation.

clear(Mask :: i()) -> ok
gl:clear/1 sets the bitplane area of the window to values previously selected by gl:clearColor/4,
gl:clearDepth/1, and gl:clearStencil/1. Multiple color buffers can be cleared simultaneously by
selecting more than one buffer at a time using gl:drawBuffer/1.

External documentation.

clearAccum(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) ->
 ok
gl:clearAccum/4 specifies the red, green, blue, and alpha values used by gl:clear/1 to clear the accumulation
buffer.

External documentation.

clearBufferData(Target, Internalformat, Format, Type, Data) -> ok
clearBufferSubData(Target, Internalformat, Offset, Size, Format,

880 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href
href

gl

 Type, Data) ->
 ok
clearBufferfi(Buffer :: enum(),
 Drawbuffer :: i(),
 Depth :: f(),
 Stencil :: i()) ->
 ok
clearBufferfv(Buffer :: enum(),
 Drawbuffer :: i(),
 Value :: tuple()) ->
 ok
clearBufferiv(Buffer :: enum(),
 Drawbuffer :: i(),
 Value :: tuple()) ->
 ok
clearBufferuiv(Buffer :: enum(),
 Drawbuffer :: i(),
 Value :: tuple()) ->
 ok
These commands clear a specified buffer of a framebuffer to specified value(s). For gl:clearBuffer*(), the
framebuffer is the currently bound draw framebuffer object. For glClearNamedFramebuffer*, Framebuffer
is zero, indicating the default draw framebuffer, or the name of a framebuffer object.

External documentation.

clearColor(Red :: clamp(),
 Green :: clamp(),
 Blue :: clamp(),
 Alpha :: clamp()) ->
 ok
gl:clearColor/4 specifies the red, green, blue, and alpha values used by gl:clear/1 to clear the color buffers.
Values specified by gl:clearColor/4 are clamped to the range [0 1].

External documentation.

clearDepth(Depth :: clamp()) -> ok
clearDepthf(D :: f()) -> ok
gl:clearDepth/1 specifies the depth value used by gl:clear/1 to clear the depth buffer. Values specified by
gl:clearDepth/1 are clamped to the range [0 1].

External documentation.

clearIndex(C :: f()) -> ok
gl:clearIndex/1 specifies the index used by gl:clear/1 to clear the color index buffers. C is not clamped.
Rather, C is converted to a fixed-point value with unspecified precision to the right of the binary point. The integer
part of this value is then masked with 2 m-1, where m is the number of bits in a color index stored in the frame buffer.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 881

href
href
href
href

gl

clearStencil(S :: i()) -> ok
gl:clearStencil/1 specifies the index used by gl:clear/1 to clear the stencil buffer. S is masked with 2
m-1, where m is the number of bits in the stencil buffer.

External documentation.

clearTexImage(Texture :: i(),
 Level :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem()) ->
 ok
gl:clearTexImage/5 fills all an image contained in a texture with an application supplied value. Texture must
be the name of an existing texture. Further, Texture may not be the name of a buffer texture, nor may its internal
format be compressed.

External documentation.

clearTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width,
 Height, Depth, Format, Type, Data) ->
 ok
Types:

Texture = Level = Xoffset = Yoffset = Zoffset = Width = Height = Depth =
i()
Format = Type = enum()
Data = offset() | mem()

gl:clearTexSubImage/11 fills all or part of an image contained in a texture with an application supplied value.
Texture must be the name of an existing texture. Further, Texture may not be the name of a buffer texture, nor
may its internal format be compressed.

External documentation.

clientActiveTexture(Texture :: enum()) -> ok
gl:clientActiveTexture/1 selects the vertex array client state parameters to be modified
by gl:texCoordPointer/4, and enabled or disabled with gl:enableClientState/1 or
gl:disableClientState/1, respectively, when called with a parameter of ?GL_TEXTURE_COORD_ARRAY.

External documentation.

clientWaitSync(Sync :: i(), Flags :: i(), Timeout :: i()) ->
 enum()
gl:clientWaitSync/3 causes the client to block and wait for the sync object specified by Sync to become
signaled. If Sync is signaled when gl:clientWaitSync/3 is called, gl:clientWaitSync/3 returns
immediately, otherwise it will block and wait for up to Timeout nanoseconds for Sync to become signaled.

External documentation.

882 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

clipControl(Origin :: enum(), Depth :: enum()) -> ok
gl:clipControl/2 controls the clipping volume behavior and the clip coordinate to window coordinate
transformation behavior.

External documentation.

clipPlane(Plane :: enum(), Equation :: {f(), f(), f(), f()}) -> ok
Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z. gl:clipPlane/2 allows
the specification of additional planes, not necessarily perpendicular to the x, y, or z axis, against which all geometry is
clipped. To determine the maximum number of additional clipping planes, call gl:getIntegerv/1 with argument
?GL_MAX_CLIP_PLANES. All implementations support at least six such clipping planes. Because the resulting
clipping region is the intersection of the defined half-spaces, it is always convex.

External documentation.

color3b(Red :: i(), Green :: i(), Blue :: i()) -> ok
color3bv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) -> ok
color3d(Red :: f(), Green :: f(), Blue :: f()) -> ok
color3dv(X1 :: {Red :: f(), Green :: f(), Blue :: f()}) -> ok
color3f(Red :: f(), Green :: f(), Blue :: f()) -> ok
color3fv(X1 :: {Red :: f(), Green :: f(), Blue :: f()}) -> ok
color3i(Red :: i(), Green :: i(), Blue :: i()) -> ok
color3iv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) -> ok
color3s(Red :: i(), Green :: i(), Blue :: i()) -> ok
color3sv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) -> ok
color3ub(Red :: i(), Green :: i(), Blue :: i()) -> ok
color3ubv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) -> ok
color3ui(Red :: i(), Green :: i(), Blue :: i()) -> ok
color3uiv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) -> ok
color3us(Red :: i(), Green :: i(), Blue :: i()) -> ok
color3usv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) -> ok
color4b(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok
color4bv(X1 ::
 {Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) ->
 ok
color4d(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok
color4dv(X1 ::
 {Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()}) ->
 ok
color4f(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok
color4fv(X1 ::
 {Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()}) ->
 ok
color4i(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok
color4iv(X1 ::
 {Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) ->

Ericsson AB. All Rights Reserved.: wxErlang | 883

href
href

gl

 ok
color4s(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok
color4sv(X1 ::
 {Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) ->
 ok
color4ub(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) ->
 ok
color4ubv(X1 ::
 {Red :: i(),
 Green :: i(),
 Blue :: i(),
 Alpha :: i()}) ->
 ok
color4ui(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) ->
 ok
color4uiv(X1 ::
 {Red :: i(),
 Green :: i(),
 Blue :: i(),
 Alpha :: i()}) ->
 ok
color4us(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) ->
 ok
color4usv(X1 ::
 {Red :: i(),
 Green :: i(),
 Blue :: i(),
 Alpha :: i()}) ->
 ok
The GL stores both a current single-valued color index and a current four-valued RGBA color. gl:color()
sets a new four-valued RGBA color. gl:color() has two major variants: gl:color3() and gl:color4().
gl:color3() variants specify new red, green, and blue values explicitly and set the current alpha value to 1.0 (full
intensity) implicitly. gl:color4() variants specify all four color components explicitly.

External documentation.

colorMask(Red :: 0 | 1,
 Green :: 0 | 1,
 Blue :: 0 | 1,
 Alpha :: 0 | 1) ->
 ok
colorMaski(Index :: i(),
 R :: 0 | 1,
 G :: 0 | 1,
 B :: 0 | 1,
 A :: 0 | 1) ->
 ok
gl:colorMask/4 and gl:colorMaski/5 specify whether the individual color components in the frame buffer
can or cannot be written. gl:colorMaski/5 sets the mask for a specific draw buffer, whereas gl:colorMask/4

884 | Ericsson AB. All Rights Reserved.: wxErlang

href

gl

sets the mask for all draw buffers. If Red is ?GL_FALSE, for example, no change is made to the red component of
any pixel in any of the color buffers, regardless of the drawing operation attempted.

External documentation.

colorMaterial(Face :: enum(), Mode :: enum()) -> ok
gl:colorMaterial/2 specifies which material parameters track the current color. When ?
GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by Mode, of the material or
materials specified by Face, track the current color at all times.

External documentation.

colorPointer(Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Ptr :: offset() | mem()) ->
 ok
gl:colorPointer/4 specifies the location and data format of an array of color components to use when rendering.
Size specifies the number of components per color, and must be 3 or 4. Type specifies the data type of each
color component, and Stride specifies the byte stride from one color to the next, allowing vertices and attributes
to be packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on some
implementations; see gl:interleavedArrays/3.)

External documentation.

colorSubTable(Target, Start, Count, Format, Type, Data) -> ok
Types:

Target = enum()
Start = Count = i()
Format = Type = enum()
Data = offset() | mem()

gl:colorSubTable/6 is used to respecify a contiguous portion of a color table previously defined using
gl:colorTable/6. The pixels referenced by Data replace the portion of the existing table from indices Start to
start+count-1, inclusive. This region may not include any entries outside the range of the color table as it was originally
specified. It is not an error to specify a subtexture with width of 0, but such a specification has no effect.

External documentation.

colorTable(Target, Internalformat, Width, Format, Type, Table) ->
 ok
Types:

Target = Internalformat = enum()
Width = i()
Format = Type = enum()
Table = offset() | mem()

gl:colorTable/6 may be used in two ways: to test the actual size and color resolution of a lookup table given
a particular set of parameters, or to load the contents of a color lookup table. Use the targets ?GL_PROXY_* for the
first case and the other targets for the second case.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 885

href
href
href
href
href

gl

colorTableParameterfv(Target :: enum(),
 Pname :: enum(),
 Params :: {f(), f(), f(), f()}) ->
 ok
colorTableParameteriv(Target :: enum(),
 Pname :: enum(),
 Params :: {i(), i(), i(), i()}) ->
 ok
gl:colorTableParameter() is used to specify the scale factors and bias terms applied to color
components when they are loaded into a color table. Target indicates which color table the scale and bias
terms apply to; it must be set to ?GL_COLOR_TABLE, ?GL_POST_CONVOLUTION_COLOR_TABLE, or ?
GL_POST_COLOR_MATRIX_COLOR_TABLE.

External documentation.

compileShader(Shader :: i()) -> ok
gl:compileShader/1 compiles the source code strings that have been stored in the shader object specified by
Shader.

External documentation.

compressedTexImage1D(Target, Level, Internalformat, Width, Border,
 ImageSize, Data) ->
 ok
Types:

Target = enum()
Level = i()
Internalformat = enum()
Width = Border = ImageSize = i()
Data = offset() | mem()

Texturing allows elements of an image array to be read by shaders.

External documentation.

compressedTexImage2D(Target, Level, Internalformat, Width, Height,
 Border, ImageSize, Data) ->
 ok
Types:

Target = enum()
Level = i()
Internalformat = enum()
Width = Height = Border = ImageSize = i()
Data = offset() | mem()

Texturing allows elements of an image array to be read by shaders.

External documentation.

compressedTexImage3D(Target, Level, Internalformat, Width, Height,

886 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

 Depth, Border, ImageSize, Data) ->
 ok
Types:

Target = enum()
Level = i()
Internalformat = enum()
Width = Height = Depth = Border = ImageSize = i()
Data = offset() | mem()

Texturing allows elements of an image array to be read by shaders.

External documentation.

compressedTexSubImage1D(Target, Level, Xoffset, Width, Format,
 ImageSize, Data) ->
 ok
compressedTextureSubImage1D(Texture, Level, Xoffset, Width,
 Format, ImageSize, Data) ->
 ok
Types:

Texture = Level = Xoffset = Width = i()
Format = enum()
ImageSize = i()
Data = offset() | mem()

Texturing allows elements of an image array to be read by shaders.

External documentation.

compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width,
 Height, Format, ImageSize, Data) ->
 ok
compressedTextureSubImage2D(Texture, Level, Xoffset, Yoffset,
 Width, Height, Format, ImageSize,
 Data) ->
 ok
Types:

Texture = Level = Xoffset = Yoffset = Width = Height = i()
Format = enum()
ImageSize = i()
Data = offset() | mem()

Texturing allows elements of an image array to be read by shaders.

External documentation.

compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset,
 Width, Height, Depth, Format, ImageSize,
 Data) ->

Ericsson AB. All Rights Reserved.: wxErlang | 887

href
href
href

gl

 ok
compressedTextureSubImage3D(Texture, Level, Xoffset, Yoffset,
 Zoffset, Width, Height, Depth, Format,
 ImageSize, Data) ->
 ok
Types:

Texture = Level = Xoffset = Yoffset = Zoffset = Width = Height = Depth =
i()
Format = enum()
ImageSize = i()
Data = offset() | mem()

Texturing allows elements of an image array to be read by shaders.

External documentation.

convolutionFilter1D(Target, Internalformat, Width, Format, Type,
 Image) ->
 ok
Types:

Target = Internalformat = enum()
Width = i()
Format = Type = enum()
Image = offset() | mem()

gl:convolutionFilter1D/6 builds a one-dimensional convolution filter kernel from an array of pixels.

External documentation.

convolutionFilter2D(Target, Internalformat, Width, Height, Format,
 Type, Image) ->
 ok
Types:

Target = Internalformat = enum()
Width = Height = i()
Format = Type = enum()
Image = offset() | mem()

gl:convolutionFilter2D/7 builds a two-dimensional convolution filter kernel from an array of pixels.

External documentation.

convolutionParameterf(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->
 ok
convolutionParameterfv(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->

888 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

gl

 ok
convolutionParameteri(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->
 ok
convolutionParameteriv(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->
 ok
gl:convolutionParameter() sets the value of a convolution parameter.

External documentation.

copyBufferSubData(ReadTarget, WriteTarget, ReadOffset,
 WriteOffset, Size) ->
 ok
Types:

ReadTarget = WriteTarget = enum()
ReadOffset = WriteOffset = Size = i()

gl:copyBufferSubData/5 and glCopyNamedBufferSubData copy part of the data store attached to
a source buffer object to the data store attached to a destination buffer object. The number of basic machine
units indicated by Size is copied from the source at offset ReadOffset to the destination at WriteOffset.
ReadOffset, WriteOffset and Size are in terms of basic machine units.

External documentation.

copyColorSubTable(Target :: enum(),
 Start :: i(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok
gl:copyColorSubTable/5 is used to respecify a contiguous portion of a color table previously defined using
gl:colorTable/6. The pixels copied from the framebuffer replace the portion of the existing table from indices
Start to start+x-1, inclusive. This region may not include any entries outside the range of the color table, as was
originally specified. It is not an error to specify a subtexture with width of 0, but such a specification has no effect.

External documentation.

copyColorTable(Target :: enum(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok
gl:copyColorTable/5 loads a color table with pixels from the current ?GL_READ_BUFFER (rather than from
main memory, as is the case for gl:colorTable/6).

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 889

href
href
href
href

gl

copyConvolutionFilter1D(Target :: enum(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok
gl:copyConvolutionFilter1D/5 defines a one-dimensional convolution filter kernel with pixels from the
current ?GL_READ_BUFFER (rather than from main memory, as is the case for gl:convolutionFilter1D/6).

External documentation.

copyConvolutionFilter2D(Target :: enum(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i()) ->
 ok
gl:copyConvolutionFilter2D/6 defines a two-dimensional convolution filter kernel with pixels from the
current ?GL_READ_BUFFER (rather than from main memory, as is the case for gl:convolutionFilter2D/7).

External documentation.

copyImageSubData(SrcName, SrcTarget, SrcLevel, SrcX, SrcY, SrcZ,
 DstName, DstTarget, DstLevel, DstX, DstY, DstZ,
 SrcWidth, SrcHeight, SrcDepth) ->
 ok
Types:

SrcName = i()
SrcTarget = enum()
SrcLevel = SrcX = SrcY = SrcZ = DstName = i()
DstTarget = enum()
DstLevel = DstX = DstY = DstZ = SrcWidth = SrcHeight = SrcDepth = i()

gl:copyImageSubData/15 may be used to copy data from one image (i.e. texture or renderbuffer) to another.
gl:copyImageSubData/15 does not perform general-purpose conversions such as scaling, resizing, blending,
color-space, or format conversions. It should be considered to operate in a manner similar to a CPU memcpy.
CopyImageSubData can copy between images with different internal formats, provided the formats are compatible.

External documentation.

copyPixels(X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i(),
 Type :: enum()) ->
 ok
gl:copyPixels/5 copies a screen-aligned rectangle of pixels from the specified frame buffer location to a region
relative to the current raster position. Its operation is well defined only if the entire pixel source region is within the

890 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

gl

exposed portion of the window. Results of copies from outside the window, or from regions of the window that are
not exposed, are hardware dependent and undefined.

External documentation.

copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border) ->
 ok
Types:

Target = enum()
Level = i()
Internalformat = enum()
X = Y = Width = Border = i()

gl:copyTexImage1D/7 defines a one-dimensional texture image with pixels from the current ?
GL_READ_BUFFER.

External documentation.

copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height,
 Border) ->
 ok
Types:

Target = enum()
Level = i()
Internalformat = enum()
X = Y = Width = Height = Border = i()

gl:copyTexImage2D/8 defines a two-dimensional texture image, or cube-map texture image with pixels from
the current ?GL_READ_BUFFER.

External documentation.

copyTexSubImage1D(Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok
gl:copyTexSubImage1D/6 and glCopyTextureSubImage1D replace a portion of a one-dimensional
texture image with pixels from the current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage1D/7). For gl:copyTexSubImage1D/6, the texture object that is bound to Target will
be used for the process. For glCopyTextureSubImage1D, Texture tells which texture object should be used
for the purpose of the call.

External documentation.

copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width,
 Height) ->

Ericsson AB. All Rights Reserved.: wxErlang | 891

href
href
href
href

gl

 ok
Types:

Target = enum()
Level = Xoffset = Yoffset = X = Y = Width = Height = i()

gl:copyTexSubImage2D/8 and glCopyTextureSubImage2D replace a rectangular portion of a two-
dimensional texture image, cube-map texture image, rectangular image, or a linear portion of a number of slices of
a one-dimensional array texture with pixels from the current ?GL_READ_BUFFER (rather than from main memory,
as is the case for gl:texSubImage2D/9).

External documentation.

copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y,
 Width, Height) ->
 ok
Types:

Target = enum()
Level = Xoffset = Yoffset = Zoffset = X = Y = Width = Height = i()

gl:copyTexSubImage3D/9 and glCopyTextureSubImage3D functions replace a rectangular portion of a
three-dimensional or two-dimensional array texture image with pixels from the current ?GL_READ_BUFFER (rather
than from main memory, as is the case for gl:texSubImage3D/11).

External documentation.

createBuffers(N :: i()) -> [i()]
gl:createBuffers/1 returns N previously unused buffer names in Buffers, each representing a new buffer
object initialized as if it had been bound to an unspecified target.

External documentation.

createFramebuffers(N :: i()) -> [i()]
gl:createFramebuffers/1 returns N previously unused framebuffer names in Framebuffers, each
representing a new framebuffer object initialized to the default state.

External documentation.

createProgram() -> i()
gl:createProgram/0 creates an empty program object and returns a non-zero value by which it can be referenced.
A program object is an object to which shader objects can be attached. This provides a mechanism to specify the shader
objects that will be linked to create a program. It also provides a means for checking the compatibility of the shaders
that will be used to create a program (for instance, checking the compatibility between a vertex shader and a fragment
shader). When no longer needed as part of a program object, shader objects can be detached.

External documentation.

createProgramPipelines(N :: i()) -> [i()]
gl:createProgramPipelines/1 returns N previously unused program pipeline names in Pipelines, each
representing a new program pipeline object initialized to the default state.

892 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

External documentation.

createQueries(Target :: enum(), N :: i()) -> [i()]
gl:createQueries/2 returns N previously unused query object names in Ids, each representing a new query
object with the specified Target.

External documentation.

createRenderbuffers(N :: i()) -> [i()]
gl:createRenderbuffers/1 returns N previously unused renderbuffer object names in Renderbuffers,
each representing a new renderbuffer object initialized to the default state.

External documentation.

createSamplers(N :: i()) -> [i()]
gl:createSamplers/1 returns N previously unused sampler names in Samplers, each representing a new
sampler object initialized to the default state.

External documentation.

createShader(Type :: enum()) -> i()
gl:createShader/1 creates an empty shader object and returns a non-zero value by which it can be referenced.
A shader object is used to maintain the source code strings that define a shader. ShaderType indicates the type of
shader to be created. Five types of shader are supported. A shader of type ?GL_COMPUTE_SHADER is a shader that
is intended to run on the programmable compute processor. A shader of type ?GL_VERTEX_SHADER is a shader
that is intended to run on the programmable vertex processor. A shader of type ?GL_TESS_CONTROL_SHADER is
a shader that is intended to run on the programmable tessellation processor in the control stage. A shader of type ?
GL_TESS_EVALUATION_SHADER is a shader that is intended to run on the programmable tessellation processor
in the evaluation stage. A shader of type ?GL_GEOMETRY_SHADER is a shader that is intended to run on the
programmable geometry processor. A shader of type ?GL_FRAGMENT_SHADER is a shader that is intended to run
on the programmable fragment processor.

External documentation.

createShaderProgramv(Type :: enum(),
 Strings :: [unicode:chardata()]) ->
 i()
gl:createShaderProgram() creates a program object containing compiled and linked shaders for a single stage
specified by Type. Strings refers to an array of Count strings from which to create the shader executables.

External documentation.

createTextures(Target :: enum(), N :: i()) -> [i()]
gl:createTextures/2 returns N previously unused texture names in Textures, each representing a new
texture object of the dimensionality and type specified by Target and initialized to the default values for that texture
type.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 893

href
href
href
href
href
href
href

gl

createTransformFeedbacks(N :: i()) -> [i()]
gl:createTransformFeedbacks/1 returns N previously unused transform feedback object names in Ids,
each representing a new transform feedback object initialized to the default state.

External documentation.

createVertexArrays(N :: i()) -> [i()]
gl:createVertexArrays/1 returns N previously unused vertex array object names in Arrays, each
representing a new vertex array object initialized to the default state.

External documentation.

cullFace(Mode :: enum()) -> ok
gl:cullFace/1 specifies whether front- or back-facing facets are culled (as specified by mode) when facet
culling is enabled. Facet culling is initially disabled. To enable and disable facet culling, call the gl:enable/1
and gl:disable/1 commands with the argument ?GL_CULL_FACE. Facets include triangles, quadrilaterals,
polygons, and rectangles.

External documentation.

debugMessageControl(Source :: enum(),
 Type :: enum(),
 Severity :: enum(),
 Ids :: [i()],
 Enabled :: 0 | 1) ->
 ok
gl:debugMessageControl/5 controls the reporting of debug messages generated by a debug context. The
parameters Source, Type and Severity form a filter to select messages from the pool of potential messages
generated by the GL.

External documentation.

debugMessageInsert(Source :: enum(),
 Type :: enum(),
 Id :: i(),
 Severity :: enum(),
 Buf :: string()) ->
 ok
gl:debugMessageInsert/5 inserts a user-supplied message into the debug output queue. Source specifies
the source that will be used to classify the message and must be ?GL_DEBUG_SOURCE_APPLICATION or
?GL_DEBUG_SOURCE_THIRD_PARTY. All other sources are reserved for use by the GL implementation.
Type indicates the type of the message to be inserted and may be one of ?GL_DEBUG_TYPE_ERROR,
?GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR, ?GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, ?
GL_DEBUG_TYPE_PORTABILITY, ?GL_DEBUG_TYPE_PERFORMANCE, ?GL_DEBUG_TYPE_MARKER, ?
GL_DEBUG_TYPE_PUSH_GROUP, ?GL_DEBUG_TYPE_POP_GROUP, or ?GL_DEBUG_TYPE_OTHER.
Severity indicates the severity of the message and may be ?
GL_DEBUG_SEVERITY_LOW, ?GL_DEBUG_SEVERITY_MEDIUM, ?GL_DEBUG_SEVERITY_HIGH or ?
GL_DEBUG_SEVERITY_NOTIFICATION. Id is available for application defined use and may be any value. This
value will be recorded and used to identify the message.

External documentation.

894 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

deleteBuffers(Buffers :: [i()]) -> ok
gl:deleteBuffers/1 deletes N buffer objects named by the elements of the array Buffers. After a buffer
object is deleted, it has no contents, and its name is free for reuse (for example by gl:genBuffers/1). If a buffer
object that is currently bound is deleted, the binding reverts to 0 (the absence of any buffer object).

External documentation.

deleteFramebuffers(Framebuffers :: [i()]) -> ok
gl:deleteFramebuffers/1 deletes the N framebuffer objects whose names are stored in the array addressed by
Framebuffers. The name zero is reserved by the GL and is silently ignored, should it occur in Framebuffers,
as are other unused names. Once a framebuffer object is deleted, its name is again unused and it has no
attachments. If a framebuffer that is currently bound to one or more of the targets ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER is deleted, it is as though gl:bindFramebuffer/2 had been executed with the
corresponding Target and Framebuffer zero.

External documentation.

deleteLists(List :: i(), Range :: i()) -> ok
gl:deleteLists/2 causes a contiguous group of display lists to be deleted. List is the name of the first display
list to be deleted, and Range is the number of display lists to delete. All display lists d with list<= d<= list
+range-1 are deleted.

External documentation.

deleteProgram(Program :: i()) -> ok
gl:deleteProgram/1 frees the memory and invalidates the name associated with the program object specified
by Program. This command effectively undoes the effects of a call to gl:createProgram/0.

External documentation.

deleteProgramPipelines(Pipelines :: [i()]) -> ok
gl:deleteProgramPipelines/1 deletes the N program pipeline objects whose names are stored in the array
Pipelines. Unused names in Pipelines are ignored, as is the name zero. After a program pipeline object is
deleted, its name is again unused and it has no contents. If program pipeline object that is currently bound is deleted,
the binding for that object reverts to zero and no program pipeline object becomes current.

External documentation.

deleteQueries(Ids :: [i()]) -> ok
gl:deleteQueries/1 deletes N query objects named by the elements of the array Ids. After a query object is
deleted, it has no contents, and its name is free for reuse (for example by gl:genQueries/1).

External documentation.

deleteRenderbuffers(Renderbuffers :: [i()]) -> ok
gl:deleteRenderbuffers/1 deletes the N renderbuffer objects whose names are stored in the array
addressed by Renderbuffers. The name zero is reserved by the GL and is silently ignored, should it occur in
Renderbuffers, as are other unused names. Once a renderbuffer object is deleted, its name is again unused and it
has no contents. If a renderbuffer that is currently bound to the target ?GL_RENDERBUFFER is deleted, it is as though
gl:bindRenderbuffer/2 had been executed with a Target of ?GL_RENDERBUFFER and a Name of zero.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 895

href
href
href
href
href
href
href

gl

deleteSamplers(Samplers :: [i()]) -> ok
gl:deleteSamplers/1 deletes N sampler objects named by the elements of the array Samplers. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently bound to a sampler unit is deleted, it is
as though gl:bindSampler/2 is called with unit set to the unit the sampler is bound to and sampler zero. Unused
names in samplers are silently ignored, as is the reserved name zero.

External documentation.

deleteShader(Shader :: i()) -> ok
gl:deleteShader/1 frees the memory and invalidates the name associated with the shader object specified by
Shader. This command effectively undoes the effects of a call to gl:createShader/1.

External documentation.

deleteSync(Sync :: i()) -> ok
gl:deleteSync/1 deletes the sync object specified by Sync. If the fence command corresponding to the
specified sync object has completed, or if no gl:waitSync/3 or gl:clientWaitSync/3 commands are
blocking on Sync, the object is deleted immediately. Otherwise, Sync is flagged for deletion and will be deleted
when it is no longer associated with any fence command and is no longer blocking any gl:waitSync/3 or
gl:clientWaitSync/3 command. In either case, after gl:deleteSync/1 returns, the name Sync is invalid
and can no longer be used to refer to the sync object.

External documentation.

deleteTextures(Textures :: [i()]) -> ok
gl:deleteTextures/1 deletes N textures named by the elements of the array Textures. After a texture is
deleted, it has no contents or dimensionality, and its name is free for reuse (for example by gl:genTextures/1).
If a texture that is currently bound is deleted, the binding reverts to 0 (the default texture).

External documentation.

deleteTransformFeedbacks(Ids :: [i()]) -> ok
gl:deleteTransformFeedbacks/1 deletes the N transform feedback objects whose names are stored in the
array Ids. Unused names in Ids are ignored, as is the name zero. After a transform feedback object is deleted, its
name is again unused and it has no contents. If an active transform feedback object is deleted, its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active.

External documentation.

deleteVertexArrays(Arrays :: [i()]) -> ok
gl:deleteVertexArrays/1 deletes N vertex array objects whose names are stored in the array addressed by
Arrays. Once a vertex array object is deleted it has no contents and its name is again unused. If a vertex array object
that is currently bound is deleted, the binding for that object reverts to zero and the default vertex array becomes
current. Unused names in Arrays are silently ignored, as is the value zero.

External documentation.

depthFunc(Func :: enum()) -> ok
gl:depthFunc/1 specifies the function used to compare each incoming pixel depth value with the depth value
present in the depth buffer. The comparison is performed only if depth testing is enabled. (See gl:enable/1 and
gl:disable/1 of ?GL_DEPTH_TEST.)

896 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

External documentation.

depthMask(Flag :: 0 | 1) -> ok
gl:depthMask/1 specifies whether the depth buffer is enabled for writing. If Flag is ?GL_FALSE, depth buffer
writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

External documentation.

depthRange(Near_val :: clamp(), Far_val :: clamp()) -> ok
depthRangef(N :: f(), F :: f()) -> ok
After clipping and division by w, depth coordinates range from -1 to 1, corresponding to the near and far clipping
planes. gl:depthRange/2 specifies a linear mapping of the normalized depth coordinates in this range to window
depth coordinates. Regardless of the actual depth buffer implementation, window coordinate depth values are treated
as though they range from 0 through 1 (like color components). Thus, the values accepted by gl:depthRange/2
are both clamped to this range before they are accepted.

External documentation.

depthRangeArrayv(First :: i(), V :: [{f(), f()}]) -> ok
After clipping and division by w, depth coordinates range from -1 to 1, corresponding to the near and far clipping planes.
Each viewport has an independent depth range specified as a linear mapping of the normalized depth coordinates in
this range to window depth coordinates. Regardless of the actual depth buffer implementation, window coordinate
depth values are treated as though they range from 0 through 1 (like color components). gl:depthRangeArray()
specifies a linear mapping of the normalized depth coordinates in this range to window depth coordinates for each
viewport in the range [First, First + Count). Thus, the values accepted by gl:depthRangeArray() are
both clamped to this range before they are accepted.

External documentation.

depthRangeIndexed(Index :: i(), N :: f(), F :: f()) -> ok
After clipping and division by w, depth coordinates range from -1 to 1, corresponding to the near and far clipping planes.
Each viewport has an independent depth range specified as a linear mapping of the normalized depth coordinates in this
range to window depth coordinates. Regardless of the actual depth buffer implementation, window coordinate depth
values are treated as though they range from 0 through 1 (like color components). gl:depthRangeIndexed/3
specifies a linear mapping of the normalized depth coordinates in this range to window depth coordinates for a specified
viewport. Thus, the values accepted by gl:depthRangeIndexed/3 are both clamped to this range before they
are accepted.

External documentation.

detachShader(Program :: i(), Shader :: i()) -> ok
gl:detachShader/2 detaches the shader object specified by Shader from the program object specified by
Program. This command can be used to undo the effect of the command gl:attachShader/2.

External documentation.

dispatchCompute(Num_groups_x :: i(),
 Num_groups_y :: i(),
 Num_groups_z :: i()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 897

href
href
href
href
href
href

gl

 ok
gl:dispatchCompute/3 launches one or more compute work groups. Each work group is processed by the
active program object for the compute shader stage. While the individual shader invocations within a work group are
executed as a unit, work groups are executed completely independently and in unspecified order. Num_groups_x,
Num_groups_y and Num_groups_z specify the number of local work groups that will be dispatched in the X,
Y and Z dimensions, respectively.

External documentation.

dispatchComputeIndirect(Indirect :: i()) -> ok
gl:dispatchComputeIndirect/1 launches one or more compute work groups using parameters stored in the
buffer object currently bound to the ?GL_DISPATCH_INDIRECT_BUFFER target. Each work group is processed
by the active program object for the compute shader stage. While the individual shader invocations within a work
group are executed as a unit, work groups are executed completely independently and in unspecified order. Indirect
contains the offset into the data store of the buffer object bound to the ?GL_DISPATCH_INDIRECT_BUFFER target
at which the parameters are stored.

External documentation.

drawArrays(Mode :: enum(), First :: i(), Count :: i()) -> ok
gl:drawArrays/3 specifies multiple geometric primitives with very few subroutine calls. Instead of calling a
GL procedure to pass each individual vertex, normal, texture coordinate, edge flag, or color, you can prespecify
separate arrays of vertices, normals, and colors and use them to construct a sequence of primitives with a single call
to gl:drawArrays/3.

External documentation.

drawArraysIndirect(Mode :: enum(), Indirect :: offset() | mem()) ->
 ok
gl:drawArraysIndirect/2 specifies multiple geometric primitives with very few subroutine calls.
gl:drawArraysIndirect/2 behaves similarly to gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to gl:drawArraysInstancedBaseInstance/5 are stored in memory at the
address given by Indirect.

External documentation.

drawArraysInstanced(Mode :: enum(),
 First :: i(),
 Count :: i(),
 Instancecount :: i()) ->
 ok
gl:drawArraysInstanced/4 behaves identically to gl:drawArrays/3 except that Instancecount
instances of the range of elements are executed and the value of the internal counter InstanceID advances
for each iteration. InstanceID is an internal 32-bit integer counter that may be read by a vertex shader as ?
gl_InstanceID.

External documentation.

drawArraysInstancedBaseInstance(Mode :: enum(),
 First :: i(),
 Count :: i(),
 Instancecount :: i(),

898 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

 Baseinstance :: i()) ->
 ok
gl:drawArraysInstancedBaseInstance/5 behaves identically to gl:drawArrays/3 except that
Instancecount instances of the range of elements are executed and the value of the internal counter InstanceID
advances for each iteration. InstanceID is an internal 32-bit integer counter that may be read by a vertex shader
as ?gl_InstanceID.

External documentation.

drawBuffer(Mode :: enum()) -> ok
When colors are written to the frame buffer, they are written into the color buffers specified by gl:drawBuffer/1.
One of the following values can be used for default framebuffer:

External documentation.

drawBuffers(Bufs :: [enum()]) -> ok
gl:drawBuffers/1 and glNamedFramebufferDrawBuffers define an array of buffers into which outputs
from the fragment shader data will be written. If a fragment shader writes a value to one or more user defined
output variables, then the value of each variable will be written into the buffer specified at a location within Bufs
corresponding to the location assigned to that user defined output. The draw buffer used for user defined outputs
assigned to locations greater than or equal to N is implicitly set to ?GL_NONE and any data written to such an output
is discarded.

External documentation.

drawElements(Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem()) ->
 ok
gl:drawElements/4 specifies multiple geometric primitives with very few subroutine calls. Instead of calling
a GL function to pass each individual vertex, normal, texture coordinate, edge flag, or color, you can prespecify
separate arrays of vertices, normals, and so on, and use them to construct a sequence of primitives with a single call
to gl:drawElements/4.

External documentation.

drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex) ->
 ok
Types:

Mode = enum()
Count = i()
Type = enum()
Indices = offset() | mem()
Basevertex = i()

gl:drawElementsBaseVertex/5 behaves identically to gl:drawElements/4 except that the ith element
transferred by the corresponding draw call will be taken from element Indices[i] + Basevertex of each enabled
array. If the resulting value is larger than the maximum value representable by Type, it is as if the calculation were
upconverted to 32-bit unsigned integers (with wrapping on overflow conditions). The operation is undefined if the
sum would be negative.

Ericsson AB. All Rights Reserved.: wxErlang | 899

href
href
href
href

gl

External documentation.

drawElementsIndirect(Mode :: enum(),
 Type :: enum(),
 Indirect :: offset() | mem()) ->
 ok
gl:drawElementsIndirect/3 specifies multiple indexed geometric primitives with
very few subroutine calls. gl:drawElementsIndirect/3 behaves similarly to
gl:drawElementsInstancedBaseVertexBaseInstance/7, execpt that the parameters to
gl:drawElementsInstancedBaseVertexBaseInstance/7 are stored in memory at the address given by
Indirect.

External documentation.

drawElementsInstanced(Mode, Count, Type, Indices, Instancecount) ->
 ok
Types:

Mode = enum()
Count = i()
Type = enum()
Indices = offset() | mem()
Instancecount = i()

gl:drawElementsInstanced/5 behaves identically to gl:drawElements/4 except that
Instancecount instances of the set of elements are executed and the value of the internal counter InstanceID
advances for each iteration. InstanceID is an internal 32-bit integer counter that may be read by a vertex shader
as ?gl_InstanceID.

External documentation.

drawElementsInstancedBaseInstance(Mode, Count, Type, Indices,
 Instancecount, Baseinstance) ->
 ok
Types:

Mode = enum()
Count = i()
Type = enum()
Indices = offset() | mem()
Instancecount = Baseinstance = i()

gl:drawElementsInstancedBaseInstance/6 behaves identically to gl:drawElements/4 except that
Instancecount instances of the set of elements are executed and the value of the internal counter InstanceID
advances for each iteration. InstanceID is an internal 32-bit integer counter that may be read by a vertex shader
as ?gl_InstanceID.

External documentation.

drawElementsInstancedBaseVertex(Mode, Count, Type, Indices,
 Instancecount, Basevertex) ->
 ok
Types:

900 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

Mode = enum()
Count = i()
Type = enum()
Indices = offset() | mem()
Instancecount = Basevertex = i()

gl:drawElementsInstancedBaseVertex/6 behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be taken from element Indices[i] +
Basevertex of each enabled array. If the resulting value is larger than the maximum value representable by Type,
it is as if the calculation were upconverted to 32-bit unsigned integers (with wrapping on overflow conditions). The
operation is undefined if the sum would be negative.

External documentation.

drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type,
 Indices,
 Instancecount,
 Basevertex,
 Baseinstance) ->
 ok
Types:

Mode = enum()
Count = i()
Type = enum()
Indices = offset() | mem()
Instancecount = Basevertex = Baseinstance = i()

gl:drawElementsInstancedBaseVertexBaseInstance/7 behaves identically to
gl:drawElementsInstanced/5 except that the ith element transferred by the corresponding draw call will
be taken from element Indices[i] + Basevertex of each enabled array. If the resulting value is larger than the
maximum value representable by Type, it is as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be negative.

External documentation.

drawPixels(Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem()) ->
 ok
gl:drawPixels/5 reads pixel data from memory and writes it into the frame buffer relative to the current raster
position, provided that the raster position is valid. Use gl:rasterPos() or gl:windowPos() to set the current
raster position; use gl:get() with argument ?GL_CURRENT_RASTER_POSITION_VALID to determine if the
specified raster position is valid, and gl:get() with argument ?GL_CURRENT_RASTER_POSITION to query the
raster position.

External documentation.

drawRangeElements(Mode, Start, End, Count, Type, Indices) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 901

href
href
href

gl

Mode = enum()
Start = End = Count = i()
Type = enum()
Indices = offset() | mem()

gl:drawRangeElements/6 is a restricted form of gl:drawElements/4. Mode, and Count match the
corresponding arguments to gl:drawElements/4, with the additional constraint that all values in the arrays
Count must lie between Start and End, inclusive.

External documentation.

drawRangeElementsBaseVertex(Mode, Start, End, Count, Type,
 Indices, Basevertex) ->
 ok
Types:

Mode = enum()
Start = End = Count = i()
Type = enum()
Indices = offset() | mem()
Basevertex = i()

gl:drawRangeElementsBaseVertex/7 is a restricted form of gl:drawElementsBaseVertex/5.
Mode, Count and Basevertex match the corresponding arguments to gl:drawElementsBaseVertex/5,
with the additional constraint that all values in the array Indices must lie between Start and End, inclusive,
prior to adding Basevertex. Index values lying outside the range [Start, End] are treated in the same way as
gl:drawElementsBaseVertex/5. The ith element transferred by the corresponding draw call will be taken
from element Indices[i] + Basevertex of each enabled array. If the resulting value is larger than the maximum
value representable by Type, it is as if the calculation were upconverted to 32-bit unsigned integers (with wrapping
on overflow conditions). The operation is undefined if the sum would be negative.

External documentation.

drawTransformFeedback(Mode :: enum(), Id :: i()) -> ok
gl:drawTransformFeedback/2 draws primitives of a type specified by Mode using a count retrieved from
the transform feedback specified by Id. Calling gl:drawTransformFeedback/2 is equivalent to calling
gl:drawArrays/3 with Mode as specified, First set to zero, and Count set to the number of vertices captured
on vertex stream zero the last time transform feedback was active on the transform feedback object named by Id.

External documentation.

drawTransformFeedbackInstanced(Mode :: enum(),
 Id :: i(),
 Instancecount :: i()) ->
 ok
gl:drawTransformFeedbackInstanced/3 draws multiple copies of a range of primitives of a type specified
by Mode using a count retrieved from the transform feedback stream specified by Stream of the transform
feedback object specified by Id. Calling gl:drawTransformFeedbackInstanced/3 is equivalent to calling
gl:drawArraysInstanced/4 with Mode and Instancecount as specified, First set to zero, and Count
set to the number of vertices captured on vertex stream zero the last time transform feedback was active on the transform
feedback object named by Id.

External documentation.

902 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

drawTransformFeedbackStream(Mode :: enum(),
 Id :: i(),
 Stream :: i()) ->
 ok
gl:drawTransformFeedbackStream/3 draws primitives of a type specified by Mode using a count retrieved
from the transform feedback stream specified by Stream of the transform feedback object specified by Id.
Calling gl:drawTransformFeedbackStream/3 is equivalent to calling gl:drawArrays/3 with Mode as
specified, First set to zero, and Count set to the number of vertices captured on vertex stream Stream the last
time transform feedback was active on the transform feedback object named by Id.

External documentation.

drawTransformFeedbackStreamInstanced(Mode :: enum(),
 Id :: i(),
 Stream :: i(),
 Instancecount :: i()) ->
 ok
gl:drawTransformFeedbackStreamInstanced/4 draws multiple copies of a range of primitives of a type
specified by Mode using a count retrieved from the transform feedback stream specified by Stream of the transform
feedback object specified by Id. Calling gl:drawTransformFeedbackStreamInstanced/4 is equivalent
to calling gl:drawArraysInstanced/4 with Mode and Instancecount as specified, First set to zero,
and Count set to the number of vertices captured on vertex stream Stream the last time transform feedback was
active on the transform feedback object named by Id.

External documentation.

edgeFlag(Flag :: 0 | 1) -> ok
edgeFlagv(X1 :: {Flag :: 0 | 1}) -> ok
Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a
gl:'begin'/1/gl:'end'/0 pair is marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the start of a boundary edge. Otherwise, the
vertex is marked as the start of a nonboundary edge. gl:edgeFlag/1 sets the edge flag bit to ?GL_TRUE if Flag
is ?GL_TRUE and to ?GL_FALSE otherwise.

External documentation.

edgeFlagPointer(Stride :: i(), Ptr :: offset() | mem()) -> ok
gl:edgeFlagPointer/2 specifies the location and data format of an array of boolean edge flags to use when
rendering. Stride specifies the byte stride from one edge flag to the next, allowing vertices and attributes to be
packed into a single array or stored in separate arrays.

External documentation.

disable(Cap :: enum()) -> ok
disablei(Target :: enum(), Index :: i()) -> ok
enable(Cap :: enum()) -> ok
enablei(Target :: enum(), Index :: i()) -> ok
gl:enable/1 and gl:disable/1 enable and disable various capabilities. Use gl:isEnabled/1 or
gl:get() to determine the current setting of any capability. The initial value for each capability with the

Ericsson AB. All Rights Reserved.: wxErlang | 903

href
href
href
href

gl

exception of ?GL_DITHER and ?GL_MULTISAMPLE is ?GL_FALSE. The initial value for ?GL_DITHER and ?
GL_MULTISAMPLE is ?GL_TRUE.

External documentation.

disableClientState(Cap :: enum()) -> ok
enableClientState(Cap :: enum()) -> ok
gl:enableClientState/1 and gl:disableClientState/1 enable or disable individual client-side
capabilities. By default, all client-side capabilities are disabled. Both gl:enableClientState/1 and
gl:disableClientState/1 take a single argument, Cap, which can assume one of the following values:

External documentation.

disableVertexArrayAttrib(Vaobj :: i(), Index :: i()) -> ok
disableVertexAttribArray(Index :: i()) -> ok
enableVertexArrayAttrib(Vaobj :: i(), Index :: i()) -> ok
enableVertexAttribArray(Index :: i()) -> ok
gl:enableVertexAttribArray/1 and gl:enableVertexArrayAttrib/2 enable the generic vertex
attribute array specified by Index. gl:enableVertexAttribArray/1 uses currently bound vertex array object
for the operation, whereas gl:enableVertexArrayAttrib/2 updates state of the vertex array object with ID
Vaobj.

External documentation.

evalCoord1d(U :: f()) -> ok
evalCoord1dv(X1 :: {U :: f()}) -> ok
evalCoord1f(U :: f()) -> ok
evalCoord1fv(X1 :: {U :: f()}) -> ok
evalCoord2d(U :: f(), V :: f()) -> ok
evalCoord2dv(X1 :: {U :: f(), V :: f()}) -> ok
evalCoord2f(U :: f(), V :: f()) -> ok
evalCoord2fv(X1 :: {U :: f(), V :: f()}) -> ok
gl:evalCoord1() evaluates enabled one-dimensional maps at argument U. gl:evalCoord2() does the same
for two-dimensional maps using two domain values, U and V. To define a map, call glMap1 and glMap2; to enable
and disable it, call gl:enable/1 and gl:disable/1.

External documentation.

evalMesh1(Mode :: enum(), I1 :: i(), I2 :: i()) -> ok
evalMesh2(Mode :: enum(),
 I1 :: i(),
 I2 :: i(),
 J1 :: i(),
 J2 :: i()) ->
 ok
gl:mapGrid() and gl:evalMesh() are used in tandem to efficiently generate and evaluate a series of evenly-
spaced map domain values. gl:evalMesh() steps through the integer domain of a one- or two-dimensional grid,
whose range is the domain of the evaluation maps specified by glMap1 and glMap2. Mode determines whether the
resulting vertices are connected as points, lines, or filled polygons.

904 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

External documentation.

evalPoint1(I :: i()) -> ok
evalPoint2(I :: i(), J :: i()) -> ok
gl:mapGrid() and gl:evalMesh() are used in tandem to efficiently generate and evaluate a series of evenly
spaced map domain values. gl:evalPoint() can be used to evaluate a single grid point in the same gridspace
that is traversed by gl:evalMesh(). Calling gl:evalPoint1/1 is equivalent to calling glEvalCoord1(i.ð u
+u 1); where ð u=(u 2-u 1)/n

External documentation.

feedbackBuffer(Size :: i(), Type :: enum(), Buffer :: mem()) -> ok
The gl:feedbackBuffer/3 function controls feedback. Feedback, like selection, is a GL mode. The mode is
selected by calling gl:renderMode/1 with ?GL_FEEDBACK. When the GL is in feedback mode, no pixels are
produced by rasterization. Instead, information about primitives that would have been rasterized is fed back to the
application using the GL.

External documentation.

fenceSync(Condition :: enum(), Flags :: i()) -> i()
gl:fenceSync/2 creates a new fence sync object, inserts a fence command into the GL command stream and
associates it with that sync object, and returns a non-zero name corresponding to the sync object.

External documentation.

finish() -> ok
gl:finish/0 does not return until the effects of all previously called GL commands are complete. Such effects
include all changes to GL state, all changes to connection state, and all changes to the frame buffer contents.

External documentation.

flush() -> ok
Different GL implementations buffer commands in several different locations, including network buffers and the
graphics accelerator itself. gl:flush/0 empties all of these buffers, causing all issued commands to be executed
as quickly as they are accepted by the actual rendering engine. Though this execution may not be completed in any
particular time period, it does complete in finite time.

External documentation.

flushMappedBufferRange(Target :: enum(),
 Offset :: i(),
 Length :: i()) ->
 ok
flushMappedNamedBufferRange(Buffer :: i(),
 Offset :: i(),
 Length :: i()) ->
 ok
gl:flushMappedBufferRange/3 indicates that modifications have been made to a range of a mapped buffer
object. The buffer object must previously have been mapped with the ?GL_MAP_FLUSH_EXPLICIT_BIT flag.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 905

href
href
href
href
href
href
href

gl

fogf(Pname :: enum(), Param :: f()) -> ok
fogfv(Pname :: enum(), Params :: tuple()) -> ok
fogi(Pname :: enum(), Param :: i()) -> ok
fogiv(Pname :: enum(), Params :: tuple()) -> ok
Fog is initially disabled. While enabled, fog affects rasterized geometry, bitmaps, and pixel blocks, but not buffer clear
operations. To enable and disable fog, call gl:enable/1 and gl:disable/1 with argument ?GL_FOG.

External documentation.

fogCoordd(Coord :: f()) -> ok
fogCoorddv(X1 :: {Coord :: f()}) -> ok
fogCoordf(Coord :: f()) -> ok
fogCoordfv(X1 :: {Coord :: f()}) -> ok
gl:fogCoord() specifies the fog coordinate that is associated with each vertex and the current raster position. The
value specified is interpolated and used in computing the fog color (see gl:fog()).

External documentation.

fogCoordPointer(Type :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok
gl:fogCoordPointer/3 specifies the location and data format of an array of fog coordinates to use when
rendering. Type specifies the data type of each fog coordinate, and Stride specifies the byte stride from one fog
coordinate to the next, allowing vertices and attributes to be packed into a single array or stored in separate arrays.

External documentation.

framebufferParameteri(Target :: enum(),
 Pname :: enum(),
 Param :: i()) ->
 ok
gl:framebufferParameteri/3 and glNamedFramebufferParameteri modify the value of the
parameter named Pname in the specified framebuffer object. There are no modifiable parameters of the default draw
and read framebuffer, so they are not valid targets of these commands.

External documentation.

framebufferRenderbuffer(Target, Attachment, Renderbuffertarget,
 Renderbuffer) ->
 ok
Types:

Target = Attachment = Renderbuffertarget = enum()
Renderbuffer = i()

gl:framebufferRenderbuffer/4 and glNamedFramebufferRenderbuffer attaches a renderbuffer as
one of the logical buffers of the specified framebuffer object. Renderbuffers cannot be attached to the default draw
and read framebuffer, so they are not valid targets of these commands.

External documentation.

906 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

framebufferTexture(Target :: enum(),
 Attachment :: enum(),
 Texture :: i(),
 Level :: i()) ->
 ok
framebufferTexture1D(Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i()) ->
 ok
framebufferTexture2D(Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i()) ->
 ok
framebufferTexture3D(Target, Attachment, Textarget, Texture,
 Level, Zoffset) ->
 ok
framebufferTextureFaceARB(Target :: enum(),
 Attachment :: enum(),
 Texture :: i(),
 Level :: i(),
 Face :: enum()) ->
 ok
framebufferTextureLayer(Target :: enum(),
 Attachment :: enum(),
 Texture :: i(),
 Level :: i(),
 Layer :: i()) ->
 ok
These commands attach a selected mipmap level or image of a texture object as one of the logical buffers of the
specified framebuffer object. Textures cannot be attached to the default draw and read framebuffer, so they are not
valid targets of these commands.

External documentation.

frontFace(Mode :: enum()) -> ok
In a scene composed entirely of opaque closed surfaces, back-facing polygons are never visible. Eliminating these
invisible polygons has the obvious benefit of speeding up the rendering of the image. To enable and disable elimination
of back-facing polygons, call gl:enable/1 and gl:disable/1 with argument ?GL_CULL_FACE.

External documentation.

frustum(Left :: f(),
 Right :: f(),
 Bottom :: f(),
 Top :: f(),
 Near_val :: f(),
 Far_val :: f()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 907

href
href

gl

 ok
gl:frustum/6 describes a perspective matrix that produces a perspective projection. The current matrix
(see gl:matrixMode/1) is multiplied by this matrix and the result replaces the current matrix, as if
gl:multMatrix() were called with the following matrix as its argument:

External documentation.

genBuffers(N :: i()) -> [i()]
gl:genBuffers/1 returns N buffer object names in Buffers. There is no guarantee that the names form a
contiguous set of integers; however, it is guaranteed that none of the returned names was in use immediately before
the call to gl:genBuffers/1.

External documentation.

genFramebuffers(N :: i()) -> [i()]
gl:genFramebuffers/1 returns N framebuffer object names in Ids. There is no guarantee that the names form
a contiguous set of integers; however, it is guaranteed that none of the returned names was in use immediately before
the call to gl:genFramebuffers/1.

External documentation.

genLists(Range :: i()) -> i()
gl:genLists/1 has one argument, Range. It returns an integer n such that Range contiguous empty display lists,
named n, n+1, ..., n+range-1, are created. If Range is 0, if there is no group of Range contiguous names available,
or if any error is generated, no display lists are generated, and 0 is returned.

External documentation.

genProgramPipelines(N :: i()) -> [i()]
gl:genProgramPipelines/1 returns N previously unused program pipeline object names in Pipelines.
These names are marked as used, for the purposes of gl:genProgramPipelines/1 only, but they acquire
program pipeline state only when they are first bound.

External documentation.

genQueries(N :: i()) -> [i()]
gl:genQueries/1 returns N query object names in Ids. There is no guarantee that the names form a contiguous
set of integers; however, it is guaranteed that none of the returned names was in use immediately before the call to
gl:genQueries/1.

External documentation.

genRenderbuffers(N :: i()) -> [i()]
gl:genRenderbuffers/1 returns N renderbuffer object names in Renderbuffers. There is no guarantee that
the names form a contiguous set of integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genRenderbuffers/1.

External documentation.

908 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href
href

gl

genSamplers(Count :: i()) -> [i()]
gl:genSamplers/1 returns N sampler object names in Samplers. There is no guarantee that the names form a
contiguous set of integers; however, it is guaranteed that none of the returned names was in use immediately before
the call to gl:genSamplers/1.

External documentation.

genTextures(N :: i()) -> [i()]
gl:genTextures/1 returns N texture names in Textures. There is no guarantee that the names form a contiguous
set of integers; however, it is guaranteed that none of the returned names was in use immediately before the call to
gl:genTextures/1.

External documentation.

genTransformFeedbacks(N :: i()) -> [i()]
gl:genTransformFeedbacks/1 returns N previously unused transform feedback object names in Ids. These
names are marked as used, for the purposes of gl:genTransformFeedbacks/1 only, but they acquire transform
feedback state only when they are first bound.

External documentation.

genVertexArrays(N :: i()) -> [i()]
gl:genVertexArrays/1 returns N vertex array object names in Arrays. There is no guarantee that the names
form a contiguous set of integers; however, it is guaranteed that none of the returned names was in use immediately
before the call to gl:genVertexArrays/1.

External documentation.

generateMipmap(Target :: enum()) -> ok
generateTextureMipmap(Texture :: i()) -> ok
gl:generateMipmap/1 and gl:generateTextureMipmap/1 generates mipmaps for the specified
texture object. For gl:generateMipmap/1, the texture object that is bound to Target. For
gl:generateTextureMipmap/1, Texture is the name of the texture object.

External documentation.

getBooleani_v(Target :: enum(), Index :: i()) -> [0 | 1]
getBooleanv(Pname :: enum()) -> [0 | 1]
getDoublei_v(Target :: enum(), Index :: i()) -> [f()]
getDoublev(Pname :: enum()) -> [f()]
getFloati_v(Target :: enum(), Index :: i()) -> [f()]
getFloatv(Pname :: enum()) -> [f()]
getInteger64i_v(Target :: enum(), Index :: i()) -> [i()]
getInteger64v(Pname :: enum()) -> [i()]
getIntegeri_v(Target :: enum(), Index :: i()) -> [i()]
getIntegerv(Pname :: enum()) -> [i()]
These commands return values for simple state variables in GL. Pname is a symbolic constant indicating the state
variable to be returned, and Data is a pointer to an array of the indicated type in which to place the returned data.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 909

href
href
href
href
href
href

gl

getActiveAttrib(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(), Type :: enum(), Name :: string()}
gl:getActiveAttrib/3 returns information about an active attribute variable in the program object specified
by Program. The number of active attributes can be obtained by calling gl:getProgram() with the value ?
GL_ACTIVE_ATTRIBUTES. A value of 0 for Index selects the first active attribute variable. Permissible values
for Index range from zero to the number of active attribute variables minus one.

External documentation.

getActiveSubroutineName(Program :: i(),
 Shadertype :: enum(),
 Index :: i(),
 Bufsize :: i()) ->
 string()
gl:getActiveSubroutineName/4 queries the name of an active shader subroutine uniform from the program
object given in Program. Index specifies the index of the shader subroutine uniform within the shader stage given
by Stage, and must between zero and the value of ?GL_ACTIVE_SUBROUTINES minus one for the shader stage.

External documentation.

getActiveSubroutineUniformName(Program :: i(),
 Shadertype :: enum(),
 Index :: i(),
 Bufsize :: i()) ->
 string()
gl:getActiveSubroutineUniformName/4 retrieves the name of an active shader subroutine uniform.
Program contains the name of the program containing the uniform. Shadertype specifies the stage for
which the uniform location, given by Index, is valid. Index must be between zero and the value of ?
GL_ACTIVE_SUBROUTINE_UNIFORMS minus one for the shader stage.

External documentation.

getActiveUniform(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(),
 Type :: enum(),
 Name :: string()}
gl:getActiveUniform/3 returns information about an active uniform variable in the program object specified
by Program. The number of active uniform variables can be obtained by calling gl:getProgram() with the value
?GL_ACTIVE_UNIFORMS. A value of 0 for Index selects the first active uniform variable. Permissible values for
Index range from zero to the number of active uniform variables minus one.

External documentation.

getActiveUniformBlockiv(Program :: i(),
 UniformBlockIndex :: i(),
 Pname :: enum(),
 Params :: mem()) ->
 ok
gl:getActiveUniformBlockiv/4 retrieves information about an active uniform block within Program.

External documentation.

910 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

getActiveUniformBlockName(Program :: i(),
 UniformBlockIndex :: i(),
 BufSize :: i()) ->
 string()
gl:getActiveUniformBlockName/3 retrieves the name of the active uniform block at
UniformBlockIndex within Program.

External documentation.

getActiveUniformName(Program :: i(),
 UniformIndex :: i(),
 BufSize :: i()) ->
 string()
gl:getActiveUniformName/3 returns the name of the active uniform at UniformIndex within Program.
If UniformName is not NULL, up to BufSize characters (including a nul-terminator) will be written into the
array whose address is specified by UniformName. If Length is not NULL, the number of characters that were
(or would have been) written into UniformName (not including the nul-terminator) will be placed in the variable
whose address is specified in Length. If Length is NULL, no length is returned. The length of the longest uniform
name in Program is given by the value of ?GL_ACTIVE_UNIFORM_MAX_LENGTH, which can be queried with
gl:getProgram().

External documentation.

getActiveUniformsiv(Program :: i(),
 UniformIndices :: [i()],
 Pname :: enum()) ->
 [i()]
gl:getActiveUniformsiv/3 queries the value of the parameter named Pname for each of the uniforms within
Program whose indices are specified in the array of UniformCount unsigned integers UniformIndices. Upon
success, the value of the parameter for each uniform is written into the corresponding entry in the array whose address
is given in Params. If an error is generated, nothing is written into Params.

External documentation.

getAttachedShaders(Program :: i(), MaxCount :: i()) -> [i()]
gl:getAttachedShaders/2 returns the names of the shader objects attached to Program. The names of shader
objects that are attached to Program will be returned in Shaders. The actual number of shader names written into
Shaders is returned in Count. If no shader objects are attached to Program, Count is set to 0. The maximum
number of shader names that may be returned in Shaders is specified by MaxCount.

External documentation.

getAttribLocation(Program :: i(), Name :: string()) -> i()
gl:getAttribLocation/2 queries the previously linked program object specified by Program for the attribute
variable specified by Name and returns the index of the generic vertex attribute that is bound to that attribute variable.
If Name is a matrix attribute variable, the index of the first column of the matrix is returned. If the named attribute
variable is not an active attribute in the specified program object or if Name starts with the reserved prefix "gl_", a
value of -1 is returned.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 911

href
href
href
href
href

gl

getBufferParameteri64v(Target :: enum(), Pname :: enum()) -> [i()]
getBufferParameterivARB(Target :: enum(), Pname :: enum()) ->
 [i()]
These functions return in Data a selected parameter of the specified buffer object.

External documentation.

getBufferParameteriv(Target :: enum(), Pname :: enum()) -> i()
gl:getBufferParameteriv/2 returns in Data a selected parameter of the buffer object specified by Target.

External documentation.

getBufferSubData(Target :: enum(),
 Offset :: i(),
 Size :: i(),
 Data :: mem()) ->
 ok
gl:getBufferSubData/4 and glGetNamedBufferSubData return some or all of the data contents of the
data store of the specified buffer object. Data starting at byte offset Offset and extending for Size bytes is copied
from the buffer object's data store to the memory pointed to by Data. An error is thrown if the buffer object is currently
mapped, or if Offset and Size together define a range beyond the bounds of the buffer object's data store.

External documentation.

getClipPlane(Plane :: enum()) -> {f(), f(), f(), f()}
gl:getClipPlane/1 returns in Equation the four coefficients of the plane equation for Plane.

External documentation.

getColorTable(Target :: enum(),
 Format :: enum(),
 Type :: enum(),
 Table :: mem()) ->
 ok
gl:getColorTable/4 returns in Table the contents of the color table specified by Target. No pixel transfer
operations are performed, but pixel storage modes that are applicable to gl:readPixels/7 are performed.

External documentation.

getColorTableParameterfv(Target :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getColorTableParameteriv(Target :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
Returns parameters specific to color table Target.

External documentation.

getCompressedTexImage(Target :: enum(), Lod :: i(), Img :: mem()) ->
 ok
gl:getCompressedTexImage/3 and glGetnCompressedTexImage return the compressed texture image
associated with Target and Lod into Pixels. glGetCompressedTextureImage serves the same purpose,

912 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

but instead of taking a texture target, it takes the ID of the texture object. Pixels should be an array of
BufSize bytes for glGetnCompresedTexImage and glGetCompressedTextureImage functions, and of
?GL_TEXTURE_COMPRESSED_IMAGE_SIZE bytes in case of gl:getCompressedTexImage/3. If the actual
data takes less space than BufSize, the remaining bytes will not be touched. Target specifies the texture target,
to which the texture the data the function should extract the data from is bound to. Lod specifies the level-of-detail
number of the desired image.

External documentation.

getConvolutionFilter(Target :: enum(),
 Format :: enum(),
 Type :: enum(),
 Image :: mem()) ->
 ok
gl:getConvolutionFilter/4 returns the current 1D or 2D convolution filter kernel as an image. The one- or
two-dimensional image is placed in Image according to the specifications in Format and Type. No pixel transfer
operations are performed on this image, but the relevant pixel storage modes are applied.

External documentation.

getConvolutionParameterfv(Target :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getConvolutionParameteriv(Target :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
gl:getConvolutionParameter() retrieves convolution parameters. Target determines which convolution
filter is queried. Pname determines which parameter is returned:

External documentation.

getDebugMessageLog(Count :: i(), BufSize :: i()) ->
 {i(),
 Sources :: [enum()],
 Types :: [enum()],
 Ids :: [i()],
 Severities :: [enum()],
 MessageLog :: [string()]}
gl:getDebugMessageLog/2 retrieves messages from the debug message log. A maximum of Count messages
are retrieved from the log. If Sources is not NULL then the source of each message is written into up to Count
elements of the array. If Types is not NULL then the type of each message is written into up to Count elements of
the array. If Id is not NULL then the identifier of each message is written into up to Count elements of the array. If
Severities is not NULL then the severity of each message is written into up to Count elements of the array. If
Lengths is not NULL then the length of each message is written into up to Count elements of the array.

External documentation.

getError() -> enum()
gl:getError/0 returns the value of the error flag. Each detectable error is assigned a numeric code and
symbolic name. When an error occurs, the error flag is set to the appropriate error code value. No other errors are
recorded until gl:getError/0 is called, the error code is returned, and the flag is reset to ?GL_NO_ERROR.
If a call to gl:getError/0 returns ?GL_NO_ERROR, there has been no detectable error since the last call to
gl:getError/0, or since the GL was initialized.

Ericsson AB. All Rights Reserved.: wxErlang | 913

href
href
href
href

gl

External documentation.

getFragDataIndex(Program :: i(), Name :: string()) -> i()
gl:getFragDataIndex/2 returns the index of the fragment color to which the variable Name was bound when
the program object Program was last linked. If Name is not a varying out variable of Program, or if an error occurs,
-1 will be returned.

External documentation.

getFragDataLocation(Program :: i(), Name :: string()) -> i()
gl:getFragDataLocation/2 retrieves the assigned color number binding for the user-defined varying out
variable Name for program Program. Program must have previously been linked. Name must be a null-terminated
string. If Name is not the name of an active user-defined varying out fragment shader variable within Program, -1
will be returned.

External documentation.

getFramebufferAttachmentParameteriv(Target :: enum(),
 Attachment :: enum(),
 Pname :: enum()) ->
 i()
gl:getFramebufferAttachmentParameteriv/3 and
glGetNamedFramebufferAttachmentParameteriv return parameters of attachments of a specified
framebuffer object.

External documentation.

getFramebufferParameteriv(Target :: enum(), Pname :: enum()) ->
 i()
gl:getFramebufferParameteriv/2 and glGetNamedFramebufferParameteriv query parameters
of a specified framebuffer object.

External documentation.

getGraphicsResetStatus() -> enum()
Certain events can result in a reset of the GL context. Such a reset causes all context state to be lost and requires the
application to recreate all objects in the affected context.

External documentation.

getHistogram(Target :: enum(),
 Reset :: 0 | 1,
 Format :: enum(),
 Type :: enum(),
 Values :: mem()) ->
 ok
gl:getHistogram/5 returns the current histogram table as a one-dimensional image with the same width as the
histogram. No pixel transfer operations are performed on this image, but pixel storage modes that are applicable to
1D images are honored.

External documentation.

914 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href
href

gl

getHistogramParameterfv(Target :: enum(), Pname :: enum()) ->
 {f()}
getHistogramParameteriv(Target :: enum(), Pname :: enum()) ->
 {i()}
gl:getHistogramParameter() is used to query parameter values for the current histogram or for a proxy. The
histogram state information may be queried by calling gl:getHistogramParameter() with a Target of ?
GL_HISTOGRAM (to obtain information for the current histogram table) or ?GL_PROXY_HISTOGRAM (to obtain
information from the most recent proxy request) and one of the following values for the Pname argument:

External documentation.

getInternalformati64v(Target :: enum(),
 Internalformat :: enum(),
 Pname :: enum(),
 BufSize :: i()) ->
 [i()]
getInternalformativ(Target :: enum(),
 Internalformat :: enum(),
 Pname :: enum(),
 BufSize :: i()) ->
 [i()]
No documentation available.

getLightfv(Light :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getLightiv(Light :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
gl:getLight() returns in Params the value or values of a light source parameter. Light names the light and
is a symbolic name of the form ?GL_LIGHT i where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1. ?
GL_MAX_LIGHTS is an implementation dependent constant that is greater than or equal to eight. Pname specifies
one of ten light source parameters, again by symbolic name.

External documentation.

getMapdv(Target :: enum(), Query :: enum(), V :: mem()) -> ok
getMapfv(Target :: enum(), Query :: enum(), V :: mem()) -> ok
getMapiv(Target :: enum(), Query :: enum(), V :: mem()) -> ok
glMap1 and glMap2 define evaluators. gl:getMap() returns evaluator parameters. Target chooses a map,
Query selects a specific parameter, and V points to storage where the values will be returned.

External documentation.

getMaterialfv(Face :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getMaterialiv(Face :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
gl:getMaterial() returns in Params the value or values of parameter Pname of material Face. Six parameters
are defined:

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 915

href
href
href
href

gl

getMinmax(Target :: enum(),
 Reset :: 0 | 1,
 Format :: enum(),
 Types :: enum(),
 Values :: mem()) ->
 ok
gl:getMinmax/5 returns the accumulated minimum and maximum pixel values (computed on a per-component
basis) in a one-dimensional image of width 2. The first set of return values are the minima, and the second set of
return values are the maxima. The format of the return values is determined by Format, and their type is determined
by Types.

External documentation.

getMinmaxParameterfv(Target :: enum(), Pname :: enum()) -> {f()}
getMinmaxParameteriv(Target :: enum(), Pname :: enum()) -> {i()}
gl:getMinmaxParameter() retrieves parameters for the current minmax table by setting Pname to one of the
following values:

External documentation.

getMultisamplefv(Pname :: enum(), Index :: i()) -> {f(), f()}
gl:getMultisamplefv/2 queries the location of a given sample. Pname specifies the sample parameter to
retrieve and must be ?GL_SAMPLE_POSITION. Index corresponds to the sample for which the location should be
returned. The sample location is returned as two floating-point values in Val[0] and Val[1], each between 0 and
1, corresponding to the X and Y locations respectively in the GL pixel space of that sample. (0.5, 0.5) this corresponds
to the pixel center. Index must be between zero and the value of ?GL_SAMPLES minus one.

External documentation.

getPixelMapfv(Map :: enum(), Values :: mem()) -> ok
getPixelMapuiv(Map :: enum(), Values :: mem()) -> ok
getPixelMapusv(Map :: enum(), Values :: mem()) -> ok
See the gl:pixelMap() reference page for a description of the acceptable values for the Map
parameter. gl:getPixelMap() returns in Data the contents of the pixel map specified in Map. Pixel
maps are used during the execution of gl:readPixels/7, gl:drawPixels/5, gl:copyPixels/5,
gl:texImage1D/8, gl:texImage2D/9, gl:texImage3D/10, gl:texSubImage1D/7,
gl:texSubImage2D/9, gl:texSubImage3D/11, gl:copyTexImage1D/7, gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6, gl:copyTexSubImage2D/8, and gl:copyTexSubImage3D/9. to map
color indices, stencil indices, color components, and depth components to other values.

External documentation.

getPolygonStipple() -> binary()
gl:getPolygonStipple/0 returns to Pattern a 32×32 polygon stipple pattern. The pattern is packed into
memory as if gl:readPixels/7 with both height and width of 32, type of ?GL_BITMAP, and format of
?GL_COLOR_INDEX were called, and the stipple pattern were stored in an internal 32×32 color index buffer. Unlike
gl:readPixels/7, however, pixel transfer operations (shift, offset, pixel map) are not applied to the returned
stipple image.

External documentation.

916 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

getProgramiv(Program :: i(), Pname :: enum()) -> i()
gl:getProgram() returns in Params the value of a parameter for a specific program object. The following
parameters are defined:

External documentation.

getProgramBinary(Program :: i(), BufSize :: i()) ->
 {BinaryFormat :: enum(), Binary :: binary()}
gl:getProgramBinary/2 returns a binary representation of the compiled and linked executable for Program
into the array of bytes whose address is specified in Binary. The maximum number of bytes that may be written
into Binary is specified by BufSize. If the program binary is greater in size than BufSize bytes, then an error
is generated, otherwise the actual number of bytes written into Binary is returned in the variable whose address is
given by Length. If Length is ?NULL, then no length is returned.

External documentation.

getProgramInfoLog(Program :: i(), BufSize :: i()) -> string()
gl:getProgramInfoLog/2 returns the information log for the specified program object. The information log
for a program object is modified when the program object is linked or validated. The string that is returned will be
null terminated.

External documentation.

getProgramInterfaceiv(Program :: i(),
 ProgramInterface :: enum(),
 Pname :: enum()) ->
 i()
gl:getProgramInterfaceiv/3 queries the property of the interface identifed by ProgramInterface in
Program, the property name of which is given by Pname.

External documentation.

getProgramPipelineiv(Pipeline :: i(), Pname :: enum()) -> i()
gl:getProgramPipelineiv/2 retrieves the value of a property of the program pipeline object Pipeline.
Pname specifies the name of the parameter whose value to retrieve. The value of the parameter is written to the
variable whose address is given by Params.

External documentation.

getProgramPipelineInfoLog(Pipeline :: i(), BufSize :: i()) ->
 string()
gl:getProgramPipelineInfoLog/2 retrieves the info log for the program pipeline object Pipeline. The
info log, including its null terminator, is written into the array of characters whose address is given by InfoLog.
The maximum number of characters that may be written into InfoLog is given by BufSize, and the actual number
of characters written into InfoLog is returned in the integer whose address is given by Length. If Length is ?
NULL, no length is returned.

External documentation.

getProgramResourceIndex(Program :: i(),
 ProgramInterface :: enum(),

Ericsson AB. All Rights Reserved.: wxErlang | 917

href
href
href
href
href
href

gl

 Name :: string()) ->
 i()
gl:getProgramResourceIndex/3 returns the unsigned integer index assigned to a resource named Name in
the interface type ProgramInterface of program object Program.

External documentation.

getProgramResourceLocation(Program :: i(),
 ProgramInterface :: enum(),
 Name :: string()) ->
 i()
gl:getProgramResourceLocation/3 returns the location assigned to the variable named Name
in interface ProgramInterface of program object Program. Program must be the name
of a program that has been linked successfully. ProgramInterface must be one of ?
GL_UNIFORM, ?GL_PROGRAM_INPUT, ?GL_PROGRAM_OUTPUT, ?GL_VERTEX_SUBROUTINE_UNIFORM,
?GL_TESS_CONTROL_SUBROUTINE_UNIFORM, ?GL_TESS_EVALUATION_SUBROUTINE_UNIFORM, ?
GL_GEOMETRY_SUBROUTINE_UNIFORM, ?GL_FRAGMENT_SUBROUTINE_UNIFORM, ?
GL_COMPUTE_SUBROUTINE_UNIFORM, or ?GL_TRANSFORM_FEEDBACK_BUFFER.

External documentation.

getProgramResourceLocationIndex(Program :: i(),
 ProgramInterface :: enum(),
 Name :: string()) ->
 i()
gl:getProgramResourceLocationIndex/3 returns the fragment color index assigned to the variable named
Name in interface ProgramInterface of program object Program. Program must be the name of a program
that has been linked successfully. ProgramInterface must be ?GL_PROGRAM_OUTPUT.

External documentation.

getProgramResourceName(Program :: i(),
 ProgramInterface :: enum(),
 Index :: i(),
 BufSize :: i()) ->
 string()
gl:getProgramResourceName/4 retrieves the name string assigned to the single active resource with an index
of Index in the interface ProgramInterface of program object Program. Index must be less than the number
of entries in the active resource list for ProgramInterface.

External documentation.

getProgramStageiv(Program :: i(),
 Shadertype :: enum(),
 Pname :: enum()) ->
 i()
gl:getProgramStage() queries a parameter of a shader stage attached to a program object. Program contains
the name of the program to which the shader is attached. Shadertype specifies the stage from which to query the
parameter. Pname specifies which parameter should be queried. The value or values of the parameter to be queried
is returned in the variable whose address is given in Values.

External documentation.

918 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

getQueryIndexediv(Target :: enum(), Index :: i(), Pname :: enum()) ->
 i()
gl:getQueryIndexediv/3 returns in Params a selected parameter of the indexed query object target specified
by Target and Index. Index specifies the index of the query object target and must be between zero and a target-
specific maxiumum.

External documentation.

getQueryBufferObjecti64v(Id :: i(),
 Buffer :: i(),
 Pname :: enum(),
 Offset :: i()) ->
 ok
getQueryBufferObjectiv(Id :: i(),
 Buffer :: i(),
 Pname :: enum(),
 Offset :: i()) ->
 ok
getQueryBufferObjectui64v(Id :: i(),
 Buffer :: i(),
 Pname :: enum(),
 Offset :: i()) ->
 ok
getQueryBufferObjectuiv(Id :: i(),
 Buffer :: i(),
 Pname :: enum(),
 Offset :: i()) ->
 ok
getQueryObjecti64v(Id :: i(), Pname :: enum()) -> i()
getQueryObjectiv(Id :: i(), Pname :: enum()) -> i()
getQueryObjectui64v(Id :: i(), Pname :: enum()) -> i()
getQueryObjectuiv(Id :: i(), Pname :: enum()) -> i()
These commands return a selected parameter of the query object specified by Id. gl:getQueryObject() returns
in Params a selected parameter of the query object specified by Id. gl:getQueryBufferObject() returns in
Buffer a selected parameter of the query object specified by Id, by writing it to Buffer's data store at the byte
offset specified by Offset.

External documentation.

getQueryiv(Target :: enum(), Pname :: enum()) -> i()
gl:getQueryiv/2 returns in Params a selected parameter of the query object target specified by Target.

External documentation.

getRenderbufferParameteriv(Target :: enum(), Pname :: enum()) ->
 i()
gl:getRenderbufferParameteriv/2 and glGetNamedRenderbufferParameteriv query
parameters of a specified renderbuffer object.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 919

href
href
href
href

gl

getSamplerParameterIiv(Sampler :: i(), Pname :: enum()) -> [i()]
getSamplerParameterIuiv(Sampler :: i(), Pname :: enum()) -> [i()]
getSamplerParameterfv(Sampler :: i(), Pname :: enum()) -> [f()]
getSamplerParameteriv(Sampler :: i(), Pname :: enum()) -> [i()]
gl:getSamplerParameter() returns in Params the value or values of the sampler parameter specified as
Pname. Sampler defines the target sampler, and must be the name of an existing sampler object, returned from a
previous call to gl:genSamplers/1. Pname accepts the same symbols as gl:samplerParameter(), with
the same interpretations:

External documentation.

getShaderiv(Shader :: i(), Pname :: enum()) -> i()
gl:getShader() returns in Params the value of a parameter for a specific shader object. The following parameters
are defined:

External documentation.

getShaderInfoLog(Shader :: i(), BufSize :: i()) -> string()
gl:getShaderInfoLog/2 returns the information log for the specified shader object. The information log for a
shader object is modified when the shader is compiled. The string that is returned will be null terminated.

External documentation.

getShaderPrecisionFormat(Shadertype :: enum(),
 Precisiontype :: enum()) ->
 {Range :: {i(), i()},
 Precision :: i()}
gl:getShaderPrecisionFormat/2 retrieves the numeric range and precision for the implementation's
representation of quantities in different numeric formats in specified shader type. ShaderType specifies the type
of shader for which the numeric precision and range is to be retrieved and must be one of ?GL_VERTEX_SHADER
or ?GL_FRAGMENT_SHADER. PrecisionType specifies the numeric format to query and must be one
of ?GL_LOW_FLOAT, ?GL_MEDIUM_FLOAT?GL_HIGH_FLOAT, ?GL_LOW_INT, ?GL_MEDIUM_INT, or ?
GL_HIGH_INT.

External documentation.

getShaderSource(Shader :: i(), BufSize :: i()) -> string()
gl:getShaderSource/2 returns the concatenation of the source code strings from the shader object specified by
Shader. The source code strings for a shader object are the result of a previous call to gl:shaderSource/2. The
string returned by the function will be null terminated.

External documentation.

getString(Name :: enum()) -> string()
getStringi(Name :: enum(), Index :: i()) -> string()
gl:getString/1 returns a pointer to a static string describing some aspect of the current GL connection. Name
can be one of the following:

External documentation.

getSubroutineIndex(Program :: i(),

920 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

 Shadertype :: enum(),
 Name :: string()) ->
 i()
gl:getSubroutineIndex/3 returns the index of a subroutine uniform within a shader stage attached to a
program object. Program contains the name of the program to which the shader is attached. Shadertype specifies
the stage from which to query shader subroutine index. Name contains the null-terminated name of the subroutine
uniform whose name to query.

External documentation.

getSubroutineUniformLocation(Program :: i(),
 Shadertype :: enum(),
 Name :: string()) ->
 i()
gl:getSubroutineUniformLocation/3 returns the location of the subroutine uniform variable Name
in the shader stage of type Shadertype attached to Program, with behavior otherwise identical to
gl:getUniformLocation/2.

External documentation.

getSynciv(Sync :: i(), Pname :: enum(), BufSize :: i()) -> [i()]
gl:getSynciv/3 retrieves properties of a sync object. Sync specifies the name of the sync object whose properties
to retrieve.

External documentation.

getTexEnvfv(Target :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getTexEnviv(Target :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
gl:getTexEnv() returns in Params selected values of a texture environment that was specified with
gl:texEnv(). Target specifies a texture environment.

External documentation.

getTexGendv(Coord :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getTexGenfv(Coord :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getTexGeniv(Coord :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
gl:getTexGen() returns in Params selected parameters of a texture coordinate generation function that was
specified using gl:texGen(). Coord names one of the (s, t, r, q) texture coordinates, using the symbolic constant
?GL_S, ?GL_T, ?GL_R, or ?GL_Q.

External documentation.

getTexImage(Target :: enum(),
 Level :: i(),
 Format :: enum(),
 Type :: enum(),

Ericsson AB. All Rights Reserved.: wxErlang | 921

href
href
href
href
href

gl

 Pixels :: mem()) ->
 ok
gl:getTexImage/5, glGetnTexImage and glGetTextureImage functions return a texture
image into Pixels. For gl:getTexImage/5 and glGetnTexImage, Target specifies
whether the desired texture image is one specified by gl:texImage1D/8 (?GL_TEXTURE_1D),
gl:texImage2D/9 (?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_2D or
any of ?GL_TEXTURE_CUBE_MAP_*), or gl:texImage3D/10 (?GL_TEXTURE_2D_ARRAY, ?
GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP_ARRAY). For glGetTextureImage, Texture specifies the
texture object name. In addition to types of textures accepted by gl:getTexImage/5 and glGetnTexImage, the
function also accepts cube map texture objects (with effective target ?GL_TEXTURE_CUBE_MAP). Level specifies
the level-of-detail number of the desired image. Format and Type specify the format and type of the desired image
array. See the reference page for gl:texImage1D/8 for a description of the acceptable values for the Format and
Type parameters, respectively. For glGetnTexImage and glGetTextureImage functions, bufSize tells the size of the
buffer to receive the retrieved pixel data. glGetnTexImage and glGetTextureImage do not write more than
BufSize bytes into Pixels.

External documentation.

getTexLevelParameterfv(Target :: enum(),
 Level :: i(),
 Pname :: enum()) ->
 {f()}
getTexLevelParameteriv(Target :: enum(),
 Level :: i(),
 Pname :: enum()) ->
 {i()}
gl:getTexLevelParameterfv/3, gl:getTexLevelParameteriv/3,
glGetTextureLevelParameterfv and glGetTextureLevelParameteriv return in Params
texture parameter values for a specific level-of-detail value, specified as Level.
For the first two functions, Target defines the target texture, either ?
GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_PROXY_TEXTURE_1D, ?
GL_PROXY_TEXTURE_2D, ?GL_PROXY_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP_POSITIVE_X, ?
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, ?GL_TEXTURE_CUBE_MAP_POSITIVE_Y, ?
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, ?GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ?
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or ?GL_PROXY_TEXTURE_CUBE_MAP. The remaining two take a
Texture argument which specifies the name of the texture object.

External documentation.

getTexParameterIiv(Target :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
getTexParameterIuiv(Target :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
getTexParameterfv(Target :: enum(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getTexParameteriv(Target :: enum(), Pname :: enum()) ->
 {i(), i(), i(), i()}
gl:getTexParameter() and glGetTextureParameter return in Params the value or values of the texture
parameter specified as Pname. Target defines the target texture. ?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?
GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE,
?GL_TEXTURE_CUBE_MAP, ?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE, or ?

922 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

gl

GL_TEXTURE_2D_MULTISAMPLE_ARRAY specify one-, two-, or three-dimensional, one-dimensional array, two-
dimensional array, rectangle, cube-mapped or cube-mapped array, two-dimensional multisample, or two-dimensional
multisample array texturing, respectively. Pname accepts the same symbols as gl:texParameter(), with the
same interpretations:

External documentation.

getTransformFeedbackVarying(Program :: i(),
 Index :: i(),
 BufSize :: i()) ->
 {Size :: i(),
 Type :: enum(),
 Name :: string()}
Information about the set of varying variables in a linked program that will be captured
during transform feedback may be retrieved by calling gl:getTransformFeedbackVarying/3.
gl:getTransformFeedbackVarying/3 provides information about the varying variable selected
by Index. An Index of 0 selects the first varying variable specified in the Varyings
array passed to gl:transformFeedbackVaryings/3, and an Index of the value of ?
GL_TRANSFORM_FEEDBACK_VARYINGS minus one selects the last such variable.

External documentation.

getUniformdv(Program :: i(), Location :: i()) -> matrix()
getUniformfv(Program :: i(), Location :: i()) -> matrix()
getUniformiv(Program :: i(), Location :: i()) ->
 {i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i()}
getUniformuiv(Program :: i(), Location :: i()) ->
 {i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),

Ericsson AB. All Rights Reserved.: wxErlang | 923

href
href

gl

 i(),
 i(),
 i(),
 i(),
 i(),
 i()}
gl:getUniform() and glGetnUniform return in Params the value(s) of the specified uniform variable. The
type of the uniform variable specified by Location determines the number of values returned. If the uniform variable
is defined in the shader as a boolean, int, or float, a single value will be returned. If it is defined as a vec2, ivec2, or
bvec2, two values will be returned. If it is defined as a vec3, ivec3, or bvec3, three values will be returned, and so
on. To query values stored in uniform variables declared as arrays, call gl:getUniform() for each element of the
array. To query values stored in uniform variables declared as structures, call gl:getUniform() for each field in
the structure. The values for uniform variables declared as a matrix will be returned in column major order.

External documentation.

getUniformBlockIndex(Program :: i(), UniformBlockName :: string()) ->
 i()
gl:getUniformBlockIndex/2 retrieves the index of a uniform block within Program.

External documentation.

getUniformIndices(Program :: i(),
 UniformNames :: [unicode:chardata()]) ->
 [i()]
gl:getUniformIndices/2 retrieves the indices of a number of uniforms within Program.

External documentation.

getUniformLocation(Program :: i(), Name :: string()) -> i()
glGetUniformLocation returns an integer that represents the location of a specific uniform variable within a
program object. Name must be a null terminated string that contains no white space. Name must be an active uniform
variable name in Program that is not a structure, an array of structures, or a subcomponent of a vector or a matrix.
This function returns -1 if Name does not correspond to an active uniform variable in Program, if Name starts with
the reserved prefix "gl_", or if Name is associated with an atomic counter or a named uniform block.

External documentation.

getUniformSubroutineuiv(Shadertype :: enum(), Location :: i()) ->
 {i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),

924 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

 i(),
 i(),
 i()}
gl:getUniformSubroutine() retrieves the value of the subroutine uniform at location Location
for shader stage Shadertype of the current program. Location must be less than the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader currently in use at shader stage
Shadertype. The value of the subroutine uniform is returned in Values.

External documentation.

getVertexAttribIiv(Index :: i(), Pname :: enum()) ->
 {i(), i(), i(), i()}
getVertexAttribIuiv(Index :: i(), Pname :: enum()) ->
 {i(), i(), i(), i()}
getVertexAttribLdv(Index :: i(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getVertexAttribdv(Index :: i(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getVertexAttribfv(Index :: i(), Pname :: enum()) ->
 {f(), f(), f(), f()}
getVertexAttribiv(Index :: i(), Pname :: enum()) ->
 {i(), i(), i(), i()}
gl:getVertexAttrib() returns in Params the value of a generic vertex attribute parameter. The generic vertex
attribute to be queried is specified by Index, and the parameter to be queried is specified by Pname.

External documentation.

hint(Target :: enum(), Mode :: enum()) -> ok
Certain aspects of GL behavior, when there is room for interpretation, can be controlled with hints. A hint is specified
with two arguments. Target is a symbolic constant indicating the behavior to be controlled, and Mode is another
symbolic constant indicating the desired behavior. The initial value for each Target is ?GL_DONT_CARE. Mode
can be one of the following:

External documentation.

histogram(Target :: enum(),
 Width :: i(),
 Internalformat :: enum(),
 Sink :: 0 | 1) ->
 ok
When ?GL_HISTOGRAM is enabled, RGBA color components are converted to histogram table indices by clamping
to the range [0,1], multiplying by the width of the histogram table, and rounding to the nearest integer. The table entries
selected by the RGBA indices are then incremented. (If the internal format of the histogram table includes luminance,
then the index derived from the R color component determines the luminance table entry to be incremented.) If a
histogram table entry is incremented beyond its maximum value, then its value becomes undefined. (This is not an
error.)

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 925

href
href
href
href

gl

indexd(C :: f()) -> ok
indexdv(X1 :: {C :: f()}) -> ok
indexf(C :: f()) -> ok
indexfv(X1 :: {C :: f()}) -> ok
indexi(C :: i()) -> ok
indexiv(X1 :: {C :: i()}) -> ok
indexs(C :: i()) -> ok
indexsv(X1 :: {C :: i()}) -> ok
indexub(C :: i()) -> ok
indexubv(X1 :: {C :: i()}) -> ok
gl:index() updates the current (single-valued) color index. It takes one argument, the new value for the current
color index.

External documentation.

indexMask(Mask :: i()) -> ok
gl:indexMask/1 controls the writing of individual bits in the color index buffers. The least significant n bits of
Mask, where n is the number of bits in a color index buffer, specify a mask. Where a 1 (one) appears in the mask,
it's possible to write to the corresponding bit in the color index buffer (or buffers). Where a 0 (zero) appears, the
corresponding bit is write-protected.

External documentation.

indexPointer(Type :: enum(),
 Stride :: i(),
 Ptr :: offset() | mem()) ->
 ok
gl:indexPointer/3 specifies the location and data format of an array of color indexes to use when rendering.
Type specifies the data type of each color index and Stride specifies the byte stride from one color index to the
next, allowing vertices and attributes to be packed into a single array or stored in separate arrays.

External documentation.

initNames() -> ok
The name stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It consists
of an ordered set of unsigned integers. gl:initNames/0 causes the name stack to be initialized to its default empty
state.

External documentation.

interleavedArrays(Format :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok
gl:interleavedArrays/3 lets you specify and enable individual color, normal, texture and vertex arrays whose
elements are part of a larger aggregate array element. For some implementations, this is more efficient than specifying
the arrays separately.

External documentation.

926 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

invalidateBufferData(Buffer :: i()) -> ok
gl:invalidateBufferData/1 invalidates all of the content of the data store of a buffer object. After
invalidation, the content of the buffer's data store becomes undefined.

External documentation.

invalidateBufferSubData(Buffer :: i(),
 Offset :: i(),
 Length :: i()) ->
 ok
gl:invalidateBufferSubData/3 invalidates all or part of the content of the data store of a buffer object. After
invalidation, the content of the specified range of the buffer's data store becomes undefined. The start of the range is
given by Offset and its size is given by Length, both measured in basic machine units.

External documentation.

invalidateFramebuffer(Target :: enum(), Attachments :: [enum()]) ->
 ok
gl:invalidateFramebuffer/2 and glInvalidateNamedFramebufferData invalidate the entire
contents of a specified set of attachments of a framebuffer.

External documentation.

invalidateSubFramebuffer(Target :: enum(),
 Attachments :: [enum()],
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i()) ->
 ok
gl:invalidateSubFramebuffer/6 and glInvalidateNamedFramebufferSubData invalidate the
contents of a specified region of a specified set of attachments of a framebuffer.

External documentation.

invalidateTexImage(Texture :: i(), Level :: i()) -> ok
gl:invalidateTexSubImage/8 invalidates all of a texture image. Texture and Level indicated which
texture image is being invalidated. After this command, data in the texture image has undefined values.

External documentation.

invalidateTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset,
 Width, Height, Depth) ->
 ok
Types:

Texture = Level = Xoffset = Yoffset = Zoffset = Width = Height = Depth =
i()

gl:invalidateTexSubImage/8 invalidates all or part of a texture image. Texture and Level indicated
which texture image is being invalidated. After this command, data in that subregion have undefined values. Xoffset,

Ericsson AB. All Rights Reserved.: wxErlang | 927

href
href
href
href
href

gl

Yoffset, Zoffset, Width, Height, and Depth are interpreted as they are in gl:texSubImage3D/11. For
texture targets that don't have certain dimensions, this command treats those dimensions as having a size of 1. For
example, to invalidate a portion of a two- dimensional texture, the application would use Zoffset equal to zero
and Depth equal to one. Cube map textures are treated as an array of six slices in the z-dimension, where a value of
Zoffset is interpreted as specifying face ?GL_TEXTURE_CUBE_MAP_POSITIVE_X + Zoffset.

External documentation.

isBuffer(Buffer :: i()) -> 0 | 1
gl:isBuffer/1 returns ?GL_TRUE if Buffer is currently the name of a buffer object. If Buffer is zero, or is
a non-zero value that is not currently the name of a buffer object, or if an error occurs, gl:isBuffer/1 returns
?GL_FALSE.

External documentation.

isEnabled(Cap :: enum()) -> 0 | 1
isEnabledi(Target :: enum(), Index :: i()) -> 0 | 1
gl:isEnabled/1 returns ?GL_TRUE if Cap is an enabled capability and returns ?GL_FALSE otherwise. Boolean
states that are indexed may be tested with gl:isEnabledi/2. For gl:isEnabledi/2, Index specifies the
index of the capability to test. Index must be between zero and the count of indexed capabilities for Cap. Initially
all capabilities except ?GL_DITHER are disabled; ?GL_DITHER is initially enabled.

External documentation.

isFramebuffer(Framebuffer :: i()) -> 0 | 1
gl:isFramebuffer/1 returns ?GL_TRUE if Framebuffer is currently the name of a framebuffer
object. If Framebuffer is zero, or if ?framebuffer is not the name of a framebuffer object, or if
an error occurs, gl:isFramebuffer/1 returns ?GL_FALSE. If Framebuffer is a name returned by
gl:genFramebuffers/1, by that has not yet been bound through a call to gl:bindFramebuffer/2, then
the name is not a framebuffer object and gl:isFramebuffer/1 returns ?GL_FALSE.

External documentation.

isList(List :: i()) -> 0 | 1
gl:isList/1 returns ?GL_TRUE if List is the name of a display list and returns ?GL_FALSE if it is not, or if
an error occurs.

External documentation.

isProgram(Program :: i()) -> 0 | 1
gl:isProgram/1 returns ?GL_TRUE if Program is the name of a program object previously created with
gl:createProgram/0 and not yet deleted with gl:deleteProgram/1. If Program is zero or a non-zero
value that is not the name of a program object, or if an error occurs, gl:isProgram/1 returns ?GL_FALSE.

External documentation.

isProgramPipeline(Pipeline :: i()) -> 0 | 1
gl:isProgramPipeline/1 returns ?GL_TRUE if Pipeline is currently the name of a program
pipeline object. If Pipeline is zero, or if ?pipeline is not the name of a program pipeline
object, or if an error occurs, gl:isProgramPipeline/1 returns ?GL_FALSE. If Pipeline is
a name returned by gl:genProgramPipelines/1, but that has not yet been bound through

928 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

a call to gl:bindProgramPipeline/1, then the name is not a program pipeline object and
gl:isProgramPipeline/1 returns ?GL_FALSE.

External documentation.

isQuery(Id :: i()) -> 0 | 1
gl:isQuery/1 returns ?GL_TRUE if Id is currently the name of a query object. If Id is zero, or is a non-zero
value that is not currently the name of a query object, or if an error occurs, gl:isQuery/1 returns ?GL_FALSE.

External documentation.

isRenderbuffer(Renderbuffer :: i()) -> 0 | 1
gl:isRenderbuffer/1 returns ?GL_TRUE if Renderbuffer is currently the name of a renderbuffer
object. If Renderbuffer is zero, or if Renderbuffer is not the name of a renderbuffer object, or if
an error occurs, gl:isRenderbuffer/1 returns ?GL_FALSE. If Renderbuffer is a name returned by
gl:genRenderbuffers/1, by that has not yet been bound through a call to gl:bindRenderbuffer/2 or
gl:framebufferRenderbuffer/4, then the name is not a renderbuffer object and gl:isRenderbuffer/1
returns ?GL_FALSE.

External documentation.

isSampler(Sampler :: i()) -> 0 | 1
gl:isSampler/1 returns ?GL_TRUE if Id is currently the name of a sampler object. If Id is zero, or is a non-
zero value that is not currently the name of a sampler object, or if an error occurs, gl:isSampler/1 returns ?
GL_FALSE.

External documentation.

isShader(Shader :: i()) -> 0 | 1
gl:isShader/1 returns ?GL_TRUE if Shader is the name of a shader object previously created with
gl:createShader/1 and not yet deleted with gl:deleteShader/1. If Shader is zero or a non-zero value
that is not the name of a shader object, or if an error occurs, glIsShader returns ?GL_FALSE.

External documentation.

isSync(Sync :: i()) -> 0 | 1
gl:isSync/1 returns ?GL_TRUE if Sync is currently the name of a sync object. If Sync is not the name of a sync
object, or if an error occurs, gl:isSync/1 returns ?GL_FALSE. Note that zero is not the name of a sync object.

External documentation.

isTexture(Texture :: i()) -> 0 | 1
gl:isTexture/1 returns ?GL_TRUE if Texture is currently the name of a texture. If Texture is zero, or
is a non-zero value that is not currently the name of a texture, or if an error occurs, gl:isTexture/1 returns ?
GL_FALSE.

External documentation.

isTransformFeedback(Id :: i()) -> 0 | 1
gl:isTransformFeedback/1 returns ?GL_TRUE if Id is currently the name of a transform
feedback object. If Id is zero, or if ?id is not the name of a transform feedback object,

Ericsson AB. All Rights Reserved.: wxErlang | 929

href
href
href
href
href
href
href

gl

or if an error occurs, gl:isTransformFeedback/1 returns ?GL_FALSE. If Id is a name
returned by gl:genTransformFeedbacks/1, but that has not yet been bound through a call
to gl:bindTransformFeedback/2, then the name is not a transform feedback object and
gl:isTransformFeedback/1 returns ?GL_FALSE.

External documentation.

isVertexArray(Array :: i()) -> 0 | 1
gl:isVertexArray/1 returns ?GL_TRUE if Array is currently the name of a vertex array object. If Array is
zero, or if Array is not the name of a vertex array object, or if an error occurs, gl:isVertexArray/1 returns ?
GL_FALSE. If Array is a name returned by gl:genVertexArrays/1, by that has not yet been bound through a
call to gl:bindVertexArray/1, then the name is not a vertex array object and gl:isVertexArray/1 returns
?GL_FALSE.

External documentation.

lightf(Light :: enum(), Pname :: enum(), Param :: f()) -> ok
lightfv(Light :: enum(), Pname :: enum(), Params :: tuple()) -> ok
lighti(Light :: enum(), Pname :: enum(), Param :: i()) -> ok
lightiv(Light :: enum(), Pname :: enum(), Params :: tuple()) -> ok
gl:light() sets the values of individual light source parameters. Light names the light and is a symbolic name
of the form ?GL_LIGHT i, where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1. Pname specifies one of
ten light source parameters, again by symbolic name. Params is either a single value or a pointer to an array that
contains the new values.

External documentation.

lightModelf(Pname :: enum(), Param :: f()) -> ok
lightModelfv(Pname :: enum(), Params :: tuple()) -> ok
lightModeli(Pname :: enum(), Param :: i()) -> ok
lightModeliv(Pname :: enum(), Params :: tuple()) -> ok
gl:lightModel() sets the lighting model parameter. Pname names a parameter and Params gives the new value.
There are three lighting model parameters:

External documentation.

lineStipple(Factor :: i(), Pattern :: i()) -> ok
Line stippling masks out certain fragments produced by rasterization; those fragments will not be drawn. The masking
is achieved by using three parameters: the 16-bit line stipple pattern Pattern, the repeat count Factor, and an
integer stipple counter s.

External documentation.

lineWidth(Width :: f()) -> ok
gl:lineWidth/1 specifies the rasterized width of both aliased and antialiased lines. Using a line width other than
1 has different effects, depending on whether line antialiasing is enabled. To enable and disable line antialiasing, call
gl:enable/1 and gl:disable/1 with argument ?GL_LINE_SMOOTH. Line antialiasing is initially disabled.

External documentation.

930 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

linkProgram(Program :: i()) -> ok
gl:linkProgram/1 links the program object specified by Program. If any shader objects of type ?
GL_VERTEX_SHADER are attached to Program, they will be used to create an executable that will run on the
programmable vertex processor. If any shader objects of type ?GL_GEOMETRY_SHADER are attached to Program,
they will be used to create an executable that will run on the programmable geometry processor. If any shader objects
of type ?GL_FRAGMENT_SHADER are attached to Program, they will be used to create an executable that will run
on the programmable fragment processor.

External documentation.

listBase(Base :: i()) -> ok
gl:callLists/1 specifies an array of offsets. Display-list names are generated by adding Base to each offset.
Names that reference valid display lists are executed; the others are ignored.

External documentation.

loadIdentity() -> ok
gl:loadIdentity/0 replaces the current matrix with the identity matrix. It is semantically equivalent to calling
gl:loadMatrix() with the identity matrix

External documentation.

loadMatrixd(M :: matrix()) -> ok
loadMatrixf(M :: matrix()) -> ok
gl:loadMatrix() replaces the current matrix with the one whose elements are specified by M. The current
matrix is the projection matrix, modelview matrix, or texture matrix, depending on the current matrix mode (see
gl:matrixMode/1).

External documentation.

loadName(Name :: i()) -> ok
The name stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It consists
of an ordered set of unsigned integers and is initially empty.

External documentation.

loadTransposeMatrixd(M :: matrix()) -> ok
loadTransposeMatrixf(M :: matrix()) -> ok
gl:loadTransposeMatrix() replaces the current matrix with the one whose elements are specified by M. The
current matrix is the projection matrix, modelview matrix, or texture matrix, depending on the current matrix mode
(see gl:matrixMode/1).

External documentation.

logicOp(Opcode :: enum()) -> ok
gl:logicOp/1 specifies a logical operation that, when enabled, is applied between the incoming RGBA color and
the RGBA color at the corresponding location in the frame buffer. To enable or disable the logical operation, call
gl:enable/1 and gl:disable/1 using the symbolic constant ?GL_COLOR_LOGIC_OP. The initial value is
disabled.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 931

href
href
href
href
href
href
href

gl

map1d(Target :: enum(),
 U1 :: f(),
 U2 :: f(),
 Stride :: i(),
 Order :: i(),
 Points :: binary()) ->
 ok
map1f(Target :: enum(),
 U1 :: f(),
 U2 :: f(),
 Stride :: i(),
 Order :: i(),
 Points :: binary()) ->
 ok
Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals, texture
coordinates, and colors. The values produced by an evaluator are sent to further stages of GL processing just as if
they had been presented using gl:vertex(), gl:normal(), gl:texCoord(), and gl:color() commands,
except that the generated values do not update the current normal, texture coordinates, or color.

External documentation.

map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder,
 Points) ->
 ok
map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder,
 Points) ->
 ok
Types:

Target = enum()
U1 = U2 = f()
Ustride = Uorder = i()
V1 = V2 = f()
Vstride = Vorder = i()
Points = binary()

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals, texture
coordinates, and colors. The values produced by an evaluator are sent on to further stages of GL processing just as if
they had been presented using gl:vertex(), gl:normal(), gl:texCoord(), and gl:color() commands,
except that the generated values do not update the current normal, texture coordinates, or color.

External documentation.

mapGrid1d(Un :: i(), U1 :: f(), U2 :: f()) -> ok
mapGrid1f(Un :: i(), U1 :: f(), U2 :: f()) -> ok
mapGrid2d(Un :: i(),
 U1 :: f(),
 U2 :: f(),
 Vn :: i(),
 V1 :: f(),
 V2 :: f()) ->

932 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

gl

 ok
mapGrid2f(Un :: i(),
 U1 :: f(),
 U2 :: f(),
 Vn :: i(),
 V1 :: f(),
 V2 :: f()) ->
 ok
gl:mapGrid() and gl:evalMesh() are used together to efficiently generate and evaluate a series of evenly-
spaced map domain values. gl:evalMesh() steps through the integer domain of a one- or two-dimensional grid,
whose range is the domain of the evaluation maps specified by glMap1 and glMap2.

External documentation.

materialf(Face :: enum(), Pname :: enum(), Param :: f()) -> ok
materialfv(Face :: enum(), Pname :: enum(), Params :: tuple()) ->
 ok
materiali(Face :: enum(), Pname :: enum(), Param :: i()) -> ok
materialiv(Face :: enum(), Pname :: enum(), Params :: tuple()) ->
 ok
gl:material() assigns values to material parameters. There are two matched sets of material parameters. One, the
front-facing set, is used to shade points, lines, bitmaps, and all polygons (when two-sided lighting is disabled),
or just front-facing polygons (when two-sided lighting is enabled). The other set, back-facing, is used to shade
back-facing polygons only when two-sided lighting is enabled. Refer to the gl:lightModel() reference page for
details concerning one- and two-sided lighting calculations.

External documentation.

matrixMode(Mode :: enum()) -> ok
gl:matrixMode/1 sets the current matrix mode. Mode can assume one of four values:

External documentation.

memoryBarrier(Barriers :: i()) -> ok
memoryBarrierByRegion(Barriers :: i()) -> ok
gl:memoryBarrier/1 defines a barrier ordering the memory transactions issued prior to the command relative
to those issued after the barrier. For the purposes of this ordering, memory transactions performed by shaders are
considered to be issued by the rendering command that triggered the execution of the shader. Barriers is a bitfield
indicating the set of operations that are synchronized with shader stores; the bits used in Barriers are as follows:

External documentation.

minSampleShading(Value :: f()) -> ok
gl:minSampleShading/1 specifies the rate at which samples are shaded within a covered pixel. Sample-rate
shading is enabled by calling gl:enable/1 with the parameter ?GL_SAMPLE_SHADING. If ?GL_MULTISAMPLE
or ?GL_SAMPLE_SHADING is disabled, sample shading has no effect. Otherwise, an implementation must provide at
least as many unique color values for each covered fragment as specified by Value times Samples where Samples
is the value of ?GL_SAMPLES for the current framebuffer. At least 1 sample for each covered fragment is generated.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 933

href
href
href
href
href

gl

minmax(Target :: enum(), Internalformat :: enum(), Sink :: 0 | 1) ->
 ok
When ?GL_MINMAX is enabled, the RGBA components of incoming pixels are compared to the minimum and
maximum values for each component, which are stored in the two-element minmax table. (The first element stores the
minima, and the second element stores the maxima.) If a pixel component is greater than the corresponding component
in the maximum element, then the maximum element is updated with the pixel component value. If a pixel component
is less than the corresponding component in the minimum element, then the minimum element is updated with the
pixel component value. (In both cases, if the internal format of the minmax table includes luminance, then the R color
component of incoming pixels is used for comparison.) The contents of the minmax table may be retrieved at a later
time by calling gl:getMinmax/5. The minmax operation is enabled or disabled by calling gl:enable/1 or
gl:disable/1, respectively, with an argument of ?GL_MINMAX.

External documentation.

multMatrixd(M :: matrix()) -> ok
multMatrixf(M :: matrix()) -> ok
gl:multMatrix() multiplies the current matrix with the one specified using M, and replaces the current matrix
with the product.

External documentation.

multTransposeMatrixd(M :: matrix()) -> ok
multTransposeMatrixf(M :: matrix()) -> ok
gl:multTransposeMatrix() multiplies the current matrix with the one specified using M, and replaces the
current matrix with the product.

External documentation.

multiDrawArrays(Mode :: enum(),
 First :: [integer()] | mem(),
 Count :: [integer()] | mem()) ->
 ok
gl:multiDrawArrays/3 specifies multiple sets of geometric primitives with very few subroutine calls. Instead
of calling a GL procedure to pass each individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and colors and use them to construct a sequence of primitives with a
single call to gl:multiDrawArrays/3.

External documentation.

multiDrawArraysIndirect(Mode :: enum(),
 Indirect :: offset() | mem(),
 Drawcount :: i(),
 Stride :: i()) ->
 ok
gl:multiDrawArraysIndirect/4 specifies multiple geometric primitives with very few
subroutine calls. gl:multiDrawArraysIndirect/4 behaves similarly to a multitude of calls
to gl:drawArraysInstancedBaseInstance/5, execept that the parameters to each call to
gl:drawArraysInstancedBaseInstance/5 are stored in an array in memory at the address given by
Indirect, separated by the stride, in basic machine units, specified by Stride. If Stride is zero, then the array
is assumed to be tightly packed in memory.

934 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

External documentation.

multiDrawArraysIndirectCount(Mode, Indirect, Drawcount,
 Maxdrawcount, Stride) ->
 ok
Types:

Mode = enum()
Indirect = offset() | mem()
Drawcount = Maxdrawcount = Stride = i()

No documentation available.

multiTexCoord1d(Target :: enum(), S :: f()) -> ok
multiTexCoord1dv(Target :: enum(), X2 :: {S :: f()}) -> ok
multiTexCoord1f(Target :: enum(), S :: f()) -> ok
multiTexCoord1fv(Target :: enum(), X2 :: {S :: f()}) -> ok
multiTexCoord1i(Target :: enum(), S :: i()) -> ok
multiTexCoord1iv(Target :: enum(), X2 :: {S :: i()}) -> ok
multiTexCoord1s(Target :: enum(), S :: i()) -> ok
multiTexCoord1sv(Target :: enum(), X2 :: {S :: i()}) -> ok
multiTexCoord2d(Target :: enum(), S :: f(), T :: f()) -> ok
multiTexCoord2dv(Target :: enum(), X2 :: {S :: f(), T :: f()}) ->
 ok
multiTexCoord2f(Target :: enum(), S :: f(), T :: f()) -> ok
multiTexCoord2fv(Target :: enum(), X2 :: {S :: f(), T :: f()}) ->
 ok
multiTexCoord2i(Target :: enum(), S :: i(), T :: i()) -> ok
multiTexCoord2iv(Target :: enum(), X2 :: {S :: i(), T :: i()}) ->
 ok
multiTexCoord2s(Target :: enum(), S :: i(), T :: i()) -> ok
multiTexCoord2sv(Target :: enum(), X2 :: {S :: i(), T :: i()}) ->
 ok
multiTexCoord3d(Target :: enum(), S :: f(), T :: f(), R :: f()) ->
 ok
multiTexCoord3dv(Target :: enum(),
 X2 :: {S :: f(), T :: f(), R :: f()}) ->
 ok
multiTexCoord3f(Target :: enum(), S :: f(), T :: f(), R :: f()) ->
 ok
multiTexCoord3fv(Target :: enum(),
 X2 :: {S :: f(), T :: f(), R :: f()}) ->
 ok
multiTexCoord3i(Target :: enum(), S :: i(), T :: i(), R :: i()) ->
 ok
multiTexCoord3iv(Target :: enum(),
 X2 :: {S :: i(), T :: i(), R :: i()}) ->

Ericsson AB. All Rights Reserved.: wxErlang | 935

href

gl

 ok
multiTexCoord3s(Target :: enum(), S :: i(), T :: i(), R :: i()) ->
 ok
multiTexCoord3sv(Target :: enum(),
 X2 :: {S :: i(), T :: i(), R :: i()}) ->
 ok
multiTexCoord4d(Target :: enum(),
 S :: f(),
 T :: f(),
 R :: f(),
 Q :: f()) ->
 ok
multiTexCoord4dv(Target :: enum(),
 X2 :: {S :: f(), T :: f(), R :: f(), Q :: f()}) ->
 ok
multiTexCoord4f(Target :: enum(),
 S :: f(),
 T :: f(),
 R :: f(),
 Q :: f()) ->
 ok
multiTexCoord4fv(Target :: enum(),
 X2 :: {S :: f(), T :: f(), R :: f(), Q :: f()}) ->
 ok
multiTexCoord4i(Target :: enum(),
 S :: i(),
 T :: i(),
 R :: i(),
 Q :: i()) ->
 ok
multiTexCoord4iv(Target :: enum(),
 X2 :: {S :: i(), T :: i(), R :: i(), Q :: i()}) ->
 ok
multiTexCoord4s(Target :: enum(),
 S :: i(),
 T :: i(),
 R :: i(),
 Q :: i()) ->
 ok
multiTexCoord4sv(Target :: enum(),
 X2 :: {S :: i(), T :: i(), R :: i(), Q :: i()}) ->
 ok
gl:multiTexCoord() specifies texture coordinates in one, two, three, or four dimensions.
gl:multiTexCoord1() sets the current texture coordinates to (s 0 0 1); a call to gl:multiTexCoord2()
sets them to (s t 0 1). Similarly, gl:multiTexCoord3() specifies the texture coordinates as (s t r 1), and
gl:multiTexCoord4() defines all four components explicitly as (s t r q).

External documentation.

936 | Ericsson AB. All Rights Reserved.: wxErlang

href

gl

endList() -> ok
newList(List :: i(), Mode :: enum()) -> ok
Display lists are groups of GL commands that have been stored for subsequent execution. Display lists are created with
gl:newList/2. All subsequent commands are placed in the display list, in the order issued, until gl:endList/0
is called.

External documentation.

normal3b(Nx :: i(), Ny :: i(), Nz :: i()) -> ok
normal3bv(X1 :: {Nx :: i(), Ny :: i(), Nz :: i()}) -> ok
normal3d(Nx :: f(), Ny :: f(), Nz :: f()) -> ok
normal3dv(X1 :: {Nx :: f(), Ny :: f(), Nz :: f()}) -> ok
normal3f(Nx :: f(), Ny :: f(), Nz :: f()) -> ok
normal3fv(X1 :: {Nx :: f(), Ny :: f(), Nz :: f()}) -> ok
normal3i(Nx :: i(), Ny :: i(), Nz :: i()) -> ok
normal3iv(X1 :: {Nx :: i(), Ny :: i(), Nz :: i()}) -> ok
normal3s(Nx :: i(), Ny :: i(), Nz :: i()) -> ok
normal3sv(X1 :: {Nx :: i(), Ny :: i(), Nz :: i()}) -> ok
The current normal is set to the given coordinates whenever gl:normal() is issued. Byte, short, or integer arguments
are converted to floating-point format with a linear mapping that maps the most positive representable integer value
to 1.0 and the most negative representable integer value to -1.0.

External documentation.

normalPointer(Type :: enum(),
 Stride :: i(),
 Ptr :: offset() | mem()) ->
 ok
gl:normalPointer/3 specifies the location and data format of an array of normals to use when rendering. Type
specifies the data type of each normal coordinate, and Stride specifies the byte stride from one normal to the next,
allowing vertices and attributes to be packed into a single array or stored in separate arrays. (Single-array storage may
be more efficient on some implementations; see gl:interleavedArrays/3.)

External documentation.

objectPtrLabel(Ptr :: offset() | mem(),
 Length :: i(),
 Label :: string()) ->
 ok
gl:objectPtrLabel/3 labels the sync object identified by Ptr.

External documentation.

ortho(Left :: f(),
 Right :: f(),
 Bottom :: f(),
 Top :: f(),
 Near_val :: f(),
 Far_val :: f()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 937

href
href
href
href

gl

 ok
gl:ortho/6 describes a transformation that produces a parallel projection. The current matrix (see
gl:matrixMode/1) is multiplied by this matrix and the result replaces the current matrix, as if
gl:multMatrix() were called with the following matrix as its argument:

External documentation.

passThrough(Token :: f()) -> ok

External documentation.

patchParameterfv(Pname :: enum(), Values :: [f()]) -> ok
patchParameteri(Pname :: enum(), Value :: i()) -> ok
gl:patchParameter() specifies the parameters that will be used for patch primitives. Pname specifies the
parameter to modify and must be either ?GL_PATCH_VERTICES, ?GL_PATCH_DEFAULT_OUTER_LEVEL or
?GL_PATCH_DEFAULT_INNER_LEVEL. For gl:patchParameteri/2, Value specifies the new value for
the parameter specified by Pname. For gl:patchParameterfv/2, Values specifies the address of an array
containing the new values for the parameter specified by Pname.

External documentation.

pauseTransformFeedback() -> ok
gl:pauseTransformFeedback/0 pauses transform feedback operations on the currently active transform
feedback object. When transform feedback operations are paused, transform feedback is still considered active and
changing most transform feedback state related to the object results in an error. However, a new transform feedback
object may be bound while transform feedback is paused.

External documentation.

pixelMapfv(Map :: enum(), Mapsize :: i(), Values :: binary()) ->
 ok
pixelMapuiv(Map :: enum(), Mapsize :: i(), Values :: binary()) ->
 ok
pixelMapusv(Map :: enum(), Mapsize :: i(), Values :: binary()) ->
 ok
gl:pixelMap() sets up translation tables, or maps, used by gl:copyPixels/5, gl:copyTexImage1D/7,
gl:copyTexImage2D/8, gl:copyTexSubImage1D/6, gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9, gl:drawPixels/5, gl:readPixels/7, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10, gl:texSubImage1D/7, gl:texSubImage2D/9,
and gl:texSubImage3D/11. Additionally, if the ARB_imaging subset is supported,
the routines gl:colorTable/6, gl:colorSubTable/6, gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7, gl:histogram/4, gl:minmax/3, and gl:separableFilter2D/8.
Use of these maps is described completely in the gl:pixelTransfer() reference page, and partly in the reference
pages for the pixel and texture image commands. Only the specification of the maps is described in this reference page.

External documentation.

938 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

pixelStoref(Pname :: enum(), Param :: f()) -> ok
pixelStorei(Pname :: enum(), Param :: i()) -> ok
gl:pixelStore() sets pixel storage modes that affect the operation of subsequent gl:readPixels/7
as well as the unpacking of texture patterns (see gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10, gl:texSubImage1D/7, gl:texSubImage2D/9, gl:texSubImage3D/11),
gl:compressedTexImage1D/7, gl:compressedTexImage2D/8, gl:compressedTexImage3D/9,
gl:compressedTexSubImage1D/7, gl:compressedTexSubImage2D/9 or
gl:compressedTexSubImage1D/7.

External documentation.

pixelTransferf(Pname :: enum(), Param :: f()) -> ok
pixelTransferi(Pname :: enum(), Param :: i()) -> ok
gl:pixelTransfer() sets pixel transfer modes that affect the operation of subsequent
gl:copyPixels/5, gl:copyTexImage1D/7, gl:copyTexImage2D/8, gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, gl:copyTexSubImage3D/9, gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9, gl:texImage3D/10, gl:texSubImage1D/7,
gl:texSubImage2D/9, and gl:texSubImage3D/11 commands. Additionally, if the ARB_imaging subset
is supported, the routines gl:colorTable/6, gl:colorSubTable/6, gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7, gl:histogram/4, gl:minmax/3, and gl:separableFilter2D/8
are also affected. The algorithms that are specified by pixel transfer modes operate on pixels after they
are read from the frame buffer (gl:copyPixels/5gl:copyTexImage1D/7, gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6, gl:copyTexSubImage2D/8, gl:copyTexSubImage3D/9, and
gl:readPixels/7), or unpacked from client memory (gl:drawPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10, gl:texSubImage1D/7, gl:texSubImage2D/9, and
gl:texSubImage3D/11). Pixel transfer operations happen in the same order, and in the same manner, regardless
of the command that resulted in the pixel operation. Pixel storage modes (see gl:pixelStore()) control the
unpacking of pixels being read from client memory and the packing of pixels being written back into client memory.

External documentation.

pixelZoom(Xfactor :: f(), Yfactor :: f()) -> ok
gl:pixelZoom/2 specifies values for the x and y zoom factors. During the execution of gl:drawPixels/5 or
gl:copyPixels/5, if (xr, yr) is the current raster position, and a given element is in the mth row and nth column
of the pixel rectangle, then pixels whose centers are in the rectangle with corners at

External documentation.

pointParameterf(Pname :: enum(), Param :: f()) -> ok
pointParameterfv(Pname :: enum(), Params :: tuple()) -> ok
pointParameteri(Pname :: enum(), Param :: i()) -> ok
pointParameteriv(Pname :: enum(), Params :: tuple()) -> ok
The following values are accepted for Pname:

External documentation.

pointSize(Size :: f()) -> ok
gl:pointSize/1 specifies the rasterized diameter of points. If point size mode is disabled (see gl:enable/1
with parameter ?GL_PROGRAM_POINT_SIZE), this value will be used to rasterize points. Otherwise, the value
written to the shading language built-in variable gl_PointSize will be used.

Ericsson AB. All Rights Reserved.: wxErlang | 939

href
href
href
href

gl

External documentation.

polygonMode(Face :: enum(), Mode :: enum()) -> ok
gl:polygonMode/2 controls the interpretation of polygons for rasterization. Face describes which polygons
Mode applies to: both front and back-facing polygons (?GL_FRONT_AND_BACK). The polygon mode affects only
the final rasterization of polygons. In particular, a polygon's vertices are lit and the polygon is clipped and possibly
culled before these modes are applied.

External documentation.

polygonOffset(Factor :: f(), Units :: f()) -> ok
When ?GL_POLYGON_OFFSET_FILL, ?GL_POLYGON_OFFSET_LINE, or ?GL_POLYGON_OFFSET_POINT
is enabled, each fragment's depth value will be offset after it is interpolated from the depth values of the appropriate
vertices. The value of the offset is factor×DZ+r×units, where DZ is a measurement of the change in depth relative
to the screen area of the polygon, and r is the smallest value that is guaranteed to produce a resolvable offset for a
given implementation. The offset is added before the depth test is performed and before the value is written into the
depth buffer.

External documentation.

polygonOffsetClamp(Factor :: f(), Units :: f(), Clamp :: f()) ->
 ok
No documentation available.

polygonStipple(Mask :: binary()) -> ok
Polygon stippling, like line stippling (see gl:lineStipple/2), masks out certain fragments produced by
rasterization, creating a pattern. Stippling is independent of polygon antialiasing.

External documentation.

primitiveRestartIndex(Index :: i()) -> ok
gl:primitiveRestartIndex/1 specifies a vertex array element that is treated specially when primitive
restarting is enabled. This is known as the primitive restart index.

External documentation.

prioritizeTextures(Textures :: [i()], Priorities :: [clamp()]) ->
 ok
gl:prioritizeTextures/2 assigns the N texture priorities given in Priorities to the N textures named in
Textures.

External documentation.

programBinary(Program :: i(),
 BinaryFormat :: enum(),
 Binary :: binary()) ->
 ok
gl:programBinary/3 loads a program object with a program binary previously returned from
gl:getProgramBinary/2. BinaryFormat and Binary must be those returned by a previous call to
gl:getProgramBinary/2, and Length must be the length returned by gl:getProgramBinary/2, or by

940 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

gl:getProgram() when called with Pname set to ?GL_PROGRAM_BINARY_LENGTH. If these conditions are
not met, loading the program binary will fail and Program's ?GL_LINK_STATUS will be set to ?GL_FALSE.

External documentation.

programParameteri(Program :: i(), Pname :: enum(), Value :: i()) ->
 ok
gl:programParameter() specifies a new value for the parameter nameed by Pname for the program object
Program.

External documentation.

programUniform1d(Program :: i(), Location :: i(), V0 :: f()) -> ok
programUniform1dv(Program :: i(), Location :: i(), Value :: [f()]) ->
 ok
programUniform1f(Program :: i(), Location :: i(), V0 :: f()) -> ok
programUniform1fv(Program :: i(), Location :: i(), Value :: [f()]) ->
 ok
programUniform1i(Program :: i(), Location :: i(), V0 :: i()) -> ok
programUniform1iv(Program :: i(), Location :: i(), Value :: [i()]) ->
 ok
programUniform1ui(Program :: i(), Location :: i(), V0 :: i()) ->
 ok
programUniform1uiv(Program :: i(),
 Location :: i(),
 Value :: [i()]) ->
 ok
programUniform2d(Program :: i(),
 Location :: i(),
 V0 :: f(),
 V1 :: f()) ->
 ok
programUniform2dv(Program :: i(),
 Location :: i(),
 Value :: [{f(), f()}]) ->
 ok
programUniform2f(Program :: i(),
 Location :: i(),
 V0 :: f(),
 V1 :: f()) ->
 ok
programUniform2fv(Program :: i(),
 Location :: i(),
 Value :: [{f(), f()}]) ->
 ok
programUniform2i(Program :: i(),
 Location :: i(),
 V0 :: i(),
 V1 :: i()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 941

href
href

gl

 ok
programUniform2iv(Program :: i(),
 Location :: i(),
 Value :: [{i(), i()}]) ->
 ok
programUniform2ui(Program :: i(),
 Location :: i(),
 V0 :: i(),
 V1 :: i()) ->
 ok
programUniform2uiv(Program :: i(),
 Location :: i(),
 Value :: [{i(), i()}]) ->
 ok
programUniform3d(Program :: i(),
 Location :: i(),
 V0 :: f(),
 V1 :: f(),
 V2 :: f()) ->
 ok
programUniform3dv(Program :: i(),
 Location :: i(),
 Value :: [{f(), f(), f()}]) ->
 ok
programUniform3f(Program :: i(),
 Location :: i(),
 V0 :: f(),
 V1 :: f(),
 V2 :: f()) ->
 ok
programUniform3fv(Program :: i(),
 Location :: i(),
 Value :: [{f(), f(), f()}]) ->
 ok
programUniform3i(Program :: i(),
 Location :: i(),
 V0 :: i(),
 V1 :: i(),
 V2 :: i()) ->
 ok
programUniform3iv(Program :: i(),
 Location :: i(),
 Value :: [{i(), i(), i()}]) ->
 ok
programUniform3ui(Program :: i(),
 Location :: i(),
 V0 :: i(),
 V1 :: i(),
 V2 :: i()) ->

942 | Ericsson AB. All Rights Reserved.: wxErlang

gl

 ok
programUniform3uiv(Program :: i(),
 Location :: i(),
 Value :: [{i(), i(), i()}]) ->
 ok
programUniform4d(Program :: i(),
 Location :: i(),
 V0 :: f(),
 V1 :: f(),
 V2 :: f(),
 V3 :: f()) ->
 ok
programUniform4dv(Program :: i(),
 Location :: i(),
 Value :: [{f(), f(), f(), f()}]) ->
 ok
programUniform4f(Program :: i(),
 Location :: i(),
 V0 :: f(),
 V1 :: f(),
 V2 :: f(),
 V3 :: f()) ->
 ok
programUniform4fv(Program :: i(),
 Location :: i(),
 Value :: [{f(), f(), f(), f()}]) ->
 ok
programUniform4i(Program :: i(),
 Location :: i(),
 V0 :: i(),
 V1 :: i(),
 V2 :: i(),
 V3 :: i()) ->
 ok
programUniform4iv(Program :: i(),
 Location :: i(),
 Value :: [{i(), i(), i(), i()}]) ->
 ok
programUniform4ui(Program :: i(),
 Location :: i(),
 V0 :: i(),
 V1 :: i(),
 V2 :: i(),
 V3 :: i()) ->
 ok
programUniform4uiv(Program :: i(),
 Location :: i(),
 Value :: [{i(), i(), i(), i()}]) ->
 ok
programUniformMatrix2dv(Program :: i(),

Ericsson AB. All Rights Reserved.: wxErlang | 943

gl

 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok
programUniformMatrix2fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok
programUniformMatrix2x3dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f()}]) ->
 ok
programUniformMatrix2x3fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f()}]) ->
 ok
programUniformMatrix2x4dv(Program, Location, Transpose, Value) ->
 ok
programUniformMatrix2x4fv(Program, Location, Transpose, Value) ->
 ok
programUniformMatrix3dv(Program, Location, Transpose, Value) -> ok
programUniformMatrix3fv(Program, Location, Transpose, Value) -> ok
programUniformMatrix3x2dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f()}]) ->
 ok
programUniformMatrix3x2fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f()}]) ->
 ok
programUniformMatrix3x4dv(Program, Location, Transpose, Value) ->
 ok
programUniformMatrix3x4fv(Program, Location, Transpose, Value) ->
 ok
programUniformMatrix4dv(Program, Location, Transpose, Value) -> ok
programUniformMatrix4fv(Program, Location, Transpose, Value) -> ok
programUniformMatrix4x2dv(Program, Location, Transpose, Value) ->
 ok
programUniformMatrix4x2fv(Program, Location, Transpose, Value) ->

944 | Ericsson AB. All Rights Reserved.: wxErlang

gl

 ok
programUniformMatrix4x3dv(Program, Location, Transpose, Value) ->
 ok
programUniformMatrix4x3fv(Program, Location, Transpose, Value) ->
 ok
Types:

Program = Location = i()
Transpose = 0 | 1
Value =
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}]

gl:programUniform() modifies the value of a uniform variable or a uniform variable array. The location
of the uniform variable to be modified is specified by Location, which should be a value returned
by gl:getUniformLocation/2. gl:programUniform() operates on the program object specified by
Program.

External documentation.

provokingVertex(Mode :: enum()) -> ok
Flatshading a vertex shader varying output means to assign all vetices of the primitive the same value
for that output. The vertex from which these values is derived is known as the provoking vertex and
gl:provokingVertex/1 specifies which vertex is to be used as the source of data for flat shaded varyings.

External documentation.

popAttrib() -> ok
pushAttrib(Mask :: i()) -> ok
gl:pushAttrib/1 takes one argument, a mask that indicates which groups of state variables to save on the attribute
stack. Symbolic constants are used to set bits in the mask. Mask is typically constructed by specifying the bitwise-or
of several of these constants together. The special mask ?GL_ALL_ATTRIB_BITS can be used to save all stackable
states.

External documentation.

popClientAttrib() -> ok
pushClientAttrib(Mask :: i()) -> ok
gl:pushClientAttrib/1 takes one argument, a mask that indicates which groups of client-state variables
to save on the client attribute stack. Symbolic constants are used to set bits in the mask. Mask is
typically constructed by specifying the bitwise-or of several of these constants together. The special mask ?
GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable client state.

External documentation.

popDebugGroup() -> ok
pushDebugGroup(Source :: enum(),
 Id :: i(),
 Length :: i(),
 Message :: string()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 945

href
href
href
href

gl

 ok
gl:pushDebugGroup/4 pushes a debug group described by the string Message into the command stream.
The value of Id specifies the ID of messages generated. The parameter Length contains the number of
characters in Message. If Length is negative, it is implied that Message contains a null terminated string.
The message has the specified Source and Id, the Type?GL_DEBUG_TYPE_PUSH_GROUP, and Severity?
GL_DEBUG_SEVERITY_NOTIFICATION. The GL will put a new debug group on top of the debug group stack
which inherits the control of the volume of debug output of the debug group previously residing on the top of the
debug group stack. Because debug groups are strictly hierarchical, any additional control of the debug output volume
will only apply within the active debug group and the debug groups pushed on top of the active debug group.

External documentation.

popMatrix() -> ok
pushMatrix() -> ok
There is a stack of matrices for each of the matrix modes. In ?GL_MODELVIEW mode, the stack depth is at least 32. In
the other modes, ?GL_COLOR, ?GL_PROJECTION, and ?GL_TEXTURE, the depth is at least 2. The current matrix
in any mode is the matrix on the top of the stack for that mode.

External documentation.

popName() -> ok
pushName(Name :: i()) -> ok
The name stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It consists
of an ordered set of unsigned integers and is initially empty.

External documentation.

queryCounter(Id :: i(), Target :: enum()) -> ok
gl:queryCounter/2 causes the GL to record the current time into the query object named Id. Target must
be ?GL_TIMESTAMP. The time is recorded after all previous commands on the GL client and server state and the
framebuffer have been fully realized. When the time is recorded, the query result for that object is marked available.
gl:queryCounter/2 timer queries can be used within a gl:beginQuery/2 / gl:endQuery/1 block where
the target is ?GL_TIME_ELAPSED and it does not affect the result of that query object.

External documentation.

946 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

rasterPos2d(X :: f(), Y :: f()) -> ok
rasterPos2dv(X1 :: {X :: f(), Y :: f()}) -> ok
rasterPos2f(X :: f(), Y :: f()) -> ok
rasterPos2fv(X1 :: {X :: f(), Y :: f()}) -> ok
rasterPos2i(X :: i(), Y :: i()) -> ok
rasterPos2iv(X1 :: {X :: i(), Y :: i()}) -> ok
rasterPos2s(X :: i(), Y :: i()) -> ok
rasterPos2sv(X1 :: {X :: i(), Y :: i()}) -> ok
rasterPos3d(X :: f(), Y :: f(), Z :: f()) -> ok
rasterPos3dv(X1 :: {X :: f(), Y :: f(), Z :: f()}) -> ok
rasterPos3f(X :: f(), Y :: f(), Z :: f()) -> ok
rasterPos3fv(X1 :: {X :: f(), Y :: f(), Z :: f()}) -> ok
rasterPos3i(X :: i(), Y :: i(), Z :: i()) -> ok
rasterPos3iv(X1 :: {X :: i(), Y :: i(), Z :: i()}) -> ok
rasterPos3s(X :: i(), Y :: i(), Z :: i()) -> ok
rasterPos3sv(X1 :: {X :: i(), Y :: i(), Z :: i()}) -> ok
rasterPos4d(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok
rasterPos4dv(X1 :: {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok
rasterPos4f(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok
rasterPos4fv(X1 :: {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok
rasterPos4i(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok
rasterPos4iv(X1 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok
rasterPos4s(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok
rasterPos4sv(X1 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok
The GL maintains a 3D position in window coordinates. This position, called the raster position, is used to position pixel
and bitmap write operations. It is maintained with subpixel accuracy. See gl:bitmap/7, gl:drawPixels/5,
and gl:copyPixels/5.

External documentation.

readBuffer(Mode :: enum()) -> ok
gl:readBuffer/1 specifies a color buffer as the source for subsequent
gl:readPixels/7, gl:copyTexImage1D/7, gl:copyTexImage2D/8, gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and gl:copyTexSubImage3D/9 commands. Mode accepts one of twelve or
more predefined values. In a fully configured system, ?GL_FRONT, ?GL_LEFT, and ?GL_FRONT_LEFT all name
the front left buffer, ?GL_FRONT_RIGHT and ?GL_RIGHT name the front right buffer, and ?GL_BACK_LEFT
and ?GL_BACK name the back left buffer. Further more, the constants ?GL_COLOR_ATTACHMENTi may be used
to indicate the ith color attachment where i ranges from zero to the value of ?GL_MAX_COLOR_ATTACHMENTS
minus one.

External documentation.

readPixels(X, Y, Width, Height, Format, Type, Pixels) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 947

href
href

gl

X = Y = Width = Height = i()
Format = Type = enum()
Pixels = mem()

gl:readPixels/7 and glReadnPixels return pixel data from the frame buffer, starting with the pixel whose
lower left corner is at location (X, Y), into client memory starting at location Data. Several parameters control the
processing of the pixel data before it is placed into client memory. These parameters are set with gl:pixelStore().
This reference page describes the effects on gl:readPixels/7 and glReadnPixels of most, but not all of the
parameters specified by these three commands.

External documentation.

rectd(X1 :: f(), Y1 :: f(), X2 :: f(), Y2 :: f()) -> ok
rectdv(V1 :: {f(), f()}, V2 :: {f(), f()}) -> ok
rectf(X1 :: f(), Y1 :: f(), X2 :: f(), Y2 :: f()) -> ok
rectfv(V1 :: {f(), f()}, V2 :: {f(), f()}) -> ok
recti(X1 :: i(), Y1 :: i(), X2 :: i(), Y2 :: i()) -> ok
rectiv(V1 :: {i(), i()}, V2 :: {i(), i()}) -> ok
rects(X1 :: i(), Y1 :: i(), X2 :: i(), Y2 :: i()) -> ok
rectsv(V1 :: {i(), i()}, V2 :: {i(), i()}) -> ok
gl:rect() supports efficient specification of rectangles as two corner points. Each rectangle command takes four
arguments, organized either as two consecutive pairs of (x y) coordinates or as two pointers to arrays, each containing
an (x y) pair. The resulting rectangle is defined in the z=0 plane.

External documentation.

releaseShaderCompiler() -> ok
gl:releaseShaderCompiler/0 provides a hint to the implementation that it may free internal resources
associated with its shader compiler. gl:compileShader/1 may subsequently be called and the implementation
may at that time reallocate resources previously freed by the call to gl:releaseShaderCompiler/0.

External documentation.

renderMode(Mode :: enum()) -> i()
gl:renderMode/1 sets the rasterization mode. It takes one argument, Mode, which can assume one of three
predefined values:

External documentation.

renderbufferStorage(Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i()) ->
 ok
gl:renderbufferStorage/4 is equivalent to calling gl:renderbufferStorageMultisample/5
with the Samples set to zero, and glNamedRenderbufferStorage is equivalent to calling
glNamedRenderbufferStorageMultisample with the samples set to zero.

External documentation.

948 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

renderbufferStorageMultisample(Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i()) ->
 ok
gl:renderbufferStorageMultisample/5 and glNamedRenderbufferStorageMultisample
establish the data storage, format, dimensions and number of samples of a renderbuffer object's image.

External documentation.

resetHistogram(Target :: enum()) -> ok
gl:resetHistogram/1 resets all the elements of the current histogram table to zero.

External documentation.

resetMinmax(Target :: enum()) -> ok
gl:resetMinmax/1 resets the elements of the current minmax table to their initial values: the ̀ `maximum'' element
receives the minimum possible component values, and the ``minimum'' element receives the maximum possible
component values.

External documentation.

resumeTransformFeedback() -> ok
gl:resumeTransformFeedback/0 resumes transform feedback operations on the currently active transform
feedback object. When transform feedback operations are paused, transform feedback is still considered active and
changing most transform feedback state related to the object results in an error. However, a new transform feedback
object may be bound while transform feedback is paused.

External documentation.

rotated(Angle :: f(), X :: f(), Y :: f(), Z :: f()) -> ok
rotatef(Angle :: f(), X :: f(), Y :: f(), Z :: f()) -> ok
gl:rotate() produces a rotation of Angle degrees around the vector (x y z). The current matrix (see
gl:matrixMode/1) is multiplied by a rotation matrix with the product replacing the current matrix, as if
gl:multMatrix() were called with the following matrix as its argument:

External documentation.

sampleCoverage(Value :: clamp(), Invert :: 0 | 1) -> ok
Multisampling samples a pixel multiple times at various implementation-dependent subpixel locations to generate
antialiasing effects. Multisampling transparently antialiases points, lines, polygons, and images if it is enabled.

External documentation.

sampleMaski(MaskNumber :: i(), Mask :: i()) -> ok
gl:sampleMaski/2 sets one 32-bit sub-word of the multi-word sample mask, ?GL_SAMPLE_MASK_VALUE.

External documentation.

samplerParameterIiv(Sampler :: i(),

Ericsson AB. All Rights Reserved.: wxErlang | 949

href
href
href
href
href
href
href

gl

 Pname :: enum(),
 Param :: [i()]) ->
 ok
samplerParameterIuiv(Sampler :: i(),
 Pname :: enum(),
 Param :: [i()]) ->
 ok
samplerParameterf(Sampler :: i(), Pname :: enum(), Param :: f()) ->
 ok
samplerParameterfv(Sampler :: i(),
 Pname :: enum(),
 Param :: [f()]) ->
 ok
samplerParameteri(Sampler :: i(), Pname :: enum(), Param :: i()) ->
 ok
samplerParameteriv(Sampler :: i(),
 Pname :: enum(),
 Param :: [i()]) ->
 ok
gl:samplerParameter() assigns the value or values in Params to the sampler parameter specified as Pname.
Sampler specifies the sampler object to be modified, and must be the name of a sampler object previously returned
from a call to gl:genSamplers/1. The following symbols are accepted in Pname:

External documentation.

scaled(X :: f(), Y :: f(), Z :: f()) -> ok
scalef(X :: f(), Y :: f(), Z :: f()) -> ok
gl:scale() produces a nonuniform scaling along the x, y, and z axes. The three parameters indicate the desired
scale factor along each of the three axes.

External documentation.

scissor(X :: i(), Y :: i(), Width :: i(), Height :: i()) -> ok
gl:scissor/4 defines a rectangle, called the scissor box, in window coordinates. The first two arguments, X and
Y, specify the lower left corner of the box. Width and Height specify the width and height of the box.

External documentation.

scissorArrayv(First :: i(), V :: [{i(), i(), i(), i()}]) -> ok
gl:scissorArrayv/2 defines rectangles, called scissor boxes, in window coordinates for each viewport. First
specifies the index of the first scissor box to modify and Count specifies the number of scissor boxes to modify.
First must be less than the value of ?GL_MAX_VIEWPORTS, and First + Count must be less than or equal to
the value of ?GL_MAX_VIEWPORTS. V specifies the address of an array containing integers specifying the lower left
corner of the scissor boxes, and the width and height of the scissor boxes, in that order.

External documentation.

scissorIndexed(Index :: i(),
 Left :: i(),
 Bottom :: i(),

950 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

 Width :: i(),
 Height :: i()) ->
 ok
scissorIndexedv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
gl:scissorIndexed/5 defines the scissor box for a specified viewport. Index specifies the index of scissor box
to modify. Index must be less than the value of ?GL_MAX_VIEWPORTS. For gl:scissorIndexed/5, Left,
Bottom, Width and Height specify the left, bottom, width and height of the scissor box, in pixels, respectively.
For gl:scissorIndexedv/2, V specifies the address of an array containing integers specifying the lower left
corner of the scissor box, and the width and height of the scissor box, in that order.

External documentation.

secondaryColor3b(Red :: i(), Green :: i(), Blue :: i()) -> ok
secondaryColor3bv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) ->
 ok
secondaryColor3d(Red :: f(), Green :: f(), Blue :: f()) -> ok
secondaryColor3dv(X1 :: {Red :: f(), Green :: f(), Blue :: f()}) ->
 ok
secondaryColor3f(Red :: f(), Green :: f(), Blue :: f()) -> ok
secondaryColor3fv(X1 :: {Red :: f(), Green :: f(), Blue :: f()}) ->
 ok
secondaryColor3i(Red :: i(), Green :: i(), Blue :: i()) -> ok
secondaryColor3iv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) ->
 ok
secondaryColor3s(Red :: i(), Green :: i(), Blue :: i()) -> ok
secondaryColor3sv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) ->
 ok
secondaryColor3ub(Red :: i(), Green :: i(), Blue :: i()) -> ok
secondaryColor3ubv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) ->
 ok
secondaryColor3ui(Red :: i(), Green :: i(), Blue :: i()) -> ok
secondaryColor3uiv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) ->
 ok
secondaryColor3us(Red :: i(), Green :: i(), Blue :: i()) -> ok
secondaryColor3usv(X1 :: {Red :: i(), Green :: i(), Blue :: i()}) ->
 ok
The GL stores both a primary four-valued RGBA color and a secondary four-valued RGBA color (where alpha is
always set to 0.0) that is associated with every vertex.

External documentation.

secondaryColorPointer(Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok
gl:secondaryColorPointer/4 specifies the location and data format of an array of color components to use
when rendering. Size specifies the number of components per color, and must be 3. Type specifies the data type

Ericsson AB. All Rights Reserved.: wxErlang | 951

href
href

gl

of each color component, and Stride specifies the byte stride from one color to the next, allowing vertices and
attributes to be packed into a single array or stored in separate arrays.

External documentation.

selectBuffer(Size :: i(), Buffer :: mem()) -> ok
gl:selectBuffer/2 has two arguments: Buffer is a pointer to an array of unsigned integers, and
Size indicates the size of the array. Buffer returns values from the name stack (see gl:initNames/0,
gl:loadName/1, gl:pushName/1) when the rendering mode is ?GL_SELECT (see gl:renderMode/1).
gl:selectBuffer/2 must be issued before selection mode is enabled, and it must not be issued while the rendering
mode is ?GL_SELECT.

External documentation.

separableFilter2D(Target, Internalformat, Width, Height, Format,
 Type, Row, Column) ->
 ok
Types:

Target = Internalformat = enum()
Width = Height = i()
Format = Type = enum()
Row = Column = offset() | mem()

gl:separableFilter2D/8 builds a two-dimensional separable convolution filter kernel from two arrays of
pixels.

External documentation.

shadeModel(Mode :: enum()) -> ok
GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the computed colors of
vertices to be interpolated as the primitive is rasterized, typically assigning different colors to each resulting pixel
fragment. Flat shading selects the computed color of just one vertex and assigns it to all the pixel fragments generated
by rasterizing a single primitive. In either case, the computed color of a vertex is the result of lighting if lighting is
enabled, or it is the current color at the time the vertex was specified if lighting is disabled.

External documentation.

shaderBinary(Shaders :: [i()],
 Binaryformat :: enum(),
 Binary :: binary()) ->
 ok
gl:shaderBinary/3 loads pre-compiled shader binary code into the Count shader objects whose handles are
given in Shaders. Binary points to Length bytes of binary shader code stored in client memory. BinaryFormat
specifies the format of the pre-compiled code.

External documentation.

shaderSource(Shader :: i(), String :: [unicode:chardata()]) -> ok
gl:shaderSource/2 sets the source code in Shader to the source code in the array of strings specified by
String. Any source code previously stored in the shader object is completely replaced. The number of strings in
the array is specified by Count. If Length is ?NULL, each string is assumed to be null terminated. If Length is

952 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

gl

a value other than ?NULL, it points to an array containing a string length for each of the corresponding elements of
String. Each element in the Length array may contain the length of the corresponding string (the null character is
not counted as part of the string length) or a value less than 0 to indicate that the string is null terminated. The source
code strings are not scanned or parsed at this time; they are simply copied into the specified shader object.

External documentation.

shaderStorageBlockBinding(Program :: i(),
 StorageBlockIndex :: i(),
 StorageBlockBinding :: i()) ->
 ok
gl:shaderStorageBlockBinding/3, changes the active shader storage block with an assigned index
of StorageBlockIndex in program object Program. StorageBlockIndex must be an active
shader storage block index in Program. StorageBlockBinding must be less than the value of ?
GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS. If successful, gl:shaderStorageBlockBinding/3
specifies that Program will use the data store of the buffer object bound to the binding point
StorageBlockBinding to read and write the values of the buffer variables in the shader storage block identified
by StorageBlockIndex.

External documentation.

stencilFunc(Func :: enum(), Ref :: i(), Mask :: i()) -> ok
Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. Stencil planes are first drawn into
using GL drawing primitives, then geometry and images are rendered using the stencil planes to mask out portions
of the screen. Stenciling is typically used in multipass rendering algorithms to achieve special effects, such as decals,
outlining, and constructive solid geometry rendering.

External documentation.

stencilFuncSeparate(Face :: enum(),
 Func :: enum(),
 Ref :: i(),
 Mask :: i()) ->
 ok
Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil planes
using GL drawing primitives, then render geometry and images, using the stencil planes to mask out portions of
the screen. Stenciling is typically used in multipass rendering algorithms to achieve special effects, such as decals,
outlining, and constructive solid geometry rendering.

External documentation.

stencilMask(Mask :: i()) -> ok
gl:stencilMask/1 controls the writing of individual bits in the stencil planes. The least significant n bits of
Mask, where n is the number of bits in the stencil buffer, specify a mask. Where a 1 appears in the mask, it's possible
to write to the corresponding bit in the stencil buffer. Where a 0 appears, the corresponding bit is write-protected.
Initially, all bits are enabled for writing.

External documentation.

stencilMaskSeparate(Face :: enum(), Mask :: i()) -> ok
gl:stencilMaskSeparate/2 controls the writing of individual bits in the stencil planes. The least significant
n bits of Mask, where n is the number of bits in the stencil buffer, specify a mask. Where a 1 appears in the mask,

Ericsson AB. All Rights Reserved.: wxErlang | 953

href
href
href
href
href

gl

it's possible to write to the corresponding bit in the stencil buffer. Where a 0 appears, the corresponding bit is write-
protected. Initially, all bits are enabled for writing.

External documentation.

stencilOp(Fail :: enum(), Zfail :: enum(), Zpass :: enum()) -> ok
Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil planes
using GL drawing primitives, then render geometry and images, using the stencil planes to mask out portions of
the screen. Stenciling is typically used in multipass rendering algorithms to achieve special effects, such as decals,
outlining, and constructive solid geometry rendering.

External documentation.

stencilOpSeparate(Face :: enum(),
 Sfail :: enum(),
 Dpfail :: enum(),
 Dppass :: enum()) ->
 ok
Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil planes
using GL drawing primitives, then render geometry and images, using the stencil planes to mask out portions of
the screen. Stenciling is typically used in multipass rendering algorithms to achieve special effects, such as decals,
outlining, and constructive solid geometry rendering.

External documentation.

texBuffer(Target :: enum(),
 Internalformat :: enum(),
 Buffer :: i()) ->
 ok
textureBuffer(Texture :: i(),
 Internalformat :: enum(),
 Buffer :: i()) ->
 ok
gl:texBuffer/3 and gl:textureBuffer/3 attaches the data store of a specified buffer object to a specified
texture object, and specify the storage format for the texture image found in the buffer object. The texture object must
be a buffer texture.

External documentation.

texBufferRange(Target :: enum(),
 Internalformat :: enum(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->
 ok
textureBufferRange(Texture :: i(),
 Internalformat :: enum(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->

954 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

 ok
gl:texBufferRange/5 and gl:textureBufferRange/5 attach a range of the data store of a specified
buffer object to a specified texture object, and specify the storage format for the texture image found in the buffer
object. The texture object must be a buffer texture.

External documentation.

texCoord1d(S :: f()) -> ok
texCoord1dv(X1 :: {S :: f()}) -> ok
texCoord1f(S :: f()) -> ok
texCoord1fv(X1 :: {S :: f()}) -> ok
texCoord1i(S :: i()) -> ok
texCoord1iv(X1 :: {S :: i()}) -> ok
texCoord1s(S :: i()) -> ok
texCoord1sv(X1 :: {S :: i()}) -> ok
texCoord2d(S :: f(), T :: f()) -> ok
texCoord2dv(X1 :: {S :: f(), T :: f()}) -> ok
texCoord2f(S :: f(), T :: f()) -> ok
texCoord2fv(X1 :: {S :: f(), T :: f()}) -> ok
texCoord2i(S :: i(), T :: i()) -> ok
texCoord2iv(X1 :: {S :: i(), T :: i()}) -> ok
texCoord2s(S :: i(), T :: i()) -> ok
texCoord2sv(X1 :: {S :: i(), T :: i()}) -> ok
texCoord3d(S :: f(), T :: f(), R :: f()) -> ok
texCoord3dv(X1 :: {S :: f(), T :: f(), R :: f()}) -> ok
texCoord3f(S :: f(), T :: f(), R :: f()) -> ok
texCoord3fv(X1 :: {S :: f(), T :: f(), R :: f()}) -> ok
texCoord3i(S :: i(), T :: i(), R :: i()) -> ok
texCoord3iv(X1 :: {S :: i(), T :: i(), R :: i()}) -> ok
texCoord3s(S :: i(), T :: i(), R :: i()) -> ok
texCoord3sv(X1 :: {S :: i(), T :: i(), R :: i()}) -> ok
texCoord4d(S :: f(), T :: f(), R :: f(), Q :: f()) -> ok
texCoord4dv(X1 :: {S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok
texCoord4f(S :: f(), T :: f(), R :: f(), Q :: f()) -> ok
texCoord4fv(X1 :: {S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok
texCoord4i(S :: i(), T :: i(), R :: i(), Q :: i()) -> ok
texCoord4iv(X1 :: {S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok
texCoord4s(S :: i(), T :: i(), R :: i(), Q :: i()) -> ok
texCoord4sv(X1 :: {S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok
gl:texCoord() specifies texture coordinates in one, two, three, or four dimensions. gl:texCoord1() sets
the current texture coordinates to (s 0 0 1); a call to gl:texCoord2() sets them to (s t 0 1). Similarly,
gl:texCoord3() specifies the texture coordinates as (s t r 1), and gl:texCoord4() defines all four components
explicitly as (s t r q).

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 955

href
href

gl

texCoordPointer(Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Ptr :: offset() | mem()) ->
 ok
gl:texCoordPointer/4 specifies the location and data format of an array of texture coordinates to use when
rendering. Size specifies the number of coordinates per texture coordinate set, and must be 1, 2, 3, or 4. Type
specifies the data type of each texture coordinate, and Stride specifies the byte stride from one texture coordinate
set to the next, allowing vertices and attributes to be packed into a single array or stored in separate arrays. (Single-
array storage may be more efficient on some implementations; see gl:interleavedArrays/3.)

External documentation.

texEnvf(Target :: enum(), Pname :: enum(), Param :: f()) -> ok
texEnvfv(Target :: enum(), Pname :: enum(), Params :: tuple()) ->
 ok
texEnvi(Target :: enum(), Pname :: enum(), Param :: i()) -> ok
texEnviv(Target :: enum(), Pname :: enum(), Params :: tuple()) ->
 ok
A texture environment specifies how texture values are interpreted when a fragment is textured. When
Target is ?GL_TEXTURE_FILTER_CONTROL, Pname must be ?GL_TEXTURE_LOD_BIAS. When Target
is ?GL_TEXTURE_ENV, Pname can be ?GL_TEXTURE_ENV_MODE, ?GL_TEXTURE_ENV_COLOR, ?
GL_COMBINE_RGB, ?GL_COMBINE_ALPHA, ?GL_RGB_SCALE, ?GL_ALPHA_SCALE, ?GL_SRC0_RGB, ?
GL_SRC1_RGB, ?GL_SRC2_RGB, ?GL_SRC0_ALPHA, ?GL_SRC1_ALPHA, or ?GL_SRC2_ALPHA.

External documentation.

texGend(Coord :: enum(), Pname :: enum(), Param :: f()) -> ok
texGendv(Coord :: enum(), Pname :: enum(), Params :: tuple()) ->
 ok
texGenf(Coord :: enum(), Pname :: enum(), Param :: f()) -> ok
texGenfv(Coord :: enum(), Pname :: enum(), Params :: tuple()) ->
 ok
texGeni(Coord :: enum(), Pname :: enum(), Param :: i()) -> ok
texGeniv(Coord :: enum(), Pname :: enum(), Params :: tuple()) ->
 ok
gl:texGen() selects a texture-coordinate generation function or supplies coefficients for one of the functions.
Coord names one of the (s, t, r, q) texture coordinates; it must be one of the symbols ?GL_S, ?
GL_T, ?GL_R, or ?GL_Q. Pname must be one of three symbolic constants: ?GL_TEXTURE_GEN_MODE, ?
GL_OBJECT_PLANE, or ?GL_EYE_PLANE. If Pname is ?GL_TEXTURE_GEN_MODE, then Params chooses
a mode, one of ?GL_OBJECT_LINEAR, ?GL_EYE_LINEAR, ?GL_SPHERE_MAP, ?GL_NORMAL_MAP, or ?
GL_REFLECTION_MAP. If Pname is either ?GL_OBJECT_PLANE or ?GL_EYE_PLANE, Params contains
coefficients for the corresponding texture generation function.

External documentation.

texImage1D(Target, Level, InternalFormat, Width, Border, Format,
 Type, Pixels) ->
 ok
Types:

956 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

gl

Target = enum()
Level = InternalFormat = Width = Border = i()
Format = Type = enum()
Pixels = offset() | mem()

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is enabled.
To enable and disable one-dimensional texturing, call gl:enable/1 and gl:disable/1 with argument ?
GL_TEXTURE_1D.

External documentation.

texImage2D(Target, Level, InternalFormat, Width, Height, Border,
 Format, Type, Pixels) ->
 ok
Types:

Target = enum()
Level = InternalFormat = Width = Height = Border = i()
Format = Type = enum()
Pixels = offset() | mem()

Texturing allows elements of an image array to be read by shaders.

External documentation.

texImage2DMultisample(Target, Samples, Internalformat, Width,
 Height, Fixedsamplelocations) ->
 ok
Types:

Target = enum()
Samples = i()
Internalformat = enum()
Width = Height = i()
Fixedsamplelocations = 0 | 1

gl:texImage2DMultisample/6 establishes the data storage, format, dimensions and number of samples of a
multisample texture's image.

External documentation.

texImage3D(Target, Level, InternalFormat, Width, Height, Depth,
 Border, Format, Type, Pixels) ->
 ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 957

href
href
href

gl

Target = enum()
Level = InternalFormat = Width = Height = Depth = Border = i()
Format = Type = enum()
Pixels = offset() | mem()

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is enabled.
To enable and disable three-dimensional texturing, call gl:enable/1 and gl:disable/1 with argument ?
GL_TEXTURE_3D.

External documentation.

texImage3DMultisample(Target, Samples, Internalformat, Width,
 Height, Depth, Fixedsamplelocations) ->
 ok
Types:

Target = enum()
Samples = i()
Internalformat = enum()
Width = Height = Depth = i()
Fixedsamplelocations = 0 | 1

gl:texImage3DMultisample/7 establishes the data storage, format, dimensions and number of samples of a
multisample texture's image.

External documentation.

texParameterIiv(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->
 ok
texParameterIuiv(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->
 ok
texParameterf(Target :: enum(), Pname :: enum(), Param :: f()) ->
 ok
texParameterfv(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->
 ok
texParameteri(Target :: enum(), Pname :: enum(), Param :: i()) ->
 ok
texParameteriv(Target :: enum(),
 Pname :: enum(),
 Params :: tuple()) ->
 ok
gl:texParameter() and gl:textureParameter() assign the value or values in Params to the
texture parameter specified as Pname. For gl:texParameter(), Target defines the target texture,
either ?GL_TEXTURE_1D, ?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_2D, ?GL_TEXTURE_2D_ARRAY,

958 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

gl

?GL_TEXTURE_2D_MULTISAMPLE, ?GL_TEXTURE_2D_MULTISAMPLE_ARRAY, ?GL_TEXTURE_3D, ?
GL_TEXTURE_CUBE_MAP, ?GL_TEXTURE_CUBE_MAP_ARRAY, or ?GL_TEXTURE_RECTANGLE. The
following symbols are accepted in Pname:

External documentation.

texStorage1D(Target :: enum(),
 Levels :: i(),
 Internalformat :: enum(),
 Width :: i()) ->
 ok
gl:texStorage1D/4 and gl:textureStorage1D() specify the storage requirements for all levels of a one-
dimensional texture simultaneously. Once a texture is specified with this command, the format and dimensions of all
levels become immutable unless it is a proxy texture. The contents of the image may still be modified, however, its
storage requirements may not change. Such a texture is referred to as an immutable-format texture.

External documentation.

texStorage2D(Target :: enum(),
 Levels :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i()) ->
 ok
gl:texStorage2D/5 and gl:textureStorage2D() specify the storage requirements for all levels of a two-
dimensional texture or one-dimensional texture array simultaneously. Once a texture is specified with this command,
the format and dimensions of all levels become immutable unless it is a proxy texture. The contents of the image may
still be modified, however, its storage requirements may not change. Such a texture is referred to as an immutable-
format texture.

External documentation.

texStorage2DMultisample(Target, Samples, Internalformat, Width,
 Height, Fixedsamplelocations) ->
 ok
Types:

Target = enum()
Samples = i()
Internalformat = enum()
Width = Height = i()
Fixedsamplelocations = 0 | 1

gl:texStorage2DMultisample/6 and gl:textureStorage2DMultisample() specify the storage
requirements for a two-dimensional multisample texture. Once a texture is specified with this command, its format and
dimensions become immutable unless it is a proxy texture. The contents of the image may still be modified, however,
its storage requirements may not change. Such a texture is referred to as an immutable-format texture.

External documentation.

texStorage3D(Target, Levels, Internalformat, Width, Height, Depth) ->
 ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 959

href
href
href
href

gl

Target = enum()
Levels = i()
Internalformat = enum()
Width = Height = Depth = i()

gl:texStorage3D/6 and gl:textureStorage3D() specify the storage requirements for all levels of a three-
dimensional, two-dimensional array or cube-map array texture simultaneously. Once a texture is specified with this
command, the format and dimensions of all levels become immutable unless it is a proxy texture. The contents of the
image may still be modified, however, its storage requirements may not change. Such a texture is referred to as an
immutable-format texture.

External documentation.

texStorage3DMultisample(Target, Samples, Internalformat, Width,
 Height, Depth, Fixedsamplelocations) ->
 ok
Types:

Target = enum()
Samples = i()
Internalformat = enum()
Width = Height = Depth = i()
Fixedsamplelocations = 0 | 1

gl:texStorage3DMultisample/7 and gl:textureStorage3DMultisample() specify the storage
requirements for a two-dimensional multisample array texture. Once a texture is specified with this command, its
format and dimensions become immutable unless it is a proxy texture. The contents of the image may still be modified,
however, its storage requirements may not change. Such a texture is referred to as an immutable-format texture.

External documentation.

texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels) ->
 ok
Types:

Target = enum()
Level = Xoffset = Width = i()
Format = Type = enum()
Pixels = offset() | mem()

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is enabled.
To enable or disable one-dimensional texturing, call gl:enable/1 and gl:disable/1 with argument ?
GL_TEXTURE_1D.

External documentation.

texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height,
 Format, Type, Pixels) ->
 ok
Types:

960 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

gl

Target = enum()
Level = Xoffset = Yoffset = Width = Height = i()
Format = Type = enum()
Pixels = offset() | mem()

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is enabled.

External documentation.

texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width,
 Height, Depth, Format, Type, Pixels) ->
 ok
Types:

Target = enum()
Level = Xoffset = Yoffset = Zoffset = Width = Height = Depth = i()
Format = Type = enum()
Pixels = offset() | mem()

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is enabled.

External documentation.

textureBarrier() -> ok
The values of rendered fragments are undefined when a shader stage fetches texels and the same texels are written via
fragment shader outputs, even if the reads and writes are not in the same drawing command. To safely read the result
of a written texel via a texel fetch in a subsequent drawing command, call gl:textureBarrier/0 between the
two drawing commands to guarantee that writes have completed and caches have been invalidated before subsequent
drawing commands are executed.

External documentation.

textureView(Texture, Target, Origtexture, Internalformat,
 Minlevel, Numlevels, Minlayer, Numlayers) ->
 ok
Types:

Texture = i()
Target = enum()
Origtexture = i()
Internalformat = enum()
Minlevel = Numlevels = Minlayer = Numlayers = i()

gl:textureView/8 initializes a texture object as an alias, or view of another texture object, sharing some or all
of the parent texture's data store with the initialized texture. Texture specifies a name previously reserved by a
successful call to gl:genTextures/1 but that has not yet been bound or given a target. Target specifies the target
for the newly initialized texture and must be compatible with the target of the parent texture, given in Origtexture
as specified in the following table:

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 961

href
href
href
href

gl

transformFeedbackBufferBase(Xfb :: i(),
 Index :: i(),
 Buffer :: i()) ->
 ok
gl:transformFeedbackBufferBase/3 binds the buffer object Buffer to the binding point at index Index
of the transform feedback object Xfb.

External documentation.

transformFeedbackBufferRange(Xfb :: i(),
 Index :: i(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->
 ok
gl:transformFeedbackBufferRange/5 binds a range of the buffer object Buffer represented by Offset
and Size to the binding point at index Index of the transform feedback object Xfb.

External documentation.

transformFeedbackVaryings(Program :: i(),
 Varyings :: [unicode:chardata()],
 BufferMode :: enum()) ->
 ok
The names of the vertex or geometry shader outputs to be recorded in transform feedback mode are specified using
gl:transformFeedbackVaryings/3. When a geometry shader is active, transform feedback records the
values of selected geometry shader output variables from the emitted vertices. Otherwise, the values of the selected
vertex shader outputs are recorded.

External documentation.

translated(X :: f(), Y :: f(), Z :: f()) -> ok
translatef(X :: f(), Y :: f(), Z :: f()) -> ok
gl:translate() produces a translation by (x y z). The current matrix (see gl:matrixMode/1) is multiplied
by this translation matrix, with the product replacing the current matrix, as if gl:multMatrix() were called with
the following matrix for its argument:

External documentation.

962 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

gl

uniform1d(Location :: i(), X :: f()) -> ok
uniform1dv(Location :: i(), Value :: [f()]) -> ok
uniform1f(Location :: i(), V0 :: f()) -> ok
uniform1fv(Location :: i(), Value :: [f()]) -> ok
uniform1i(Location :: i(), V0 :: i()) -> ok
uniform1iv(Location :: i(), Value :: [i()]) -> ok
uniform1ui(Location :: i(), V0 :: i()) -> ok
uniform1uiv(Location :: i(), Value :: [i()]) -> ok
uniform2d(Location :: i(), X :: f(), Y :: f()) -> ok
uniform2dv(Location :: i(), Value :: [{f(), f()}]) -> ok
uniform2f(Location :: i(), V0 :: f(), V1 :: f()) -> ok
uniform2fv(Location :: i(), Value :: [{f(), f()}]) -> ok
uniform2i(Location :: i(), V0 :: i(), V1 :: i()) -> ok
uniform2iv(Location :: i(), Value :: [{i(), i()}]) -> ok
uniform2ui(Location :: i(), V0 :: i(), V1 :: i()) -> ok
uniform2uiv(Location :: i(), Value :: [{i(), i()}]) -> ok
uniform3d(Location :: i(), X :: f(), Y :: f(), Z :: f()) -> ok
uniform3dv(Location :: i(), Value :: [{f(), f(), f()}]) -> ok
uniform3f(Location :: i(), V0 :: f(), V1 :: f(), V2 :: f()) -> ok
uniform3fv(Location :: i(), Value :: [{f(), f(), f()}]) -> ok
uniform3i(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok
uniform3iv(Location :: i(), Value :: [{i(), i(), i()}]) -> ok
uniform3ui(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok
uniform3uiv(Location :: i(), Value :: [{i(), i(), i()}]) -> ok
uniform4d(Location :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) ->
 ok
uniform4dv(Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok
uniform4f(Location :: i(),
 V0 :: f(),
 V1 :: f(),
 V2 :: f(),
 V3 :: f()) ->
 ok
uniform4fv(Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok
uniform4i(Location :: i(),
 V0 :: i(),
 V1 :: i(),
 V2 :: i(),
 V3 :: i()) ->
 ok
uniform4iv(Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok
uniform4ui(Location :: i(),
 V0 :: i(),
 V1 :: i(),
 V2 :: i(),
 V3 :: i()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 963

gl

 ok
uniform4uiv(Location :: i(), Value :: [{i(), i(), i(), i()}]) ->
 ok
uniformMatrix2dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok
uniformMatrix2fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok
uniformMatrix2x3dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix2x3fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix2x4dv(Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix2x4fv(Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix3dv(Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}]) ->
 ok
uniformMatrix3fv(Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),

964 | Ericsson AB. All Rights Reserved.: wxErlang

gl

 f(),
 f(),
 f(),
 f()}]) ->
 ok
uniformMatrix3x2dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix3x2fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix3x4dv(Location, Transpose, Value) -> ok
uniformMatrix3x4fv(Location, Transpose, Value) -> ok
uniformMatrix4dv(Location, Transpose, Value) -> ok
uniformMatrix4fv(Location, Transpose, Value) -> ok
uniformMatrix4x2dv(Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix4x2fv(Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok
uniformMatrix4x3dv(Location, Transpose, Value) -> ok
uniformMatrix4x3fv(Location, Transpose, Value) -> ok
Types:

Location = i()
Transpose = 0 | 1
Value =
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}]

gl:uniform() modifies the value of a uniform variable or a uniform variable array. The location of
the uniform variable to be modified is specified by Location, which should be a value returned by
gl:getUniformLocation/2. gl:uniform() operates on the program object that was made part of current
state by calling gl:useProgram/1.

External documentation.

uniformBlockBinding(Program :: i(),
 UniformBlockIndex :: i(),
 UniformBlockBinding :: i()) ->
 ok
Binding points for active uniform blocks are assigned using gl:uniformBlockBinding/3. Each of a program's
active uniform blocks has a corresponding uniform buffer binding point. Program is the name of a program object
for which the command gl:linkProgram/1 has been issued in the past.

Ericsson AB. All Rights Reserved.: wxErlang | 965

href

gl

External documentation.

uniformSubroutinesuiv(Shadertype :: enum(), Indices :: [i()]) ->
 ok
gl:uniformSubroutines() loads all active subroutine uniforms for shader stage Shadertype of the current
program with subroutine indices from Indices, storing Indices[i] into the uniform at location I. Count
must be equal to the value of ?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the program currently
in use at shader stage Shadertype. Furthermore, all values in Indices must be less than the value of ?
GL_ACTIVE_SUBROUTINES for the shader stage.

External documentation.

useProgram(Program :: i()) -> ok
gl:useProgram/1 installs the program object specified by Program as part of current rendering state.
One or more executables are created in a program object by successfully attaching shader objects to it with
gl:attachShader/2, successfully compiling the shader objects with gl:compileShader/1, and successfully
linking the program object with gl:linkProgram/1.

External documentation.

useProgramStages(Pipeline :: i(), Stages :: i(), Program :: i()) ->
 ok
gl:useProgramStages/3 binds executables from a program object associated with a specified set of
shader stages to the program pipeline object given by Pipeline. Pipeline specifies the program
pipeline object to which to bind the executables. Stages contains a logical combination of bits indicating
the shader stages to use within Program with the program pipeline object Pipeline. Stages
must be a logical combination of ?GL_VERTEX_SHADER_BIT, ?GL_TESS_CONTROL_SHADER_BIT, ?
GL_TESS_EVALUATION_SHADER_BIT, ?GL_GEOMETRY_SHADER_BIT, ?GL_FRAGMENT_SHADER_BIT
and ?GL_COMPUTE_SHADER_BIT. Additionally, the special value ?GL_ALL_SHADER_BITS may be specified
to indicate that all executables contained in Program should be installed in Pipeline.

External documentation.

validateProgram(Program :: i()) -> ok
gl:validateProgram/1 checks to see whether the executables contained in Program can execute given the
current OpenGL state. The information generated by the validation process will be stored in Program's information
log. The validation information may consist of an empty string, or it may be a string containing information about
how the current program object interacts with the rest of current OpenGL state. This provides a way for OpenGL
implementers to convey more information about why the current program is inefficient, suboptimal, failing to execute,
and so on.

External documentation.

validateProgramPipeline(Pipeline :: i()) -> ok
gl:validateProgramPipeline/1 instructs the implementation to validate the shader executables contained
in Pipeline against the current GL state. The implementation may use this as an opportunity to perform any internal
shader modifications that may be required to ensure correct operation of the installed shaders given the current GL state.

External documentation.

966 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

gl

vertex2d(X :: f(), Y :: f()) -> ok
vertex2dv(X1 :: {X :: f(), Y :: f()}) -> ok
vertex2f(X :: f(), Y :: f()) -> ok
vertex2fv(X1 :: {X :: f(), Y :: f()}) -> ok
vertex2i(X :: i(), Y :: i()) -> ok
vertex2iv(X1 :: {X :: i(), Y :: i()}) -> ok
vertex2s(X :: i(), Y :: i()) -> ok
vertex2sv(X1 :: {X :: i(), Y :: i()}) -> ok
vertex3d(X :: f(), Y :: f(), Z :: f()) -> ok
vertex3dv(X1 :: {X :: f(), Y :: f(), Z :: f()}) -> ok
vertex3f(X :: f(), Y :: f(), Z :: f()) -> ok
vertex3fv(X1 :: {X :: f(), Y :: f(), Z :: f()}) -> ok
vertex3i(X :: i(), Y :: i(), Z :: i()) -> ok
vertex3iv(X1 :: {X :: i(), Y :: i(), Z :: i()}) -> ok
vertex3s(X :: i(), Y :: i(), Z :: i()) -> ok
vertex3sv(X1 :: {X :: i(), Y :: i(), Z :: i()}) -> ok
vertex4d(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok
vertex4dv(X1 :: {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok
vertex4f(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok
vertex4fv(X1 :: {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok
vertex4i(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok
vertex4iv(X1 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok
vertex4s(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok
vertex4sv(X1 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok
gl:vertex() commands are used within gl:'begin'/1/gl:'end'/0 pairs to specify point, line, and polygon
vertices. The current color, normal, texture coordinates, and fog coordinate are associated with the vertex when
gl:vertex() is called.

External documentation.

vertexArrayElementBuffer(Vaobj :: i(), Buffer :: i()) -> ok
gl:vertexArrayElementBuffer/2 binds a buffer object with id Buffer to the element array buffer bind
point of a vertex array object with id Vaobj. If Buffer is zero, any existing element array buffer binding to Vaobj
is removed.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 967

href
href

gl

vertexAttrib1d(Index :: i(), X :: f()) -> ok
vertexAttrib1dv(Index :: i(), X2 :: {X :: f()}) -> ok
vertexAttrib1f(Index :: i(), X :: f()) -> ok
vertexAttrib1fv(Index :: i(), X2 :: {X :: f()}) -> ok
vertexAttrib1s(Index :: i(), X :: i()) -> ok
vertexAttrib1sv(Index :: i(), X2 :: {X :: i()}) -> ok
vertexAttrib2d(Index :: i(), X :: f(), Y :: f()) -> ok
vertexAttrib2dv(Index :: i(), X2 :: {X :: f(), Y :: f()}) -> ok
vertexAttrib2f(Index :: i(), X :: f(), Y :: f()) -> ok
vertexAttrib2fv(Index :: i(), X2 :: {X :: f(), Y :: f()}) -> ok
vertexAttrib2s(Index :: i(), X :: i(), Y :: i()) -> ok
vertexAttrib2sv(Index :: i(), X2 :: {X :: i(), Y :: i()}) -> ok
vertexAttrib3d(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok
vertexAttrib3dv(Index :: i(),
 X2 :: {X :: f(), Y :: f(), Z :: f()}) ->
 ok
vertexAttrib3f(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok
vertexAttrib3fv(Index :: i(),
 X2 :: {X :: f(), Y :: f(), Z :: f()}) ->
 ok
vertexAttrib3s(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok
vertexAttrib3sv(Index :: i(),
 X2 :: {X :: i(), Y :: i(), Z :: i()}) ->
 ok
vertexAttrib4Nbv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4Niv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4Nsv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4Nub(Index :: i(),
 X :: i(),
 Y :: i(),
 Z :: i(),
 W :: i()) ->
 ok
vertexAttrib4Nubv(Index :: i(),
 X2 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) ->
 ok
vertexAttrib4Nuiv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4Nusv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4bv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4d(Index :: i(),
 X :: f(),
 Y :: f(),
 Z :: f(),
 W :: f()) ->
 ok
vertexAttrib4dv(Index :: i(),

968 | Ericsson AB. All Rights Reserved.: wxErlang

gl

 X2 :: {X :: f(), Y :: f(), Z :: f(), W :: f()}) ->
 ok
vertexAttrib4f(Index :: i(),
 X :: f(),
 Y :: f(),
 Z :: f(),
 W :: f()) ->
 ok
vertexAttrib4fv(Index :: i(),
 X2 :: {X :: f(), Y :: f(), Z :: f(), W :: f()}) ->
 ok
vertexAttrib4iv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4s(Index :: i(),
 X :: i(),
 Y :: i(),
 Z :: i(),
 W :: i()) ->
 ok
vertexAttrib4sv(Index :: i(),
 X2 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) ->
 ok
vertexAttrib4ubv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4uiv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttrib4usv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttribI1i(Index :: i(), X :: i()) -> ok
vertexAttribI1iv(Index :: i(), X2 :: {X :: i()}) -> ok
vertexAttribI1ui(Index :: i(), X :: i()) -> ok
vertexAttribI1uiv(Index :: i(), X2 :: {X :: i()}) -> ok
vertexAttribI2i(Index :: i(), X :: i(), Y :: i()) -> ok
vertexAttribI2iv(Index :: i(), X2 :: {X :: i(), Y :: i()}) -> ok
vertexAttribI2ui(Index :: i(), X :: i(), Y :: i()) -> ok
vertexAttribI2uiv(Index :: i(), X2 :: {X :: i(), Y :: i()}) -> ok
vertexAttribI3i(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok
vertexAttribI3iv(Index :: i(),
 X2 :: {X :: i(), Y :: i(), Z :: i()}) ->
 ok
vertexAttribI3ui(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok
vertexAttribI3uiv(Index :: i(),
 X2 :: {X :: i(), Y :: i(), Z :: i()}) ->
 ok
vertexAttribI4bv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttribI4i(Index :: i(),
 X :: i(),
 Y :: i(),
 Z :: i(),
 W :: i()) ->

Ericsson AB. All Rights Reserved.: wxErlang | 969

gl

 ok
vertexAttribI4iv(Index :: i(),
 X2 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) ->
 ok
vertexAttribI4sv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttribI4ubv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttribI4ui(Index :: i(),
 X :: i(),
 Y :: i(),
 Z :: i(),
 W :: i()) ->
 ok
vertexAttribI4uiv(Index :: i(),
 X2 :: {X :: i(), Y :: i(), Z :: i(), W :: i()}) ->
 ok
vertexAttribI4usv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok
vertexAttribL1d(Index :: i(), X :: f()) -> ok
vertexAttribL1dv(Index :: i(), X2 :: {X :: f()}) -> ok
vertexAttribL2d(Index :: i(), X :: f(), Y :: f()) -> ok
vertexAttribL2dv(Index :: i(), X2 :: {X :: f(), Y :: f()}) -> ok
vertexAttribL3d(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok
vertexAttribL3dv(Index :: i(),
 X2 :: {X :: f(), Y :: f(), Z :: f()}) ->
 ok
vertexAttribL4d(Index :: i(),
 X :: f(),
 Y :: f(),
 Z :: f(),
 W :: f()) ->
 ok
vertexAttribL4dv(Index :: i(),
 X2 :: {X :: f(), Y :: f(), Z :: f(), W :: f()}) ->
 ok
The gl:vertexAttrib() family of entry points allows an application to pass generic vertex attributes in numbered
locations.

External documentation.

vertexArrayAttribBinding(Vaobj :: i(),
 Attribindex :: i(),
 Bindingindex :: i()) ->
 ok
vertexAttribBinding(Attribindex :: i(), Bindingindex :: i()) -> ok
gl:vertexAttribBinding/2 and gl:vertexArrayAttribBinding/3 establishes an association
between the generic vertex attribute of a vertex array object whose index is given by Attribindex, and a vertex
buffer binding whose index is given by Bindingindex. For gl:vertexAttribBinding/2, the vertex array
object affected is that currently bound. For gl:vertexArrayAttribBinding/3, Vaobj is the name of the
vertex array object.

970 | Ericsson AB. All Rights Reserved.: wxErlang

href

gl

External documentation.

vertexAttribDivisor(Index :: i(), Divisor :: i()) -> ok
gl:vertexAttribDivisor/2 modifies the rate at which generic vertex attributes advance when rendering
multiple instances of primitives in a single draw call. If Divisor is zero, the attribute at slot Index advances once
per vertex. If Divisor is non-zero, the attribute advances once per Divisor instances of the set(s) of vertices being
rendered. An attribute is referred to as instanced if its ?GL_VERTEX_ATTRIB_ARRAY_DIVISOR value is non-zero.

External documentation.

vertexArrayAttribFormat(Vaobj, Attribindex, Size, Type,
 Normalized, Relativeoffset) ->
 ok
vertexArrayAttribIFormat(Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok
vertexArrayAttribLFormat(Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok
vertexAttribFormat(Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Normalized :: 0 | 1,
 Relativeoffset :: i()) ->
 ok
vertexAttribIFormat(Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok
vertexAttribIPointer(Index :: i(),
 Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok
vertexAttribLFormat(Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok
vertexAttribLPointer(Index :: i(),
 Size :: i(),
 Type :: enum(),

Ericsson AB. All Rights Reserved.: wxErlang | 971

href
href

gl

 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok
gl:vertexAttribFormat/5, gl:vertexAttribIFormat/4 and gl:vertexAttribLFormat/4,
as well as gl:vertexArrayAttribFormat/6, gl:vertexArrayAttribIFormat/5 and
gl:vertexArrayAttribLFormat/5 specify the organization of data in vertex arrays. The first three calls
operate on the bound vertex array object, whereas the last three ones modify the state of a vertex array object with ID
Vaobj. Attribindex specifies the index of the generic vertex attribute array whose data layout is being described,
and must be less than the value of ?GL_MAX_VERTEX_ATTRIBS.

External documentation.

vertexAttribPointer(Index, Size, Type, Normalized, Stride,
 Pointer) ->
 ok
Types:

Index = Size = i()
Type = enum()
Normalized = 0 | 1
Stride = i()
Pointer = offset() | mem()

gl:vertexAttribPointer/6, gl:vertexAttribIPointer/5 and gl:vertexAttribLPointer/5
specify the location and data format of the array of generic vertex attributes at index Index to use when rendering.
Size specifies the number of components per attribute and must be 1, 2, 3, 4, or ?GL_BGRA. Type specifies the data
type of each component, and Stride specifies the byte stride from one attribute to the next, allowing vertices and
attributes to be packed into a single array or stored in separate arrays.

External documentation.

vertexArrayBindingDivisor(Vaobj :: i(),
 Bindingindex :: i(),
 Divisor :: i()) ->
 ok
vertexBindingDivisor(Bindingindex :: i(), Divisor :: i()) -> ok
gl:vertexBindingDivisor/2 and gl:vertexArrayBindingDivisor/3 modify the rate at which
generic vertex attributes advance when rendering multiple instances of primitives in a single draw command. If
Divisor is zero, the attributes using the buffer bound to Bindingindex advance once per vertex. If Divisor is
non-zero, the attributes advance once per Divisor instances of the set(s) of vertices being rendered. An attribute is
referred to as instanced if the corresponding Divisor value is non-zero.

External documentation.

vertexPointer(Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Ptr :: offset() | mem()) ->
 ok
gl:vertexPointer/4 specifies the location and data format of an array of vertex coordinates to use when
rendering. Size specifies the number of coordinates per vertex, and must be 2, 3, or 4. Type specifies the data type
of each coordinate, and Stride specifies the byte stride from one vertex to the next, allowing vertices and attributes

972 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

gl

to be packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on some
implementations; see gl:interleavedArrays/3.)

External documentation.

viewport(X :: i(), Y :: i(), Width :: i(), Height :: i()) -> ok
gl:viewport/4 specifies the affine transformation of x and y from normalized device coordinates to window
coordinates. Let (x nd y nd) be normalized device coordinates. Then the window coordinates (x w y w) are computed
as follows:

External documentation.

viewportArrayv(First :: i(), V :: [{f(), f(), f(), f()}]) -> ok
gl:viewportArrayv/2 specifies the parameters for multiple viewports simulataneously. First specifies the
index of the first viewport to modify and Count specifies the number of viewports to modify. First must be
less than the value of ?GL_MAX_VIEWPORTS, and First + Count must be less than or equal to the value of ?
GL_MAX_VIEWPORTS. Viewports whose indices lie outside the range [First, First + Count) are not modified.
V contains the address of an array of floating point values specifying the left (x), bottom (y), width (w), and height
(h) of each viewport, in that order. x and y give the location of the viewport's lower left corner, and w and h give
the width and height of the viewport, respectively. The viewport specifies the affine transformation of x and y from
normalized device coordinates to window coordinates. Let (x nd y nd) be normalized device coordinates. Then the
window coordinates (x w y w) are computed as follows:

External documentation.

viewportIndexedf(Index :: i(),
 X :: f(),
 Y :: f(),
 W :: f(),
 H :: f()) ->
 ok
viewportIndexedfv(Index :: i(), V :: {f(), f(), f(), f()}) -> ok
gl:viewportIndexedf/5 and gl:viewportIndexedfv/2 specify the parameters for a single viewport.
Index specifies the index of the viewport to modify. Index must be less than the value of ?GL_MAX_VIEWPORTS.
For gl:viewportIndexedf/5, X, Y, W, and H specify the left, bottom, width and height of the viewport in
pixels, respectively. For gl:viewportIndexedfv/2, V contains the address of an array of floating point values
specifying the left (x), bottom (y), width (w), and height (h) of each viewport, in that order. x and y give the location
of the viewport's lower left corner, and w and h give the width and height of the viewport, respectively. The viewport
specifies the affine transformation of x and y from normalized device coordinates to window coordinates. Let (x nd y
nd) be normalized device coordinates. Then the window coordinates (x w y w) are computed as follows:

External documentation.

waitSync(Sync :: i(), Flags :: i(), Timeout :: i()) -> ok
gl:waitSync/3 causes the GL server to block and wait until Sync becomes signaled. Sync is the name of an
existing sync object upon which to wait. Flags and Timeout are currently not used and must be set to zero and the
special value ?GL_TIMEOUT_IGNORED, respectively

Flags and Timeout are placeholders for anticipated future extensions of sync object capabilities. They must have
these reserved values in order that existing code calling gl:waitSync/3 operate properly in the presence of such
extensions.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 973

href
href
href
href
href

gl

windowPos2d(X :: f(), Y :: f()) -> ok
windowPos2dv(X1 :: {X :: f(), Y :: f()}) -> ok
windowPos2f(X :: f(), Y :: f()) -> ok
windowPos2fv(X1 :: {X :: f(), Y :: f()}) -> ok
windowPos2i(X :: i(), Y :: i()) -> ok
windowPos2iv(X1 :: {X :: i(), Y :: i()}) -> ok
windowPos2s(X :: i(), Y :: i()) -> ok
windowPos2sv(X1 :: {X :: i(), Y :: i()}) -> ok
windowPos3d(X :: f(), Y :: f(), Z :: f()) -> ok
windowPos3dv(X1 :: {X :: f(), Y :: f(), Z :: f()}) -> ok
windowPos3f(X :: f(), Y :: f(), Z :: f()) -> ok
windowPos3fv(X1 :: {X :: f(), Y :: f(), Z :: f()}) -> ok
windowPos3i(X :: i(), Y :: i(), Z :: i()) -> ok
windowPos3iv(X1 :: {X :: i(), Y :: i(), Z :: i()}) -> ok
windowPos3s(X :: i(), Y :: i(), Z :: i()) -> ok
windowPos3sv(X1 :: {X :: i(), Y :: i(), Z :: i()}) -> ok
The GL maintains a 3D position in window coordinates. This position, called the raster position, is used to position pixel
and bitmap write operations. It is maintained with subpixel accuracy. See gl:bitmap/7, gl:drawPixels/5,
and gl:copyPixels/5.

External documentation.

974 | Ericsson AB. All Rights Reserved.: wxErlang

href

glu

glu
Erlang module

Standard OpenGL API

This documents the functions as a brief version of the complete OpenGL reference pages.

Data Types
vertex() = {float(), float(), float()}
i() = integer()
f() = float()
enum() = integer() >= 0
matrix() = m12() | m16()
m12() =
 {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}
m16() =
 {f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}
mem() = binary() | tuple()

Exports

build1DMipmapLevels(Target, InternalFormat, Width, Format, Type,
 Level, Base, Max, Data) ->
 i()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 975

href

glu

Target = enum()
InternalFormat = Width = i()
Format = Type = enum()
Level = Base = Max = i()
Data = binary()

glu:build1DMipmapLevels/9 builds a subset of prefiltered one-dimensional texture maps of decreasing
resolutions called a mipmap. This is used for the antialiasing of texture mapped primitives.

External documentation.

build1DMipmaps(Target, InternalFormat, Width, Format, Type, Data) ->
 i()
Types:

Target = enum()
InternalFormat = Width = i()
Format = Type = enum()
Data = binary()

glu:build1DMipmaps/6 builds a series of prefiltered one-dimensional texture maps of decreasing resolutions
called a mipmap. This is used for the antialiasing of texture mapped primitives.

External documentation.

build2DMipmapLevels(Target, InternalFormat, Width, Height, Format,
 Type, Level, Base, Max, Data) ->
 i()
Types:

Target = enum()
InternalFormat = Width = Height = i()
Format = Type = enum()
Level = Base = Max = i()
Data = binary()

glu:build2DMipmapLevels/10 builds a subset of prefiltered two-dimensional texture maps of decreasing
resolutions called a mipmap. This is used for the antialiasing of texture mapped primitives.

External documentation.

build2DMipmaps(Target, InternalFormat, Width, Height, Format,
 Type, Data) ->
 i()
Types:

Target = enum()
InternalFormat = Width = Height = i()
Format = Type = enum()
Data = binary()

glu:build2DMipmaps/7 builds a series of prefiltered two-dimensional texture maps of decreasing resolutions
called a mipmap. This is used for the antialiasing of texture-mapped primitives.

976 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

glu

External documentation.

build3DMipmapLevels(Target, InternalFormat, Width, Height, Depth,
 Format, Type, Level, Base, Max, Data) ->
 i()
Types:

Target = enum()
InternalFormat = Width = Height = Depth = i()
Format = Type = enum()
Level = Base = Max = i()
Data = binary()

glu:build3DMipmapLevels/11 builds a subset of prefiltered three-dimensional texture maps of decreasing
resolutions called a mipmap. This is used for the antialiasing of texture mapped primitives.

External documentation.

build3DMipmaps(Target, InternalFormat, Width, Height, Depth,
 Format, Type, Data) ->
 i()
Types:

Target = enum()
InternalFormat = Width = Height = Depth = i()
Format = Type = enum()
Data = binary()

glu:build3DMipmaps/8 builds a series of prefiltered three-dimensional texture maps of decreasing resolutions
called a mipmap. This is used for the antialiasing of texture-mapped primitives.

External documentation.

checkExtension(ExtName :: string(), ExtString :: string()) ->
 0 | 1
glu:checkExtension/2 returns ?GLU_TRUE if ExtName is supported otherwise ?GLU_FALSE is returned.

External documentation.

cylinder(Quad :: i(),
 Base :: f(),
 Top :: f(),
 Height :: f(),
 Slices :: i(),
 Stacks :: i()) ->
 ok
glu:cylinder/6 draws a cylinder oriented along the z axis. The base of the cylinder is placed at z = 0 and the
top at z=height. Like a sphere, a cylinder is subdivided around the z axis into slices and along the z axis into stacks.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 977

href
href
href
href
href

glu

deleteQuadric(Quad :: i()) -> ok
glu:deleteQuadric/1 destroys the quadrics object (created with glu:newQuadric/0) and frees any memory
it uses. Once glu:deleteQuadric/1 has been called, Quad cannot be used again.

External documentation.

disk(Quad :: i(),
 Inner :: f(),
 Outer :: f(),
 Slices :: i(),
 Loops :: i()) ->
 ok
glu:disk/5 renders a disk on the z = 0 plane. The disk has a radius of Outer and contains a concentric circular
hole with a radius of Inner. If Inner is 0, then no hole is generated. The disk is subdivided around the z axis into
slices (like pizza slices) and also about the z axis into rings (as specified by Slices and Loops, respectively).

External documentation.

errorString(Error :: enum()) -> string()
glu:errorString/1 produces an error string from a GL or GLU error code. The string is in ISO Latin 1 format.
For example, glu:errorString/1(?GLU_OUT_OF_MEMORY) returns the string out of memory.

External documentation.

getString(Name :: enum()) -> string()
glu:getString/1 returns a pointer to a static string describing the GLU version or the GLU extensions that are
supported.

External documentation.

lookAt(EyeX, EyeY, EyeZ, CenterX, CenterY, CenterZ, UpX, UpY, UpZ) ->
 ok
Types:

EyeX = EyeY = EyeZ = CenterX = CenterY = CenterZ = UpX = UpY = UpZ = f()

glu:lookAt/9 creates a viewing matrix derived from an eye point, a reference point indicating the center of the
scene, and an UP vector.

External documentation.

newQuadric() -> i()
glu:newQuadric/0 creates and returns a pointer to a new quadrics object. This object must be referred to when
calling quadrics rendering and control functions. A return value of 0 means that there is not enough memory to allocate
the object.

External documentation.

ortho2D(Left :: f(), Right :: f(), Bottom :: f(), Top :: f()) ->

978 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

glu

 ok
glu:ortho2D/4 sets up a two-dimensional orthographic viewing region. This is equivalent to calling
gl:ortho/6 with near=-1 and far=1.

External documentation.

partialDisk(Quad, Inner, Outer, Slices, Loops, Start, Sweep) -> ok
Types:

Quad = i()
Inner = Outer = f()
Slices = Loops = i()
Start = Sweep = f()

glu:partialDisk/7 renders a partial disk on the z=0 plane. A partial disk is similar to a full disk, except that
only the subset of the disk from Start through Start + Sweep is included (where 0 degrees is along the +f2yf
axis, 90 degrees along the +x axis, 180 degrees along the -y axis, and 270 degrees along the -x axis).

External documentation.

perspective(Fovy :: f(), Aspect :: f(), ZNear :: f(), ZFar :: f()) ->
 ok
glu:perspective/4 specifies a viewing frustum into the world coordinate system. In general, the aspect ratio in
glu:perspective/4 should match the aspect ratio of the associated viewport. For example, aspect=2.0 means
the viewer's angle of view is twice as wide in x as it is in y. If the viewport is twice as wide as it is tall, it displays
the image without distortion.

External documentation.

pickMatrix(X :: f(),
 Y :: f(),
 DelX :: f(),
 DelY :: f(),
 Viewport :: {i(), i(), i(), i()}) ->
 ok
glu:pickMatrix/5 creates a projection matrix that can be used to restrict drawing to a small region
of the viewport. This is typically useful to determine what objects are being drawn near the cursor. Use
glu:pickMatrix/5 to restrict drawing to a small region around the cursor. Then, enter selection mode (with
gl:renderMode/1) and rerender the scene. All primitives that would have been drawn near the cursor are identified
and stored in the selection buffer.

External documentation.

project(ObjX, ObjY, ObjZ, Model, Proj, View) ->
 {i(), WinX :: f(), WinY :: f(), WinZ :: f()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 979

href
href
href
href

glu

ObjX = ObjY = ObjZ = f()
Model = Proj = matrix()
View = {i(), i(), i(), i()}

glu:project/6 transforms the specified object coordinates into window coordinates using Model, Proj, and
View. The result is stored in WinX, WinY, and WinZ. A return value of ?GLU_TRUE indicates success, a return
value of ?GLU_FALSE indicates failure.

External documentation.

quadricDrawStyle(Quad :: i(), Draw :: enum()) -> ok
glu:quadricDrawStyle/2 specifies the draw style for quadrics rendered with Quad. The legal values are as
follows:

External documentation.

quadricNormals(Quad :: i(), Normal :: enum()) -> ok
glu:quadricNormals/2 specifies what kind of normals are desired for quadrics rendered with Quad. The legal
values are as follows:

External documentation.

quadricOrientation(Quad :: i(), Orientation :: enum()) -> ok
glu:quadricOrientation/2 specifies what kind of orientation is desired for quadrics rendered with Quad.
The Orientation values are as follows:

External documentation.

quadricTexture(Quad :: i(), Texture :: 0 | 1) -> ok
glu:quadricTexture/2 specifies if texture coordinates should be generated for quadrics rendered with Quad.
If the value of Texture is ?GLU_TRUE, then texture coordinates are generated, and if Texture is ?GLU_FALSE,
they are not. The initial value is ?GLU_FALSE.

External documentation.

scaleImage(Format, WIn, HIn, TypeIn, DataIn, WOut, HOut, TypeOut,
 DataOut) ->
 i()
Types:

Format = enum()
WIn = HIn = i()
TypeIn = enum()
DataIn = binary()
WOut = HOut = i()
TypeOut = enum()
DataOut = mem()

glu:scaleImage/9 scales a pixel image using the appropriate pixel store modes to unpack data from the source
image and pack data into the destination image.

External documentation.

980 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

glu

sphere(Quad :: i(), Radius :: f(), Slices :: i(), Stacks :: i()) ->
 ok
glu:sphere/4 draws a sphere of the given radius centered around the origin. The sphere is subdivided around the
z axis into slices and along the z axis into stacks (similar to lines of longitude and latitude).

External documentation.

tesselate(Normal, Vs :: [Vs]) -> {Triangles, VertexPos}
Types:

Normal = Vs = vertex()
Triangles = [integer()]
VertexPos = binary()

Triangulates a polygon, the polygon is specified by a Normal and Vs a list of vertex positions.

The function returns a list of indices of the vertices and a binary (64bit native float) containing an array of vertex
positions, it starts with the vertices in Vs and may contain newly created vertices in the end.

unProject(WinX, WinY, WinZ, Model, Proj, View) ->
 {i(), ObjX :: f(), ObjY :: f(), ObjZ :: f()}
unProject4(WinX, WinY, WinZ, ClipW, Model, Proj, View, NearVal,
 FarVal) ->
 {i(),
 ObjX :: f(),
 ObjY :: f(),
 ObjZ :: f(),
 ObjW :: f()}
Types:

WinX = WinY = WinZ = ClipW = f()
Model = Proj = matrix()
View = {i(), i(), i(), i()}
NearVal = FarVal = f()

glu:unProject/6 maps the specified window coordinates into object coordinates using Model, Proj, and View.
The result is stored in ObjX, ObjY, and ObjZ. A return value of ?GLU_TRUE indicates success; a return value of
?GLU_FALSE indicates failure.

External documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 981

href
href

	wxErlang
	wxErlang User's Guide
	wx the erlang binding of wxWidgets

	Contents
	Introduction
	Multiple processes and memory handling
	Event Handling
	Acknowledgments

	Reference Manual
	wx
	parent_class/1
	new/0
	new/1
	destroy/0
	get_env/0
	set_env/1
	subscribe_events/0
	null/0
	is_null/1
	equal/2
	getObjectType/1
	typeCast/2
	batch/1
	foreach/2
	map/2
	foldl/3
	foldr/3
	create_memory/1
	get_memory_bin/1
	retain_memory/1
	release_memory/1
	debug/1
	demo/0

	wx_object
	start/4
	start_link/3
	start_link/4
	stop/1
	stop/3
	call/2
	call/3
	send_request/2
	wait_response/1
	wait_response/2
	check_response/2
	cast/2
	get_pid/1
	set_pid/2
	reply/2

	wxAcceleratorEntry
	new/0
	new/1
	new/1
	getCommand/1
	getFlags/1
	getKeyCode/1
	set/4
	set/5
	destroy/1

	wxAcceleratorTable
	new/0
	new/2
	destroy/1
	ok/1
	isOk/1

	wxActivateEvent
	getActive/1

	wxArtProvider
	getBitmap/1
	getBitmap/2
	getIcon/1
	getIcon/2

	wxAuiDockArt
	getColour/2
	getFont/2
	getMetric/2
	setColour/3
	setFont/3
	setMetric/3

	wxAuiManagerEvent
	setManager/2
	getManager/1
	setPane/2
	getPane/1
	setButton/2
	getButton/1
	setDC/2
	getDC/1
	veto/1
	veto/2
	getVeto/1
	setCanVeto/2
	canVeto/1

	wxAuiManager
	new/0
	new/1
	destroy/1
	addPane/2
	addPane/3
	addPane/3
	addPane/4
	detachPane/2
	getAllPanes/1
	getArtProvider/1
	getDockSizeConstraint/1
	getFlags/1
	getManagedWindow/1
	getManager/1
	getPane/2
	getPane/2
	hideHint/1
	insertPane/3
	insertPane/4
	loadPaneInfo/3
	loadPerspective/2
	loadPerspective/3
	savePaneInfo/2
	savePerspective/1
	setArtProvider/2
	setDockSizeConstraint/3
	setFlags/2
	setManagedWindow/2
	showHint/2
	unInit/1
	update/1

	wxAuiNotebookEvent
	setSelection/2
	getSelection/1
	setOldSelection/2
	getOldSelection/1
	setDragSource/2
	getDragSource/1

	wxAuiNotebook
	new/0
	new/1
	new/2
	addPage/3
	addPage/4
	addPage/5
	create/2
	create/3
	create/3
	create/4
	deletePage/2
	getArtProvider/1
	getPage/2
	getPageBitmap/2
	getPageCount/1
	getPageIndex/2
	getPageText/2
	getSelection/1
	insertPage/4
	insertPage/5
	insertPage/6
	removePage/2
	setArtProvider/2
	setFont/2
	setPageBitmap/3
	setPageText/3
	setSelection/2
	setTabCtrlHeight/2
	setUniformBitmapSize/2
	destroy/1

	wxAuiPaneInfo
	new/0
	new/1
	bestSize/2
	bestSize/3
	bottom/1
	bottomDockable/1
	bottomDockable/2
	caption/2
	captionVisible/1
	captionVisible/2
	centre/1
	centrePane/1
	closeButton/1
	closeButton/2
	defaultPane/1
	destroyOnClose/1
	destroyOnClose/2
	direction/2
	dock/1
	dockable/1
	dockable/2
	fixed/1
	float/1
	floatable/1
	floatable/2
	floatingPosition/2
	floatingPosition/3
	floatingSize/2
	floatingSize/3
	gripper/1
	gripper/2
	gripperTop/1
	gripperTop/2
	hasBorder/1
	hasCaption/1
	hasCloseButton/1
	hasFlag/2
	hasGripper/1
	hasGripperTop/1
	hasMaximizeButton/1
	hasMinimizeButton/1
	hasPinButton/1
	hide/1
	isBottomDockable/1
	isDocked/1
	isFixed/1
	isFloatable/1
	isFloating/1
	isLeftDockable/1
	isMovable/1
	isOk/1
	isResizable/1
	isRightDockable/1
	isShown/1
	isToolbar/1
	isTopDockable/1
	layer/2
	left/1
	leftDockable/1
	leftDockable/2
	maxSize/2
	maxSize/3
	maximizeButton/1
	maximizeButton/2
	minSize/2
	minSize/3
	minimizeButton/1
	minimizeButton/2
	movable/1
	movable/2
	name/2
	paneBorder/1
	paneBorder/2
	pinButton/1
	pinButton/2
	position/2
	resizable/1
	resizable/2
	right/1
	rightDockable/1
	rightDockable/2
	row/2
	safeSet/2
	setFlag/3
	show/1
	show/2
	toolbarPane/1
	top/1
	topDockable/1
	topDockable/2
	window/2
	getWindow/1
	getFrame/1
	getDirection/1
	getLayer/1
	getRow/1
	getPosition/1
	getFloatingPosition/1
	getFloatingSize/1
	destroy/1

	wxAuiSimpleTabArt
	new/0
	destroy/1

	wxAuiTabArt
	setFlags/2
	setMeasuringFont/2
	setNormalFont/2
	setSelectedFont/2
	setColour/2
	setActiveColour/2

	wxBitmapButton
	new/0
	new/3
	new/4
	create/4
	create/5
	newCloseButton/2
	destroy/1

	wxBitmapDataObject
	new/0
	new/1
	new/1
	getBitmap/1
	setBitmap/2
	destroy/1

	wxBitmap
	new/0
	new/1
	new/1
	new/1
	new/2
	new/2
	new/2
	new/2
	new/3
	new/3
	new/4
	destroy/1
	convertToImage/1
	copyFromIcon/2
	create/2
	create/3
	create/3
	create/4
	create/4
	getDepth/1
	getHeight/1
	getPalette/1
	getMask/1
	getWidth/1
	getSubBitmap/2
	loadFile/2
	loadFile/3
	ok/1
	isOk/1
	saveFile/3
	saveFile/4
	setDepth/2
	setHeight/2
	setMask/2
	setPalette/2
	setWidth/2

	wxBookCtrlBase
	addPage/3
	addPage/4
	insertPage/4
	insertPage/5
	deletePage/2
	removePage/2
	deleteAllPages/1
	getPage/2
	getPageCount/1
	getCurrentPage/1
	advanceSelection/1
	advanceSelection/2
	setSelection/2
	getSelection/1
	changeSelection/2
	hitTest/2
	getPageText/2
	setPageText/3

	wxBookCtrlEvent
	getOldSelection/1
	getSelection/1
	setOldSelection/2
	setSelection/2

	wxBoxSizer
	new/1
	getOrientation/1
	destroy/1

	wxBrush
	new/0
	new/1
	new/1
	new/2
	destroy/1
	getColour/1
	getStipple/1
	getStyle/1
	isHatch/1
	isOk/1
	setColour/2
	setColour/4
	setStipple/2
	setStyle/2

	wxBufferedDC
	new/0
	new/1
	new/2
	new/2
	new/3
	destroy/1
	init/2
	init/3
	init/3
	init/4

	wxBufferedPaintDC
	new/1
	new/2
	new/2
	new/3
	destroy/1

	wxButton
	new/0
	new/2
	new/3
	create/3
	create/4
	getDefaultSize/0
	getDefaultSize/1
	setDefault/1
	setLabel/2
	getBitmapDisabled/1
	getBitmapFocus/1
	getBitmapLabel/1
	setBitmapDisabled/2
	setBitmapFocus/2
	setBitmapLabel/2
	destroy/1

	wxCalendarCtrl
	new/0
	new/2
	new/3
	create/3
	create/4
	destroy/1
	setDate/2
	getDate/1
	enableYearChange/1
	enableYearChange/2
	enableMonthChange/1
	enableMonthChange/2
	enableHolidayDisplay/1
	enableHolidayDisplay/2
	setHeaderColours/3
	getHeaderColourFg/1
	getHeaderColourBg/1
	setHighlightColours/3
	getHighlightColourFg/1
	getHighlightColourBg/1
	setHolidayColours/3
	getHolidayColourFg/1
	getHolidayColourBg/1
	getAttr/2
	setAttr/3
	setHoliday/2
	resetAttr/2
	hitTest/2

	wxCalendarDateAttr
	new/0
	new/1
	new/1
	new/2
	setTextColour/2
	setBackgroundColour/2
	setBorderColour/2
	setFont/2
	setBorder/2
	setHoliday/2
	hasTextColour/1
	hasBackgroundColour/1
	hasBorderColour/1
	hasFont/1
	hasBorder/1
	isHoliday/1
	getTextColour/1
	getBackgroundColour/1
	getBorderColour/1
	getFont/1
	getBorder/1
	destroy/1

	wxCalendarEvent
	getWeekDay/1
	getDate/1

	wxCaret
	new/2
	new/3
	create/3
	create/4
	getBlinkTime/0
	getPosition/1
	getSize/1
	getWindow/1
	hide/1
	isOk/1
	isVisible/1
	move/2
	move/3
	setBlinkTime/1
	setSize/2
	setSize/3
	show/1
	show/2
	destroy/1

	wxCheckBox
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5
	getValue/1
	get3StateValue/1
	is3rdStateAllowedForUser/1
	is3State/1
	isChecked/1
	setValue/2
	set3StateValue/2

	wxCheckListBox
	new/0
	new/2
	new/3
	destroy/1
	check/2
	check/3
	isChecked/2

	wxChildFocusEvent
	getWindow/1

	wxChoicebook
	new/0
	new/2
	new/3
	addPage/3
	addPage/4
	advanceSelection/1
	advanceSelection/2
	assignImageList/2
	create/3
	create/4
	deleteAllPages/1
	getCurrentPage/1
	getImageList/1
	getPage/2
	getPageCount/1
	getPageImage/2
	getPageText/2
	getSelection/1
	hitTest/2
	insertPage/4
	insertPage/5
	setImageList/2
	setPageSize/2
	setPageImage/3
	setPageText/3
	setSelection/2
	changeSelection/2
	destroy/1

	wxChoice
	new/0
	new/2
	new/3
	destroy/1
	create/6
	create/7
	delete/2
	getColumns/1
	setColumns/1
	setColumns/2

	wxClientDC
	new/1
	destroy/1

	wxClipboardTextEvent
	wxClipboard
	new/0
	destroy/1
	addData/2
	clear/1
	close/1
	flush/1
	getData/2
	isOpened/1
	open/1
	setData/2
	usePrimarySelection/1
	usePrimarySelection/2
	isSupported/2
	get/0

	wxCloseEvent
	canVeto/1
	getLoggingOff/1
	setCanVeto/2
	setLoggingOff/2
	veto/1
	veto/2

	wxColourData
	new/0
	destroy/1
	getChooseFull/1
	getColour/1
	getCustomColour/2
	setChooseFull/2
	setColour/2
	setCustomColour/3

	wxColourDialog
	new/0
	new/1
	new/2
	destroy/1
	create/2
	create/3
	getColourData/1

	wxColourPickerCtrl
	new/0
	new/2
	new/3
	create/3
	create/4
	getColour/1
	setColour/2
	setColour/2
	destroy/1

	wxColourPickerEvent
	getColour/1

	wxComboBox
	new/0
	new/2
	new/3
	destroy/1
	create/7
	create/8
	canCopy/1
	canCut/1
	canPaste/1
	canRedo/1
	canUndo/1
	copy/1
	cut/1
	getInsertionPoint/1
	getLastPosition/1
	getValue/1
	paste/1
	redo/1
	replace/4
	remove/3
	setInsertionPoint/2
	setInsertionPointEnd/1
	setSelection/2
	setSelection/3
	setValue/2
	undo/1

	wxCommandEvent
	getClientData/1
	getExtraLong/1
	getInt/1
	getSelection/1
	getString/1
	isChecked/1
	isSelection/1
	setInt/2
	setString/2

	wxContextMenuEvent
	getPosition/1
	setPosition/2

	wxControlWithItems
	append/2
	append/3
	appendStrings/2
	appendStrings/3
	clear/1
	delete/2
	findString/2
	findString/3
	getClientData/2
	setClientData/3
	getCount/1
	getSelection/1
	getString/2
	getStringSelection/1
	insert/3
	insert/4
	insertStrings/3
	insertStrings/4
	isEmpty/1
	select/2
	setSelection/2
	setString/3
	setStringSelection/2

	wxControl
	getLabel/1
	setLabel/2

	wxCursor
	new/0
	new/1
	new/1
	new/1
	new/2
	destroy/1
	ok/1
	isOk/1

	wxDataObject
	wxDateEvent
	getDate/1

	wxDatePickerCtrl
	new/0
	new/2
	new/3
	getRange/3
	getValue/1
	setRange/3
	setValue/2
	destroy/1

	wxDCOverlay
	new/2
	new/6
	destroy/1
	clear/1

	wxDC
	blit/5
	blit/6
	calcBoundingBox/3
	clear/1
	crossHair/2
	destroyClippingRegion/1
	deviceToLogicalX/2
	deviceToLogicalXRel/2
	deviceToLogicalY/2
	deviceToLogicalYRel/2
	drawArc/4
	drawBitmap/3
	drawBitmap/4
	drawCheckMark/2
	drawCircle/3
	drawEllipse/2
	drawEllipse/3
	drawEllipticArc/5
	drawIcon/3
	drawLabel/3
	drawLabel/4
	drawLine/3
	drawLines/2
	drawLines/3
	drawPolygon/2
	drawPolygon/3
	drawPoint/2
	drawRectangle/2
	drawRectangle/3
	drawRotatedText/4
	drawRoundedRectangle/3
	drawRoundedRectangle/4
	drawText/3
	endDoc/1
	endPage/1
	floodFill/3
	floodFill/4
	getBackground/1
	getBackgroundMode/1
	getBrush/1
	getCharHeight/1
	getCharWidth/1
	getClippingBox/1
	getFont/1
	getLayoutDirection/1
	getLogicalFunction/1
	getMapMode/1
	getMultiLineTextExtent/2
	getMultiLineTextExtent/3
	getPartialTextExtents/2
	getPen/1
	getPixel/2
	getPPI/1
	getSize/1
	getSizeMM/1
	getTextBackground/1
	getTextExtent/2
	getTextExtent/3
	getTextForeground/1
	getUserScale/1
	gradientFillConcentric/4
	gradientFillConcentric/5
	gradientFillLinear/4
	gradientFillLinear/5
	logicalToDeviceX/2
	logicalToDeviceXRel/2
	logicalToDeviceY/2
	logicalToDeviceYRel/2
	maxX/1
	maxY/1
	minX/1
	minY/1
	isOk/1
	resetBoundingBox/1
	setAxisOrientation/3
	setBackground/2
	setBackgroundMode/2
	setBrush/2
	setClippingRegion/2
	setClippingRegion/3
	setDeviceOrigin/3
	setFont/2
	setLayoutDirection/2
	setLogicalFunction/2
	setMapMode/2
	setPalette/2
	setPen/2
	setTextBackground/2
	setTextForeground/2
	setUserScale/3
	startDoc/2
	startPage/1

	wxDialog
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5
	createButtonSizer/2
	createStdDialogButtonSizer/2
	endModal/2
	getAffirmativeId/1
	getReturnCode/1
	isModal/1
	setAffirmativeId/2
	setReturnCode/2
	show/1
	show/2
	showModal/1

	wxDirDialog
	new/1
	new/2
	destroy/1
	getPath/1
	getMessage/1
	setMessage/2
	setPath/2

	wxDirPickerCtrl
	new/0
	new/2
	new/3
	create/3
	create/4
	getPath/1
	setPath/2
	destroy/1

	wxDisplayChangedEvent
	wxDisplay
	new/0
	new/1
	new/1
	destroy/1
	isOk/1
	getClientArea/1
	getGeometry/1
	getName/1
	isPrimary/1
	getCount/0
	getFromPoint/1
	getFromWindow/1
	getPPI/1

	wxDropFilesEvent
	getPosition/1
	getNumberOfFiles/1
	getFiles/1

	wxEraseEvent
	getDC/1

	wxEvent
	getId/1
	getSkipped/1
	getTimestamp/1
	isCommandEvent/1
	resumePropagation/2
	shouldPropagate/1
	skip/1
	skip/2
	stopPropagation/1

	wxEvtHandler
	connect/2
	connect/3
	disconnect/1
	disconnect/2
	disconnect/3

	wxFileDataObject
	new/0
	addFile/2
	getFilenames/1
	destroy/1

	wxFileDialog
	new/1
	new/2
	destroy/1
	getDirectory/1
	getFilename/1
	getFilenames/1
	getFilterIndex/1
	getMessage/1
	getPath/1
	getPaths/1
	getWildcard/1
	setDirectory/2
	setFilename/2
	setFilterIndex/2
	setMessage/2
	setPath/2
	setWildcard/2

	wxFileDirPickerEvent
	getPath/1

	wxFilePickerCtrl
	new/0
	new/2
	new/3
	create/3
	create/4
	getPath/1
	setPath/2
	destroy/1

	wxFindReplaceData
	new/0
	new/1
	getFindString/1
	getReplaceString/1
	getFlags/1
	setFlags/2
	setFindString/2
	setReplaceString/2
	destroy/1

	wxFindReplaceDialog
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5
	getData/1

	wxFlexGridSizer
	new/1
	new/2
	new/3
	new/3
	new/4
	addGrowableCol/2
	addGrowableCol/3
	addGrowableRow/2
	addGrowableRow/3
	getFlexibleDirection/1
	getNonFlexibleGrowMode/1
	removeGrowableCol/2
	removeGrowableRow/2
	setFlexibleDirection/2
	setNonFlexibleGrowMode/2
	destroy/1

	wxFocusEvent
	getWindow/1

	wxFontData
	new/0
	new/1
	enableEffects/2
	getAllowSymbols/1
	getColour/1
	getChosenFont/1
	getEnableEffects/1
	getInitialFont/1
	getShowHelp/1
	setAllowSymbols/2
	setChosenFont/2
	setColour/2
	setInitialFont/2
	setRange/3
	setShowHelp/2
	destroy/1

	wxFontDialog
	new/0
	new/2
	create/3
	getFontData/1
	destroy/1

	wxFontPickerCtrl
	new/0
	new/2
	new/3
	create/3
	create/4
	getSelectedFont/1
	setSelectedFont/2
	getMaxPointSize/1
	setMaxPointSize/2
	destroy/1

	wxFontPickerEvent
	getFont/1

	wxFont
	new/0
	new/1
	new/1
	new/4
	new/4
	new/5
	new/5
	destroy/1
	isFixedWidth/1
	getDefaultEncoding/0
	getFaceName/1
	getFamily/1
	getNativeFontInfoDesc/1
	getNativeFontInfoUserDesc/1
	getPointSize/1
	getStyle/1
	getUnderlined/1
	getWeight/1
	ok/1
	isOk/1
	setDefaultEncoding/1
	setFaceName/2
	setFamily/2
	setPointSize/2
	setStyle/2
	setUnderlined/2
	setWeight/2

	wxFrame
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5
	createStatusBar/1
	createStatusBar/2
	createToolBar/1
	createToolBar/2
	getClientAreaOrigin/1
	getMenuBar/1
	getStatusBar/1
	getStatusBarPane/1
	getToolBar/1
	processCommand/2
	sendSizeEvent/1
	sendSizeEvent/2
	setMenuBar/2
	setStatusBar/2
	setStatusBarPane/2
	setStatusText/2
	setStatusText/3
	setStatusWidths/2
	setToolBar/2

	wxGauge
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5
	getRange/1
	getValue/1
	isVertical/1
	setRange/2
	setValue/2
	pulse/1

	wxGBSizerItem
	wxGCDC
	new/0
	new/1
	destroy/1
	getGraphicsContext/1
	setGraphicsContext/2

	wxGenericDirCtrl
	new/0
	new/1
	new/2
	destroy/1
	create/2
	create/3
	init/1
	collapseTree/1
	expandPath/2
	getDefaultPath/1
	getPath/1
	getPath/2
	getFilePath/1
	getFilter/1
	getFilterIndex/1
	getRootId/1
	getTreeCtrl/1
	reCreateTree/1
	setDefaultPath/2
	setFilter/2
	setFilterIndex/2
	setPath/2

	wxGLCanvas
	new/1
	new/2
	setCurrent/2
	createSurface/1
	isDisplaySupported/1
	swapBuffers/1
	destroy/1

	wxGLContext
	new/1
	new/2
	setCurrent/2
	isOK/1
	destroy/1

	wxGraphicsBrush
	wxGraphicsContext
	destroy/1
	create/0
	create/1
	createPen/2
	createBrush/2
	createRadialGradientBrush/7
	createRadialGradientBrush/8
	createLinearGradientBrush/6
	createLinearGradientBrush/7
	createFont/2
	createFont/3
	createFont/3
	createFont/4
	createMatrix/1
	createMatrix/2
	createPath/1
	clip/2
	clip/5
	resetClip/1
	drawBitmap/6
	drawEllipse/5
	drawIcon/6
	drawLines/2
	drawLines/3
	drawPath/2
	drawPath/3
	drawRectangle/5
	drawRoundedRectangle/6
	drawText/4
	drawText/5
	drawText/5
	drawText/6
	fillPath/2
	fillPath/3
	strokePath/2
	getPartialTextExtents/2
	getTextExtent/2
	rotate/2
	scale/3
	translate/3
	getTransform/1
	setTransform/2
	concatTransform/2
	setBrush/2
	setFont/2
	setFont/3
	setPen/2
	strokeLine/5
	strokeLines/2

	wxGraphicsFont
	wxGraphicsGradientStops
	new/0
	new/1
	item/2
	getCount/1
	setStartColour/2
	getStartColour/1
	setEndColour/2
	getEndColour/1
	add/3
	destroy/1

	wxGraphicsMatrix
	concat/2
	get/1
	invert/1
	isEqual/2
	isIdentity/1
	rotate/2
	scale/3
	translate/3
	set/1
	set/2
	transformPoint/1
	transformDistance/1

	wxGraphicsObject
	destroy/1
	getRenderer/1
	isNull/1

	wxGraphicsPath
	moveToPoint/2
	moveToPoint/3
	addArc/6
	addArc/7
	addArcToPoint/6
	addCircle/4
	addCurveToPoint/4
	addCurveToPoint/7
	addEllipse/5
	addLineToPoint/2
	addLineToPoint/3
	addPath/2
	addQuadCurveToPoint/5
	addRectangle/5
	addRoundedRectangle/6
	closeSubpath/1
	contains/2
	contains/3
	contains/3
	contains/4
	getBox/1
	getCurrentPoint/1
	transform/2

	wxGraphicsPen
	wxGraphicsRenderer
	getDefaultRenderer/0
	createContext/2
	createBrush/2
	createLinearGradientBrush/6
	createRadialGradientBrush/7
	createFont/2
	createFont/3
	createFont/3
	createFont/4
	createMatrix/1
	createMatrix/2
	createPath/1

	wxGridBagSizer
	new/0
	new/1
	add/2
	add/3
	add/4
	add/4
	add/5
	calcMin/1
	checkForIntersection/2
	checkForIntersection/3
	checkForIntersection/3
	checkForIntersection/4
	findItem/2
	findItemAtPoint/2
	findItemAtPosition/2
	findItemWithData/2
	getCellSize/3
	getEmptyCellSize/1
	getItemPosition/2
	getItemPosition/2
	getItemSpan/2
	getItemSpan/2
	setEmptyCellSize/2
	setItemPosition/3
	setItemPosition/3
	setItemSpan/3
	setItemSpan/3
	destroy/1

	wxGridCellAttr
	setTextColour/2
	setBackgroundColour/2
	setFont/2
	setAlignment/3
	setReadOnly/1
	setReadOnly/2
	setRenderer/2
	setEditor/2
	hasTextColour/1
	hasBackgroundColour/1
	hasFont/1
	hasAlignment/1
	hasRenderer/1
	hasEditor/1
	getTextColour/1
	getBackgroundColour/1
	getFont/1
	getAlignment/1
	getRenderer/4
	getEditor/4
	isReadOnly/1
	setDefAttr/2

	wxGridCellBoolEditor
	new/0
	isTrueValue/1
	useStringValues/0
	useStringValues/1
	destroy/1

	wxGridCellBoolRenderer
	new/0
	destroy/1

	wxGridCellChoiceEditor
	new/1
	new/2
	setParameters/2
	destroy/1

	wxGridCellEditor
	create/4
	isCreated/1
	setSize/2
	show/2
	show/3
	reset/1
	startingKey/2
	startingClick/1
	handleReturn/2

	wxGridCellFloatEditor
	new/0
	new/1
	setParameters/2
	destroy/1

	wxGridCellFloatRenderer
	new/0
	new/1
	getPrecision/1
	getWidth/1
	setParameters/2
	setPrecision/2
	setWidth/2
	destroy/1

	wxGridCellNumberEditor
	new/0
	new/1
	getValue/1
	setParameters/2
	destroy/1

	wxGridCellNumberRenderer
	new/0
	destroy/1

	wxGridCellRenderer
	draw/8
	getBestSize/6

	wxGridCellStringRenderer
	new/0
	destroy/1

	wxGridCellTextEditor
	new/0
	new/1
	setParameters/2
	destroy/1

	wxGridEvent
	altDown/1
	controlDown/1
	getCol/1
	getPosition/1
	getRow/1
	metaDown/1
	selecting/1
	shiftDown/1

	wxGridSizer
	new/1
	new/2
	new/3
	new/3
	new/4
	getCols/1
	getHGap/1
	getRows/1
	getVGap/1
	setCols/2
	setHGap/2
	setRows/2
	setVGap/2
	destroy/1

	wxGrid
	new/0
	new/2
	new/3
	destroy/1
	appendCols/1
	appendCols/2
	appendRows/1
	appendRows/2
	autoSize/1
	autoSizeColumn/2
	autoSizeColumn/3
	autoSizeColumns/1
	autoSizeColumns/2
	autoSizeRow/2
	autoSizeRow/3
	autoSizeRows/1
	autoSizeRows/2
	beginBatch/1
	blockToDeviceRect/3
	canDragCell/1
	canDragColMove/1
	canDragGridRowEdges/1
	canDragColSize/2
	canDragRowSize/2
	canDragGridSize/1
	canEnableCellControl/1
	cellToRect/2
	cellToRect/3
	clearGrid/1
	clearSelection/1
	createGrid/3
	createGrid/4
	deleteCols/1
	deleteCols/2
	deleteRows/1
	deleteRows/2
	disableCellEditControl/1
	disableDragColSize/1
	disableDragGridSize/1
	disableDragRowSize/1
	enableCellEditControl/1
	enableCellEditControl/2
	enableDragColSize/1
	enableDragColSize/2
	enableDragGridSize/1
	enableDragGridSize/2
	enableDragRowSize/1
	enableDragRowSize/2
	enableEditing/2
	enableGridLines/1
	enableGridLines/2
	endBatch/1
	fit/1
	forceRefresh/1
	getBatchCount/1
	getCellAlignment/3
	getCellBackgroundColour/3
	getCellEditor/3
	getCellFont/3
	getCellRenderer/3
	getCellTextColour/3
	getCellValue/2
	getCellValue/3
	getColLabelAlignment/1
	getColLabelSize/1
	getColLabelValue/2
	getColMinimalAcceptableWidth/1
	getDefaultCellAlignment/1
	getDefaultCellBackgroundColour/1
	getDefaultCellFont/1
	getDefaultCellTextColour/1
	getDefaultColLabelSize/1
	getDefaultColSize/1
	getDefaultEditor/1
	getDefaultEditorForCell/2
	getDefaultEditorForCell/3
	getDefaultEditorForType/2
	getDefaultRenderer/1
	getDefaultRendererForCell/3
	getDefaultRendererForType/2
	getDefaultRowLabelSize/1
	getDefaultRowSize/1
	getGridCursorCol/1
	getGridCursorRow/1
	getGridLineColour/1
	gridLinesEnabled/1
	getLabelBackgroundColour/1
	getLabelFont/1
	getLabelTextColour/1
	getNumberCols/1
	getNumberRows/1
	getOrCreateCellAttr/3
	getRowMinimalAcceptableHeight/1
	getRowLabelAlignment/1
	getRowLabelSize/1
	getRowLabelValue/2
	getRowSize/2
	getScrollLineX/1
	getScrollLineY/1
	getSelectedCells/1
	getSelectedCols/1
	getSelectedRows/1
	getSelectionBackground/1
	getSelectionBlockTopLeft/1
	getSelectionBlockBottomRight/1
	getSelectionForeground/1
	getGridWindow/1
	getGridRowLabelWindow/1
	getGridColLabelWindow/1
	getGridCornerLabelWindow/1
	hideCellEditControl/1
	insertCols/1
	insertCols/2
	insertRows/1
	insertRows/2
	isCellEditControlEnabled/1
	isCurrentCellReadOnly/1
	isEditable/1
	isInSelection/2
	isInSelection/3
	isReadOnly/3
	isSelection/1
	isVisible/2
	isVisible/3
	isVisible/3
	isVisible/4
	makeCellVisible/2
	makeCellVisible/3
	moveCursorDown/2
	moveCursorLeft/2
	moveCursorRight/2
	moveCursorUp/2
	moveCursorDownBlock/2
	moveCursorLeftBlock/2
	moveCursorRightBlock/2
	moveCursorUpBlock/2
	movePageDown/1
	movePageUp/1
	registerDataType/4
	saveEditControlValue/1
	selectAll/1
	selectBlock/3
	selectBlock/4
	selectBlock/5
	selectBlock/6
	selectCol/2
	selectCol/3
	selectRow/2
	selectRow/3
	setCellAlignment/5
	setCellBackgroundColour/4
	setCellEditor/4
	setCellFont/4
	setCellRenderer/4
	setCellTextColour/4
	setCellValue/3
	setCellValue/4
	setColAttr/3
	setColFormatBool/2
	setColFormatNumber/2
	setColFormatFloat/2
	setColFormatFloat/3
	setColFormatCustom/3
	setColLabelAlignment/3
	setColLabelSize/2
	setColLabelValue/3
	setColMinimalWidth/3
	setColMinimalAcceptableWidth/2
	setColSize/3
	setDefaultCellAlignment/3
	setDefaultCellBackgroundColour/2
	setDefaultCellFont/2
	setDefaultCellTextColour/2
	setDefaultEditor/2
	setDefaultRenderer/2
	setDefaultColSize/2
	setDefaultColSize/3
	setDefaultRowSize/2
	setDefaultRowSize/3
	setGridCursor/2
	setGridCursor/3
	setGridLineColour/2
	setLabelBackgroundColour/2
	setLabelFont/2
	setLabelTextColour/2
	setMargins/3
	setReadOnly/3
	setReadOnly/4
	setRowAttr/3
	setRowLabelAlignment/3
	setRowLabelSize/2
	setRowLabelValue/3
	setRowMinimalHeight/3
	setRowMinimalAcceptableHeight/2
	setRowSize/3
	setScrollLineX/2
	setScrollLineY/2
	setSelectionBackground/2
	setSelectionForeground/2
	setSelectionMode/2
	showCellEditControl/1
	xToCol/2
	xToCol/3
	xToEdgeOfCol/2
	yToEdgeOfRow/2
	yToRow/2
	yToRow/3

	wxHelpEvent
	getOrigin/1
	getPosition/1
	setOrigin/2
	setPosition/2

	wxHtmlEasyPrinting
	new/0
	new/1
	getPrintData/1
	getPageSetupData/1
	previewFile/2
	previewText/2
	previewText/3
	printFile/2
	printText/2
	printText/3
	pageSetup/1
	setFonts/3
	setFonts/4
	setHeader/2
	setHeader/3
	setFooter/2
	setFooter/3
	destroy/1

	wxHtmlLinkEvent
	getLinkInfo/1

	wxHtmlWindow
	new/0
	new/1
	new/2
	appendToPage/2
	getOpenedAnchor/1
	getOpenedPage/1
	getOpenedPageTitle/1
	getRelatedFrame/1
	historyBack/1
	historyCanBack/1
	historyCanForward/1
	historyClear/1
	historyForward/1
	loadFile/2
	loadPage/2
	selectAll/1
	selectionToText/1
	selectLine/2
	selectWord/2
	setBorders/2
	setFonts/3
	setFonts/4
	setPage/2
	setRelatedFrame/3
	setRelatedStatusBar/2
	setRelatedStatusBar/2
	setRelatedStatusBar/3
	toText/1
	destroy/1

	wxIconBundle
	new/0
	new/1
	new/1
	new/2
	destroy/1
	addIcon/2
	addIcon/2
	addIcon/3
	getIcon/1
	getIcon/2
	getIcon/2
	getIcon/3

	wxIconizeEvent
	isIconized/1

	wxIcon
	new/0
	new/1
	new/1
	new/2
	copyFromBitmap/2
	destroy/1

	wxIdleEvent
	getMode/0
	requestMore/1
	requestMore/2
	moreRequested/1
	setMode/1

	wxImageList
	new/0
	new/2
	new/3
	add/2
	add/3
	add/3
	create/3
	create/4
	draw/5
	draw/6
	getBitmap/2
	getIcon/2
	getImageCount/1
	getSize/2
	remove/2
	removeAll/1
	replace/3
	replace/4
	destroy/1

	wxImage
	new/0
	new/1
	new/1
	new/2
	new/2
	new/2
	new/2
	new/3
	new/3
	new/3
	new/3
	new/4
	destroy/1
	blur/2
	blurHorizontal/2
	blurVertical/2
	convertAlphaToMask/1
	convertAlphaToMask/2
	convertAlphaToMask/4
	convertAlphaToMask/5
	convertToGreyscale/1
	convertToGreyscale/4
	convertToMono/4
	copy/1
	create/2
	create/3
	create/3
	create/3
	create/4
	create/4
	create/4
	create/5
	'Destroy'/1
	findFirstUnusedColour/1
	findFirstUnusedColour/2
	getImageExtWildcard/0
	getAlpha/1
	getAlpha/3
	getBlue/3
	getData/1
	getGreen/3
	getImageCount/1
	getImageCount/2
	getHeight/1
	getMaskBlue/1
	getMaskGreen/1
	getMaskRed/1
	getOrFindMaskColour/1
	getPalette/1
	getRed/3
	getSubImage/2
	getWidth/1
	hasAlpha/1
	hasMask/1
	getOption/2
	getOptionInt/2
	hasOption/2
	initAlpha/1
	initStandardHandlers/0
	isTransparent/3
	isTransparent/4
	loadFile/2
	loadFile/3
	loadFile/4
	ok/1
	isOk/1
	removeHandler/1
	mirror/1
	mirror/2
	replace/7
	rescale/3
	rescale/4
	resize/3
	resize/4
	rotate/3
	rotate/4
	rotateHue/2
	rotate90/1
	rotate90/2
	saveFile/2
	saveFile/3
	saveFile/3
	scale/3
	scale/4
	size/3
	size/4
	setAlpha/2
	setAlpha/4
	setData/2
	setData/4
	setMask/1
	setMask/2
	setMaskColour/4
	setMaskFromImage/5
	setOption/3
	setOption/3
	setPalette/2
	setRGB/5
	setRGB/6

	wxInitDialogEvent
	wxJoystickEvent
	buttonDown/1
	buttonDown/2
	buttonIsDown/1
	buttonIsDown/2
	buttonUp/1
	buttonUp/2
	getButtonChange/1
	getButtonState/1
	getJoystick/1
	getPosition/1
	getZPosition/1
	isButton/1
	isMove/1
	isZMove/1

	wxKeyEvent
	altDown/1
	cmdDown/1
	controlDown/1
	getKeyCode/1
	getModifiers/1
	getPosition/1
	getRawKeyCode/1
	getRawKeyFlags/1
	getUnicodeKey/1
	getX/1
	getY/1
	hasModifiers/1
	metaDown/1
	shiftDown/1

	wxLayoutAlgorithm
	new/0
	destroy/1
	layoutFrame/2
	layoutFrame/3
	layoutMDIFrame/2
	layoutMDIFrame/3
	layoutWindow/2
	layoutWindow/3

	wxListbook
	new/0
	new/2
	new/3
	addPage/3
	addPage/4
	advanceSelection/1
	advanceSelection/2
	assignImageList/2
	create/3
	create/4
	deleteAllPages/1
	getCurrentPage/1
	getImageList/1
	getPage/2
	getPageCount/1
	getPageImage/2
	getPageText/2
	getSelection/1
	hitTest/2
	insertPage/4
	insertPage/5
	setImageList/2
	setPageSize/2
	setPageImage/3
	setPageText/3
	setSelection/2
	changeSelection/2
	destroy/1

	wxListBox
	new/0
	new/2
	new/3
	destroy/1
	create/6
	create/7
	deselect/2
	getSelections/1
	insertItems/3
	isSelected/2
	set/2
	hitTest/2
	hitTest/3
	setFirstItem/2
	setFirstItem/2

	wxListCtrl
	new/0
	new/2
	destroy/1
	arrange/1
	arrange/2
	assignImageList/3
	clearAll/1
	create/3
	deleteAllItems/1
	deleteColumn/2
	deleteItem/2
	editLabel/2
	ensureVisible/2
	findItem/3
	findItem/4
	findItem/4
	getColumn/3
	getColumnCount/1
	getColumnWidth/2
	getCountPerPage/1
	getEditControl/1
	getImageList/2
	getItem/2
	getItemBackgroundColour/2
	getItemCount/1
	getItemData/2
	getItemFont/2
	getItemPosition/2
	getItemRect/2
	getItemRect/3
	getItemSpacing/1
	getItemState/3
	getItemText/2
	getItemText/3
	getItemTextColour/2
	getNextItem/2
	getNextItem/3
	getSelectedItemCount/1
	getTextColour/1
	getTopItem/1
	getViewRect/1
	hitTest/2
	insertColumn/3
	insertColumn/3
	insertColumn/4
	insertItem/2
	insertItem/3
	insertItem/3
	insertItem/4
	refreshItem/2
	refreshItems/3
	scrollList/3
	setBackgroundColour/2
	setColumn/3
	setColumnWidth/3
	setImageList/3
	setItem/2
	setItem/4
	setItem/5
	setItemBackgroundColour/3
	setItemCount/2
	setItemData/3
	setItemFont/3
	setItemImage/3
	setItemImage/4
	setItemColumnImage/4
	setItemPosition/3
	setItemState/4
	setItemText/3
	setItemTextColour/3
	setSingleStyle/2
	setSingleStyle/3
	setTextColour/2
	setWindowStyleFlag/2
	sortItems/2

	wxListEvent
	getCacheFrom/1
	getCacheTo/1
	getKeyCode/1
	getIndex/1
	getColumn/1
	getPoint/1
	getLabel/1
	getText/1
	getImage/1
	getData/1
	getMask/1
	getItem/1
	isEditCancelled/1

	wxListItemAttr
	new/0
	new/3
	getBackgroundColour/1
	getFont/1
	getTextColour/1
	hasBackgroundColour/1
	hasFont/1
	hasTextColour/1
	setBackgroundColour/2
	setFont/2
	setTextColour/2
	destroy/1

	wxListItem
	new/0
	new/1
	clear/1
	getAlign/1
	getBackgroundColour/1
	getColumn/1
	getFont/1
	getId/1
	getImage/1
	getMask/1
	getState/1
	getText/1
	getTextColour/1
	getWidth/1
	setAlign/2
	setBackgroundColour/2
	setColumn/2
	setFont/2
	setId/2
	setImage/2
	setMask/2
	setState/2
	setStateMask/2
	setText/2
	setTextColour/2
	setWidth/2
	destroy/1

	wxListView
	clearColumnImage/2
	focus/2
	getFirstSelected/1
	getFocusedItem/1
	getNextSelected/2
	isSelected/2
	select/2
	select/3
	setColumnImage/3

	wxLocale
	new/0
	new/1
	new/1
	new/2
	new/2
	destroy/1
	init/1
	init/2
	init/3
	addCatalog/2
	addCatalog/3
	addCatalog/4
	addCatalogLookupPathPrefix/1
	getCanonicalName/1
	getLanguage/1
	getLanguageName/1
	getLocale/1
	getName/1
	getString/2
	getString/3
	getString/4
	getString/5
	getHeaderValue/2
	getHeaderValue/3
	getSysName/1
	getSystemEncoding/0
	getSystemEncodingName/0
	getSystemLanguage/0
	isLoaded/2
	isOk/1

	wxLogNull
	new/0
	destroy/1

	wxMask
	new/0
	new/1
	new/2
	new/2
	destroy/1
	create/2
	create/3
	create/3

	wxMaximizeEvent
	wxMDIChildFrame
	new/0
	new/3
	new/4
	destroy/1
	activate/1
	create/4
	create/5
	maximize/1
	maximize/2
	restore/1

	wxMDIClientWindow
	new/0
	createClient/2
	createClient/3
	destroy/1

	wxMDIParentFrame
	new/0
	new/3
	new/4
	destroy/1
	activateNext/1
	activatePrevious/1
	arrangeIcons/1
	cascade/1
	create/4
	create/5
	getActiveChild/1
	getClientWindow/1
	tile/1
	tile/2

	wxMemoryDC
	new/0
	new/1
	selectObject/2
	selectObjectAsSource/2
	destroy/1

	wxMenuBar
	new/0
	new/1
	destroy/1
	append/3
	check/3
	enable/3
	enableTop/3
	findMenu/2
	findMenuItem/3
	findItem/2
	getHelpString/2
	getLabel/2
	getLabelTop/2
	getMenuLabel/2
	getMenuLabelText/2
	getMenu/2
	getMenuCount/1
	insert/4
	isChecked/2
	setAutoWindowMenu/1
	getAutoWindowMenu/0
	oSXGetAppleMenu/1
	macGetCommonMenuBar/0
	macSetCommonMenuBar/1
	isEnabled/2
	remove/2
	replace/4
	setHelpString/3
	setLabel/3
	setLabelTop/3
	setMenuLabel/3

	wxMenuEvent
	getMenu/1
	getMenuId/1
	isPopup/1

	wxMenuItem
	new/0
	new/1
	destroy/1
	check/1
	check/2
	enable/1
	enable/2
	getBitmap/1
	getHelp/1
	getId/1
	getKind/1
	getLabelFromText/1
	getLabelText/1
	getText/1
	getItemLabel/1
	getLabel/1
	getItemLabelText/1
	getMenu/1
	getSubMenu/1
	isCheckable/1
	isChecked/1
	isEnabled/1
	isSeparator/1
	isSubMenu/1
	setBitmap/2
	setHelp/2
	setMenu/2
	setSubMenu/2
	setText/2
	setItemLabel/2

	wxMenu
	new/0
	new/1
	new/2
	destroy/1
	append/2
	append/3
	append/4
	append/4
	append/5
	appendCheckItem/3
	appendCheckItem/4
	appendRadioItem/3
	appendRadioItem/4
	appendSeparator/1
	break/1
	check/3
	delete/2
	delete/2
	'Destroy'/2
	'Destroy'/2
	enable/3
	findItem/2
	findItem/2
	findItemByPosition/2
	getHelpString/2
	getLabel/2
	getMenuItemCount/1
	getMenuItems/1
	getTitle/1
	insert/3
	insert/3
	insert/4
	insert/5
	insert/6
	insertCheckItem/4
	insertCheckItem/5
	insertRadioItem/4
	insertRadioItem/5
	insertSeparator/2
	isChecked/2
	isEnabled/2
	prepend/2
	prepend/2
	prepend/3
	prepend/4
	prepend/5
	prependCheckItem/3
	prependCheckItem/4
	prependRadioItem/3
	prependRadioItem/4
	prependSeparator/1
	remove/2
	remove/2
	setHelpString/3
	setLabel/3
	setTitle/2

	wxMessageDialog
	new/2
	new/3
	destroy/1

	wxMiniFrame
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5

	wxMirrorDC
	new/2
	destroy/1

	wxMouseCaptureChangedEvent
	getCapturedWindow/1

	wxMouseCaptureLostEvent
	wxMouseEvent
	altDown/1
	button/2
	buttonDClick/1
	buttonDClick/2
	buttonDown/1
	buttonDown/2
	buttonUp/1
	buttonUp/2
	cmdDown/1
	controlDown/1
	dragging/1
	entering/1
	getButton/1
	getPosition/1
	getLogicalPosition/2
	getLinesPerAction/1
	getWheelRotation/1
	getWheelDelta/1
	getX/1
	getY/1
	isButton/1
	isPageScroll/1
	leaving/1
	leftDClick/1
	leftDown/1
	leftIsDown/1
	leftUp/1
	metaDown/1
	middleDClick/1
	middleDown/1
	middleIsDown/1
	middleUp/1
	moving/1
	rightDClick/1
	rightDown/1
	rightIsDown/1
	rightUp/1
	shiftDown/1
	getWheelAxis/1
	aux1DClick/1
	aux1Down/1
	aux1Up/1
	aux2DClick/1
	aux2Down/1
	aux2Up/1

	wxMoveEvent
	getPosition/1
	getRect/1

	wxMultiChoiceDialog
	new/4
	new/5
	getSelections/1
	setSelections/2
	destroy/1

	wxNavigationKeyEvent
	getDirection/1
	setDirection/2
	isWindowChange/1
	setWindowChange/2
	isFromTab/1
	setFromTab/2
	getCurrentFocus/1
	setCurrentFocus/2

	wxNotebook
	new/0
	new/2
	new/3
	destroy/1
	assignImageList/2
	create/3
	create/4
	getImageList/1
	getPageImage/2
	getRowCount/1
	getThemeBackgroundColour/1
	setImageList/2
	setPadding/2
	setPageSize/2
	setPageImage/3

	wxNotificationMessage
	new/0
	new/1
	new/2
	destroy/1
	addAction/2
	addAction/3
	close/1
	setFlags/2
	setIcon/2
	setMessage/2
	setParent/2
	setTitle/2
	show/1
	show/2
	useTaskBarIcon/1
	mSWUseToasts/0
	mSWUseToasts/1

	wxNotifyEvent
	allow/1
	isAllowed/1
	veto/1

	wxOverlay
	new/0
	destroy/1
	reset/1

	wxPageSetupDialogData
	new/0
	new/1
	destroy/1
	enableHelp/2
	enableMargins/2
	enableOrientation/2
	enablePaper/2
	enablePrinter/2
	getDefaultMinMargins/1
	getEnableMargins/1
	getEnableOrientation/1
	getEnablePaper/1
	getEnablePrinter/1
	getEnableHelp/1
	getDefaultInfo/1
	getMarginTopLeft/1
	getMarginBottomRight/1
	getMinMarginTopLeft/1
	getMinMarginBottomRight/1
	getPaperId/1
	getPaperSize/1
	getPrintData/1
	isOk/1
	setDefaultInfo/2
	setDefaultMinMargins/2
	setMarginTopLeft/2
	setMarginBottomRight/2
	setMinMarginTopLeft/2
	setMinMarginBottomRight/2
	setPaperId/2
	setPaperSize/2
	setPrintData/2

	wxPageSetupDialog
	new/1
	new/2
	destroy/1
	getPageSetupData/1
	showModal/1

	wxPaintDC
	new/1
	destroy/1

	wxPaintEvent
	wxPaletteChangedEvent
	setChangedWindow/2
	getChangedWindow/1

	wxPalette
	new/0
	new/1
	new/3
	destroy/1
	create/4
	getColoursCount/1
	getPixel/4
	getRGB/2
	ok/1
	isOk/1

	wxPanel
	new/0
	new/1
	new/2
	destroy/1
	initDialog/1
	setFocusIgnoringChildren/1

	wxPasswordEntryDialog
	new/2
	new/3
	destroy/1

	wxPen
	new/0
	new/1
	new/1
	new/2
	destroy/1
	getCap/1
	getColour/1
	getJoin/1
	getStyle/1
	getWidth/1
	isOk/1
	setCap/2
	setColour/2
	setColour/4
	setJoin/2
	setStyle/2
	setWidth/2

	wxPickerBase
	setInternalMargin/2
	getInternalMargin/1
	setTextCtrlProportion/2
	setPickerCtrlProportion/2
	getTextCtrlProportion/1
	getPickerCtrlProportion/1
	hasTextCtrl/1
	getTextCtrl/1
	isTextCtrlGrowable/1
	setPickerCtrlGrowable/1
	setPickerCtrlGrowable/2
	setTextCtrlGrowable/1
	setTextCtrlGrowable/2
	isPickerCtrlGrowable/1

	wxPopupTransientWindow
	new/0
	new/1
	new/2
	popup/1
	popup/2
	dismiss/1
	destroy/1

	wxPopupWindow
	new/0
	new/1
	new/2
	create/2
	create/3
	position/3
	destroy/1

	wxPostScriptDC
	new/0
	new/1
	destroy/1

	wxPreviewCanvas
	wxPreviewControlBar
	new/3
	new/4
	destroy/1
	createButtons/1
	getPrintPreview/1
	getZoomControl/1
	setZoomControl/2

	wxPreviewFrame
	new/2
	new/3
	destroy/1
	createControlBar/1
	createCanvas/1
	initialize/1
	onCloseWindow/2

	wxPrintData
	new/0
	new/1
	destroy/1
	getCollate/1
	getBin/1
	getColour/1
	getDuplex/1
	getNoCopies/1
	getOrientation/1
	getPaperId/1
	getPrinterName/1
	getQuality/1
	isOk/1
	setBin/2
	setCollate/2
	setColour/2
	setDuplex/2
	setNoCopies/2
	setOrientation/2
	setPaperId/2
	setPrinterName/2
	setQuality/2

	wxPrintDialogData
	new/0
	new/1
	destroy/1
	enableHelp/2
	enablePageNumbers/2
	enablePrintToFile/2
	enableSelection/2
	getAllPages/1
	getCollate/1
	getFromPage/1
	getMaxPage/1
	getMinPage/1
	getNoCopies/1
	getPrintData/1
	getPrintToFile/1
	getSelection/1
	getToPage/1
	isOk/1
	setCollate/2
	setFromPage/2
	setMaxPage/2
	setMinPage/2
	setNoCopies/2
	setPrintData/2
	setPrintToFile/2
	setSelection/2
	setToPage/2

	wxPrintDialog
	new/1
	new/2
	new/2
	destroy/1
	getPrintDialogData/1
	getPrintDC/1

	wxPrinter
	new/0
	new/1
	createAbortWindow/3
	getAbort/1
	getLastError/0
	getPrintDialogData/1
	print/3
	print/4
	printDialog/2
	reportError/4
	setup/2
	destroy/1

	wxPrintout
	new/3
	destroy/1
	getDC/1
	getPageSizeMM/1
	getPageSizePixels/1
	getPaperRectPixels/1
	getPPIPrinter/1
	getPPIScreen/1
	getTitle/1
	isPreview/1
	fitThisSizeToPaper/2
	fitThisSizeToPage/2
	fitThisSizeToPageMargins/3
	mapScreenSizeToPaper/1
	mapScreenSizeToPage/1
	mapScreenSizeToPageMargins/2
	mapScreenSizeToDevice/1
	getLogicalPaperRect/1
	getLogicalPageRect/1
	getLogicalPageMarginsRect/2
	setLogicalOrigin/3
	offsetLogicalOrigin/3

	wxPrintPreview
	new/1
	new/2
	new/3
	destroy/1
	getCanvas/1
	getCurrentPage/1
	getFrame/1
	getMaxPage/1
	getMinPage/1
	getPrintout/1
	getPrintoutForPrinting/1
	isOk/1
	paintPage/3
	print/2
	renderPage/2
	setCanvas/2
	setCurrentPage/2
	setFrame/2
	setPrintout/2
	setZoom/2

	wxProgressDialog
	new/2
	new/3
	resume/1
	update/2
	update/3
	destroy/1

	wxQueryNewPaletteEvent
	setPaletteRealized/2
	getPaletteRealized/1

	wxRadioBox
	new/6
	new/7
	destroy/1
	create/7
	create/8
	enable/1
	enable/2
	enable/2
	enable/3
	getSelection/1
	getString/2
	setSelection/2
	show/2
	show/3
	getColumnCount/1
	getItemHelpText/2
	getItemToolTip/2
	getItemFromPoint/2
	getRowCount/1
	isItemEnabled/2
	isItemShown/2
	setItemHelpText/3
	setItemToolTip/3

	wxRadioButton
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5
	getValue/1
	setValue/2

	wxRegion
	new/0
	new/1
	new/1
	new/2
	new/4
	destroy/1
	clear/1
	contains/2
	contains/2
	contains/3
	contains/5
	convertToBitmap/1
	getBox/1
	intersect/2
	intersect/2
	intersect/5
	isEmpty/1
	subtract/2
	subtract/2
	offset/2
	offset/3
	union/2
	union/2
	union/3
	union/4
	union/5
	'Xor'/2
	'Xor'/2
	'Xor'/5

	wxSashEvent
	getEdge/1
	getDragRect/1
	getDragStatus/1

	wxSashLayoutWindow
	new/0
	new/1
	new/2
	create/2
	create/3
	getAlignment/1
	getOrientation/1
	setAlignment/2
	setDefaultSize/2
	setOrientation/2
	destroy/1

	wxSashWindow
	new/0
	new/1
	new/2
	destroy/1
	getSashVisible/2
	getMaximumSizeX/1
	getMaximumSizeY/1
	getMinimumSizeX/1
	getMinimumSizeY/1
	setMaximumSizeX/2
	setMaximumSizeY/2
	setMinimumSizeX/2
	setMinimumSizeY/2
	setSashVisible/3

	wxScreenDC
	new/0
	destroy/1

	wxScrollBar
	new/0
	new/2
	new/3
	destroy/1
	create/3
	create/4
	getRange/1
	getPageSize/1
	getThumbPosition/1
	getThumbSize/1
	setThumbPosition/2
	setScrollbar/5
	setScrollbar/6

	wxScrolledWindow
	new/0
	new/1
	new/2
	calcScrolledPosition/2
	calcScrolledPosition/3
	calcUnscrolledPosition/2
	calcUnscrolledPosition/3
	enableScrolling/3
	getScrollPixelsPerUnit/1
	getViewStart/1
	doPrepareDC/2
	prepareDC/2
	scroll/2
	scroll/3
	setScrollbars/5
	setScrollbars/6
	setScrollRate/3
	setTargetWindow/2
	destroy/1

	wxScrollEvent
	getOrientation/1
	getPosition/1

	wxScrollWinEvent
	getOrientation/1
	getPosition/1

	wxSetCursorEvent
	getCursor/1
	getX/1
	getY/1
	hasCursor/1
	setCursor/2

	wxShowEvent
	setShow/2
	isShown/1

	wxSingleChoiceDialog
	new/4
	new/5
	getSelection/1
	getStringSelection/1
	setSelection/2
	destroy/1

	wxSizeEvent
	getSize/1
	getRect/1

	wxSizerFlags
	new/0
	new/1
	align/2
	border/1
	border/2
	border/3
	centre/1
	center/1
	expand/1
	left/1
	proportion/2
	right/1
	destroy/1

	wxSizerItem
	new/1
	new/2
	new/2
	new/2
	new/3
	destroy/1
	calcMin/1
	deleteWindows/1
	detachSizer/1
	getBorder/1
	getFlag/1
	getMinSize/1
	getPosition/1
	getProportion/1
	getRatio/1
	getRect/1
	getSize/1
	getSizer/1
	getSpacer/1
	getUserData/1
	getWindow/1
	isSizer/1
	isShown/1
	isSpacer/1
	isWindow/1
	setBorder/2
	setDimension/3
	setFlag/2
	setInitSize/3
	setMinSize/2
	setMinSize/3
	setProportion/2
	setRatio/2
	setRatio/2
	setRatio/3
	assignSizer/2
	assignSpacer/2
	assignSpacer/3
	assignWindow/2
	show/2

	wxSizer
	add/2
	add/3
	add/3
	add/3
	add/4
	add/4
	addSpacer/2
	addStretchSpacer/1
	addStretchSpacer/2
	calcMin/1
	clear/1
	clear/2
	detach/2
	detach/2
	fit/2
	setVirtualSizeHints/2
	fitInside/2
	getChildren/1
	getItem/2
	getItem/2
	getItem/3
	getSize/1
	getPosition/1
	getMinSize/1
	hide/2
	hide/2
	hide/3
	insert/3
	insert/4
	insert/4
	insert/4
	insert/5
	insert/5
	insertSpacer/3
	insertStretchSpacer/2
	insertStretchSpacer/3
	isShown/2
	isShown/2
	recalcSizes/1
	layout/1
	prepend/2
	prepend/3
	prepend/3
	prepend/3
	prepend/4
	prepend/4
	prependSpacer/2
	prependStretchSpacer/1
	prependStretchSpacer/2
	remove/2
	remove/2
	replace/3
	replace/3
	replace/4
	setDimension/3
	setDimension/5
	setMinSize/2
	setMinSize/3
	setItemMinSize/3
	setItemMinSize/3
	setItemMinSize/4
	setItemMinSize/4
	setSizeHints/2
	show/2
	show/2
	show/2
	show/3
	show/3
	showItems/2

	wxSlider
	new/0
	new/5
	new/6
	destroy/1
	create/6
	create/7
	getLineSize/1
	getMax/1
	getMin/1
	getPageSize/1
	getThumbLength/1
	getValue/1
	setLineSize/2
	setPageSize/2
	setRange/3
	setThumbLength/2
	setValue/2

	wxSpinButton
	new/0
	new/1
	new/2
	destroy/1
	create/2
	create/3
	getMax/1
	getMin/1
	getValue/1
	setRange/3
	setValue/2

	wxSpinCtrl
	new/0
	new/1
	new/2
	create/2
	create/3
	setValue/2
	setValue/2
	getValue/1
	setRange/3
	setSelection/3
	getMin/1
	getMax/1
	destroy/1

	wxSpinEvent
	getPosition/1
	setPosition/2

	wxSplashScreen
	new/5
	new/6
	destroy/1
	getSplashStyle/1
	getTimeout/1

	wxSplitterEvent
	getSashPosition/1
	getX/1
	getY/1
	getWindowBeingRemoved/1
	setSashPosition/2

	wxSplitterWindow
	new/0
	new/1
	new/2
	destroy/1
	create/2
	create/3
	getMinimumPaneSize/1
	getSashGravity/1
	getSashPosition/1
	getSplitMode/1
	getWindow1/1
	getWindow2/1
	initialize/2
	isSplit/1
	replaceWindow/3
	setSashGravity/2
	setSashPosition/2
	setSashPosition/3
	setMinimumPaneSize/2
	setSplitMode/2
	splitHorizontally/3
	splitHorizontally/4
	splitVertically/3
	splitVertically/4
	unsplit/1
	unsplit/2
	updateSize/1

	wxStaticBitmap
	new/0
	new/3
	new/4
	create/4
	create/5
	getBitmap/1
	setBitmap/2
	destroy/1

	wxStaticBoxSizer
	new/2
	new/2
	new/3
	getStaticBox/1
	destroy/1

	wxStaticBox
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5

	wxStaticLine
	new/0
	new/1
	new/2
	create/2
	create/3
	isVertical/1
	getDefaultSize/0
	destroy/1

	wxStaticText
	new/0
	new/3
	new/4
	create/4
	create/5
	getLabel/1
	setLabel/2
	wrap/2
	destroy/1

	wxStatusBar
	new/0
	new/1
	new/2
	destroy/1
	create/2
	create/3
	getFieldRect/2
	getFieldsCount/1
	getStatusText/1
	getStatusText/2
	popStatusText/1
	popStatusText/2
	pushStatusText/2
	pushStatusText/3
	setFieldsCount/2
	setFieldsCount/3
	setMinHeight/2
	setStatusText/2
	setStatusText/3
	setStatusWidths/2
	setStatusStyles/2

	wxStdDialogButtonSizer
	new/0
	addButton/2
	realize/1
	setAffirmativeButton/2
	setCancelButton/2
	setNegativeButton/2
	destroy/1

	wxStyledTextCtrl
	new/0
	new/1
	new/2
	destroy/1
	create/2
	create/3
	addText/2
	insertText/3
	clearAll/1
	clearDocumentStyle/1
	getLength/1
	getCharAt/2
	getCurrentPos/1
	getAnchor/1
	getStyleAt/2
	redo/1
	setUndoCollection/2
	selectAll/1
	setSavePoint/1
	canRedo/1
	markerLineFromHandle/2
	markerDeleteHandle/2
	getUndoCollection/1
	getViewWhiteSpace/1
	setViewWhiteSpace/2
	positionFromPoint/2
	positionFromPointClose/3
	gotoLine/2
	gotoPos/2
	setAnchor/2
	getCurLine/1
	getEndStyled/1
	convertEOLs/2
	getEOLMode/1
	setEOLMode/2
	startStyling/2
	setStyling/3
	getBufferedDraw/1
	setBufferedDraw/2
	setTabWidth/2
	getTabWidth/1
	setCodePage/2
	markerDefine/3
	markerDefine/4
	markerSetForeground/3
	markerSetBackground/3
	markerAdd/3
	markerDelete/3
	markerDeleteAll/2
	markerGet/2
	markerNext/3
	markerPrevious/3
	markerDefineBitmap/3
	markerAddSet/3
	markerSetAlpha/3
	setMarginType/3
	getMarginType/2
	setMarginWidth/3
	getMarginWidth/2
	setMarginMask/3
	getMarginMask/2
	setMarginSensitive/3
	getMarginSensitive/2
	styleClearAll/1
	styleSetForeground/3
	styleSetBackground/3
	styleSetBold/3
	styleSetItalic/3
	styleSetSize/3
	styleSetFaceName/3
	styleSetEOLFilled/3
	styleResetDefault/1
	styleSetUnderline/3
	styleSetCase/3
	styleSetHotSpot/3
	setSelForeground/3
	setSelBackground/3
	getSelAlpha/1
	setSelAlpha/2
	setCaretForeground/2
	cmdKeyAssign/4
	cmdKeyClear/3
	cmdKeyClearAll/1
	setStyleBytes/2
	styleSetVisible/3
	getCaretPeriod/1
	setCaretPeriod/2
	setWordChars/2
	beginUndoAction/1
	endUndoAction/1
	indicatorSetStyle/3
	indicatorGetStyle/2
	indicatorSetForeground/3
	indicatorGetForeground/2
	setWhitespaceForeground/3
	setWhitespaceBackground/3
	getStyleBits/1
	setLineState/3
	getLineState/2
	getMaxLineState/1
	getCaretLineVisible/1
	setCaretLineVisible/2
	getCaretLineBackground/1
	setCaretLineBackground/2
	autoCompShow/3
	autoCompCancel/1
	autoCompActive/1
	autoCompPosStart/1
	autoCompComplete/1
	autoCompStops/2
	autoCompSetSeparator/2
	autoCompGetSeparator/1
	autoCompSelect/2
	autoCompSetCancelAtStart/2
	autoCompGetCancelAtStart/1
	autoCompSetFillUps/2
	autoCompSetChooseSingle/2
	autoCompGetChooseSingle/1
	autoCompSetIgnoreCase/2
	autoCompGetIgnoreCase/1
	userListShow/3
	autoCompSetAutoHide/2
	autoCompGetAutoHide/1
	autoCompSetDropRestOfWord/2
	autoCompGetDropRestOfWord/1
	registerImage/3
	clearRegisteredImages/1
	autoCompGetTypeSeparator/1
	autoCompSetTypeSeparator/2
	autoCompSetMaxWidth/2
	autoCompGetMaxWidth/1
	autoCompSetMaxHeight/2
	autoCompGetMaxHeight/1
	setIndent/2
	getIndent/1
	setUseTabs/2
	getUseTabs/1
	setLineIndentation/3
	getLineIndentation/2
	getLineIndentPosition/2
	getColumn/2
	setUseHorizontalScrollBar/2
	getUseHorizontalScrollBar/1
	setIndentationGuides/2
	getIndentationGuides/1
	setHighlightGuide/2
	getHighlightGuide/1
	getLineEndPosition/2
	getCodePage/1
	getCaretForeground/1
	getReadOnly/1
	setCurrentPos/2
	setSelectionStart/2
	getSelectionStart/1
	setSelectionEnd/2
	getSelectionEnd/1
	setPrintMagnification/2
	getPrintMagnification/1
	setPrintColourMode/2
	getPrintColourMode/1
	findText/4
	findText/5
	formatRange/8
	getFirstVisibleLine/1
	getLine/2
	getLineCount/1
	setMarginLeft/2
	getMarginLeft/1
	setMarginRight/2
	getMarginRight/1
	getModify/1
	setSelection/3
	getSelectedText/1
	getTextRange/3
	hideSelection/2
	lineFromPosition/2
	positionFromLine/2
	lineScroll/3
	ensureCaretVisible/1
	replaceSelection/2
	setReadOnly/2
	canPaste/1
	canUndo/1
	emptyUndoBuffer/1
	undo/1
	cut/1
	copy/1
	paste/1
	clear/1
	setText/2
	getText/1
	getTextLength/1
	getOvertype/1
	setCaretWidth/2
	getCaretWidth/1
	setTargetStart/2
	getTargetStart/1
	setTargetEnd/2
	getTargetEnd/1
	replaceTarget/2
	searchInTarget/2
	setSearchFlags/2
	getSearchFlags/1
	callTipShow/3
	callTipCancel/1
	callTipActive/1
	callTipPosAtStart/1
	callTipSetHighlight/3
	callTipSetBackground/2
	callTipSetForeground/2
	callTipSetForegroundHighlight/2
	callTipUseStyle/2
	visibleFromDocLine/2
	docLineFromVisible/2
	wrapCount/2
	setFoldLevel/3
	getFoldLevel/2
	getLastChild/3
	getFoldParent/2
	showLines/3
	hideLines/3
	getLineVisible/2
	setFoldExpanded/3
	getFoldExpanded/2
	toggleFold/2
	ensureVisible/2
	setFoldFlags/2
	ensureVisibleEnforcePolicy/2
	setTabIndents/2
	getTabIndents/1
	setBackSpaceUnIndents/2
	getBackSpaceUnIndents/1
	setMouseDwellTime/2
	getMouseDwellTime/1
	wordStartPosition/3
	wordEndPosition/3
	setWrapMode/2
	getWrapMode/1
	setWrapVisualFlags/2
	getWrapVisualFlags/1
	setWrapVisualFlagsLocation/2
	getWrapVisualFlagsLocation/1
	setWrapStartIndent/2
	getWrapStartIndent/1
	setLayoutCache/2
	getLayoutCache/1
	setScrollWidth/2
	getScrollWidth/1
	textWidth/3
	getEndAtLastLine/1
	textHeight/2
	setUseVerticalScrollBar/2
	getUseVerticalScrollBar/1
	appendText/2
	getTwoPhaseDraw/1
	setTwoPhaseDraw/2
	targetFromSelection/1
	linesJoin/1
	linesSplit/2
	setFoldMarginColour/3
	setFoldMarginHiColour/3
	lineDown/1
	lineDownExtend/1
	lineUp/1
	lineUpExtend/1
	charLeft/1
	charLeftExtend/1
	charRight/1
	charRightExtend/1
	wordLeft/1
	wordLeftExtend/1
	wordRight/1
	wordRightExtend/1
	home/1
	homeExtend/1
	lineEnd/1
	lineEndExtend/1
	documentStart/1
	documentStartExtend/1
	documentEnd/1
	documentEndExtend/1
	pageUp/1
	pageUpExtend/1
	pageDown/1
	pageDownExtend/1
	editToggleOvertype/1
	cancel/1
	deleteBack/1
	tab/1
	backTab/1
	newLine/1
	formFeed/1
	vCHome/1
	vCHomeExtend/1
	zoomIn/1
	zoomOut/1
	delWordLeft/1
	delWordRight/1
	lineCut/1
	lineDelete/1
	lineTranspose/1
	lineDuplicate/1
	lowerCase/1
	upperCase/1
	lineScrollDown/1
	lineScrollUp/1
	deleteBackNotLine/1
	homeDisplay/1
	homeDisplayExtend/1
	lineEndDisplay/1
	lineEndDisplayExtend/1
	homeWrapExtend/1
	lineEndWrap/1
	lineEndWrapExtend/1
	vCHomeWrap/1
	vCHomeWrapExtend/1
	lineCopy/1
	moveCaretInsideView/1
	lineLength/2
	braceHighlight/3
	braceBadLight/2
	braceMatch/2
	getViewEOL/1
	setViewEOL/2
	setModEventMask/2
	getEdgeColumn/1
	setEdgeColumn/2
	setEdgeMode/2
	getEdgeMode/1
	getEdgeColour/1
	setEdgeColour/2
	searchAnchor/1
	searchNext/3
	searchPrev/3
	linesOnScreen/1
	usePopUp/2
	selectionIsRectangle/1
	setZoom/2
	getZoom/1
	getModEventMask/1
	setSTCFocus/2
	getSTCFocus/1
	setStatus/2
	getStatus/1
	setMouseDownCaptures/2
	getMouseDownCaptures/1
	setSTCCursor/2
	getSTCCursor/1
	setControlCharSymbol/2
	getControlCharSymbol/1
	wordPartLeft/1
	wordPartLeftExtend/1
	wordPartRight/1
	wordPartRightExtend/1
	setVisiblePolicy/3
	delLineLeft/1
	delLineRight/1
	getXOffset/1
	chooseCaretX/1
	setXCaretPolicy/3
	setYCaretPolicy/3
	getPrintWrapMode/1
	setHotspotActiveForeground/3
	setHotspotActiveBackground/3
	setHotspotActiveUnderline/2
	setHotspotSingleLine/2
	paraDownExtend/1
	paraUp/1
	paraUpExtend/1
	positionBefore/2
	positionAfter/2
	copyRange/3
	copyText/3
	setSelectionMode/2
	getSelectionMode/1
	lineDownRectExtend/1
	lineUpRectExtend/1
	charLeftRectExtend/1
	charRightRectExtend/1
	homeRectExtend/1
	vCHomeRectExtend/1
	lineEndRectExtend/1
	pageUpRectExtend/1
	pageDownRectExtend/1
	stutteredPageUp/1
	stutteredPageUpExtend/1
	stutteredPageDown/1
	stutteredPageDownExtend/1
	wordLeftEnd/1
	wordLeftEndExtend/1
	wordRightEnd/1
	wordRightEndExtend/1
	setWhitespaceChars/2
	setCharsDefault/1
	autoCompGetCurrent/1
	allocate/2
	findColumn/3
	getCaretSticky/1
	setCaretSticky/2
	toggleCaretSticky/1
	setPasteConvertEndings/2
	getPasteConvertEndings/1
	selectionDuplicate/1
	setCaretLineBackAlpha/2
	getCaretLineBackAlpha/1
	startRecord/1
	stopRecord/1
	setLexer/2
	getLexer/1
	colourise/3
	setProperty/3
	setKeyWords/3
	setLexerLanguage/2
	getProperty/2
	getStyleBitsNeeded/1
	getCurrentLine/1
	styleSetSpec/3
	styleSetFont/3
	styleSetFontAttr/7
	styleSetFontAttr/8
	styleSetCharacterSet/3
	styleSetFontEncoding/3
	cmdKeyExecute/2
	setMargins/3
	getSelection/1
	pointFromPosition/2
	scrollToLine/2
	scrollToColumn/2
	setVScrollBar/2
	setHScrollBar/2
	getLastKeydownProcessed/1
	setLastKeydownProcessed/2
	saveFile/2
	loadFile/2
	doDragOver/4
	doDropText/4
	getUseAntiAliasing/1
	addTextRaw/2
	addTextRaw/3
	insertTextRaw/3
	getCurLineRaw/1
	getLineRaw/2
	getSelectedTextRaw/1
	getTextRangeRaw/3
	setTextRaw/2
	getTextRaw/1
	appendTextRaw/2
	appendTextRaw/3

	wxStyledTextEvent
	getPosition/1
	getKey/1
	getModifiers/1
	getModificationType/1
	getText/1
	getLength/1
	getLinesAdded/1
	getLine/1
	getFoldLevelNow/1
	getFoldLevelPrev/1
	getMargin/1
	getMessage/1
	getWParam/1
	getLParam/1
	getListType/1
	getX/1
	getY/1
	getDragText/1
	getDragAllowMove/1
	getDragResult/1
	getShift/1
	getControl/1
	getAlt/1

	wxSysColourChangedEvent
	wxSystemOptions
	getOption/1
	getOptionInt/1
	hasOption/1
	isFalse/1
	setOption/2
	setOption/2

	wxSystemSettings
	getColour/1
	getFont/1
	getMetric/1
	getMetric/2
	getScreenType/0

	wxTaskBarIconEvent
	wxTaskBarIcon
	new/1
	destroy/1
	popupMenu/2
	removeIcon/1
	setIcon/2
	setIcon/3

	wxTextAttr
	new/0
	new/1
	new/1
	new/2
	getAlignment/1
	getBackgroundColour/1
	getFont/1
	getFontEncoding/1
	getFontFaceName/1
	getFontSize/1
	getFontStyle/1
	getFontUnderlined/1
	getFontWeight/1
	getLeftIndent/1
	getLeftSubIndent/1
	getRightIndent/1
	getTabs/1
	getTextColour/1
	hasBackgroundColour/1
	hasFont/1
	hasTextColour/1
	getFlags/1
	isDefault/1
	setAlignment/2
	setBackgroundColour/2
	setFlags/2
	setFont/2
	setFont/3
	setFontEncoding/2
	setFontFaceName/2
	setFontFamily/2
	setFontSize/2
	setFontPointSize/2
	setFontPixelSize/2
	setFontStyle/2
	setFontUnderlined/2
	setFontWeight/2
	setLeftIndent/2
	setLeftIndent/3
	setRightIndent/2
	setTabs/2
	setTextColour/2
	destroy/1

	wxTextCtrl
	new/0
	new/2
	new/3
	destroy/1
	appendText/2
	canCopy/1
	canCut/1
	canPaste/1
	canRedo/1
	canUndo/1
	clear/1
	copy/1
	create/3
	create/4
	cut/1
	discardEdits/1
	changeValue/2
	emulateKeyPress/2
	getDefaultStyle/1
	getInsertionPoint/1
	getLastPosition/1
	getLineLength/2
	getLineText/2
	getNumberOfLines/1
	getRange/3
	getSelection/1
	getStringSelection/1
	getStyle/3
	getValue/1
	isEditable/1
	isModified/1
	isMultiLine/1
	isSingleLine/1
	loadFile/2
	loadFile/3
	markDirty/1
	paste/1
	positionToXY/2
	redo/1
	remove/3
	replace/4
	saveFile/1
	saveFile/2
	setDefaultStyle/2
	setEditable/2
	setInsertionPoint/2
	setInsertionPointEnd/1
	setMaxLength/2
	setSelection/3
	setStyle/4
	setValue/2
	showPosition/2
	undo/1
	writeText/2
	xYToPosition/3

	wxTextDataObject
	new/0
	new/1
	getTextLength/1
	getText/1
	setText/2
	destroy/1

	wxTextEntryDialog
	new/0
	new/2
	new/3
	destroy/1
	getValue/1
	setValue/2

	wxToggleButton
	new/0
	new/3
	new/4
	destroy/1
	create/4
	create/5
	getValue/1
	setValue/2

	wxToolBar
	addControl/2
	addControl/3
	addSeparator/1
	addTool/2
	addTool/4
	addTool/5
	addTool/5
	addTool/6
	addCheckTool/4
	addCheckTool/5
	addRadioTool/4
	addRadioTool/5
	addStretchableSpace/1
	insertStretchableSpace/2
	deleteTool/2
	deleteToolByPos/2
	enableTool/3
	findById/2
	findControl/2
	findToolForPosition/3
	getToolSize/1
	getToolBitmapSize/1
	getMargins/1
	getToolEnabled/2
	getToolLongHelp/2
	getToolPacking/1
	getToolPos/2
	getToolSeparation/1
	getToolShortHelp/2
	getToolState/2
	insertControl/3
	insertControl/4
	insertSeparator/2
	insertTool/3
	insertTool/5
	insertTool/6
	realize/1
	removeTool/2
	setMargins/3
	setToolBitmapSize/2
	setToolLongHelp/3
	setToolPacking/2
	setToolShortHelp/3
	setToolSeparation/2
	toggleTool/3

	wxToolbook
	new/0
	new/2
	new/3
	addPage/3
	addPage/4
	advanceSelection/1
	advanceSelection/2
	assignImageList/2
	create/3
	create/4
	deleteAllPages/1
	getCurrentPage/1
	getImageList/1
	getPage/2
	getPageCount/1
	getPageImage/2
	getPageText/2
	getSelection/1
	hitTest/2
	insertPage/4
	insertPage/5
	setImageList/2
	setPageSize/2
	setPageImage/3
	setPageText/3
	setSelection/2
	changeSelection/2
	destroy/1

	wxToolTip
	enable/1
	setDelay/1
	new/1
	setTip/2
	getTip/1
	getWindow/1
	destroy/1

	wxTopLevelWindow
	getIcon/1
	getIcons/1
	getTitle/1
	isActive/1
	iconize/1
	iconize/2
	isFullScreen/1
	isIconized/1
	isMaximized/1
	maximize/1
	maximize/2
	requestUserAttention/1
	requestUserAttention/2
	setIcon/2
	setIcons/2
	centerOnScreen/1
	centreOnScreen/1
	centerOnScreen/2
	centreOnScreen/2
	setShape/2
	setTitle/2
	showFullScreen/2
	showFullScreen/3

	wxTreebook
	new/0
	new/2
	new/3
	destroy/1
	addPage/3
	addPage/4
	advanceSelection/1
	advanceSelection/2
	assignImageList/2
	create/3
	create/4
	deleteAllPages/1
	getCurrentPage/1
	getImageList/1
	getPage/2
	getPageCount/1
	getPageImage/2
	getPageText/2
	getSelection/1
	expandNode/2
	expandNode/3
	isNodeExpanded/2
	hitTest/2
	insertPage/4
	insertPage/5
	insertSubPage/4
	insertSubPage/5
	setImageList/2
	setPageSize/2
	setPageImage/3
	setPageText/3
	setSelection/2
	changeSelection/2

	wxTreeCtrl
	new/0
	new/1
	new/2
	destroy/1
	addRoot/2
	addRoot/3
	appendItem/3
	appendItem/4
	assignImageList/2
	assignStateImageList/2
	collapse/2
	collapseAndReset/2
	create/2
	create/3
	delete/2
	deleteAllItems/1
	deleteChildren/2
	editLabel/2
	ensureVisible/2
	expand/2
	getBoundingRect/2
	getBoundingRect/3
	getChildrenCount/2
	getChildrenCount/3
	getCount/1
	getEditControl/1
	getFirstChild/2
	getNextChild/3
	getFirstVisibleItem/1
	getImageList/1
	getIndent/1
	getItemBackgroundColour/2
	getItemData/2
	getItemFont/2
	getItemImage/2
	getItemImage/3
	getItemText/2
	getItemTextColour/2
	getLastChild/2
	getNextSibling/2
	getNextVisible/2
	getItemParent/2
	getPrevSibling/2
	getPrevVisible/2
	getRootItem/1
	getSelection/1
	getSelections/1
	getStateImageList/1
	hitTest/2
	insertItem/4
	insertItem/5
	isBold/2
	isExpanded/2
	isSelected/2
	isVisible/2
	itemHasChildren/2
	isTreeItemIdOk/1
	prependItem/3
	prependItem/4
	scrollTo/2
	selectItem/2
	selectItem/3
	setIndent/2
	setImageList/2
	setItemBackgroundColour/3
	setItemBold/2
	setItemBold/3
	setItemData/3
	setItemDropHighlight/2
	setItemDropHighlight/3
	setItemFont/3
	setItemHasChildren/2
	setItemHasChildren/3
	setItemImage/3
	setItemImage/4
	setItemText/3
	setItemTextColour/3
	setStateImageList/2
	setWindowStyle/2
	sortChildren/2
	toggle/2
	toggleItemSelection/2
	unselect/1
	unselectAll/1
	unselectItem/2

	wxTreeEvent
	getKeyCode/1
	getItem/1
	getKeyEvent/1
	getLabel/1
	getOldItem/1
	getPoint/1
	isEditCancelled/1
	setToolTip/2

	wxUpdateUIEvent
	canUpdate/1
	check/2
	enable/2
	show/2
	getChecked/1
	getEnabled/1
	getShown/1
	getSetChecked/1
	getSetEnabled/1
	getSetShown/1
	getSetText/1
	getText/1
	getMode/0
	getUpdateInterval/0
	resetUpdateTime/0
	setMode/1
	setText/2
	setUpdateInterval/1

	wxWebViewEvent
	getString/1
	getInt/1
	getTarget/1
	getURL/1

	wxWebView
	new/2
	new/3
	getCurrentTitle/1
	getCurrentURL/1
	getPageSource/1
	getPageText/1
	isBusy/1
	isEditable/1
	loadURL/2
	print/1
	reload/1
	reload/2
	runScript/2
	setEditable/1
	setEditable/2
	setPage/3
	stop/1
	canCopy/1
	canCut/1
	canPaste/1
	copy/1
	cut/1
	paste/1
	enableContextMenu/1
	enableContextMenu/2
	isContextMenuEnabled/1
	canGoBack/1
	canGoForward/1
	clearHistory/1
	enableHistory/1
	enableHistory/2
	goBack/1
	goForward/1
	clearSelection/1
	deleteSelection/1
	getSelectedSource/1
	getSelectedText/1
	hasSelection/1
	selectAll/1
	canRedo/1
	canUndo/1
	redo/1
	undo/1
	find/2
	find/3
	canSetZoomType/2
	getZoom/1
	getZoomType/1
	setZoom/2
	setZoomType/2
	getZoomFactor/1
	setZoomFactor/2
	isBackendAvailable/1

	wxWindowCreateEvent
	wxWindowDC
	new/1
	destroy/1

	wxWindowDestroyEvent
	wxWindow
	new/0
	new/2
	new/3
	destroy/1
	create/3
	create/4
	cacheBestSize/2
	captureMouse/1
	center/1
	centre/1
	center/2
	centre/2
	centerOnParent/1
	centreOnParent/1
	centerOnParent/2
	centreOnParent/2
	clearBackground/1
	clientToScreen/2
	clientToScreen/3
	close/1
	close/2
	convertDialogToPixels/2
	convertPixelsToDialog/2
	'Destroy'/1
	destroyChildren/1
	disable/1
	dragAcceptFiles/2
	enable/1
	enable/2
	findFocus/0
	findWindow/2
	findWindow/2
	findWindowById/1
	findWindowById/2
	findWindowByName/1
	findWindowByName/2
	findWindowByLabel/1
	findWindowByLabel/2
	fit/1
	fitInside/1
	freeze/1
	getAcceleratorTable/1
	getBackgroundColour/1
	getBackgroundStyle/1
	getBestSize/1
	getCaret/1
	getCapture/0
	getCharHeight/1
	getCharWidth/1
	getChildren/1
	getClientSize/1
	getContainingSizer/1
	getCursor/1
	getDropTarget/1
	getDPIScaleFactor/1
	getExtraStyle/1
	getFont/1
	getForegroundColour/1
	getGrandParent/1
	getHandle/1
	getHelpText/1
	getId/1
	getLabel/1
	getMaxSize/1
	getMinSize/1
	getName/1
	getParent/1
	getPosition/1
	getRect/1
	getScreenPosition/1
	getScreenRect/1
	getScrollPos/2
	getScrollRange/2
	getScrollThumb/2
	getSize/1
	getSizer/1
	getTextExtent/2
	getTextExtent/3
	getThemeEnabled/1
	getToolTip/1
	getUpdateRegion/1
	getVirtualSize/1
	getWindowStyleFlag/1
	getWindowVariant/1
	hasCapture/1
	hasScrollbar/2
	hasTransparentBackground/1
	hide/1
	inheritAttributes/1
	initDialog/1
	invalidateBestSize/1
	isFrozen/1
	isEnabled/1
	isExposed/2
	isExposed/2
	isExposed/3
	isExposed/5
	isRetained/1
	isShown/1
	isTopLevel/1
	isShownOnScreen/1
	layout/1
	lineDown/1
	lineUp/1
	lower/1
	move/2
	move/3
	move/3
	move/4
	moveAfterInTabOrder/2
	moveBeforeInTabOrder/2
	navigate/1
	navigate/2
	pageDown/1
	pageUp/1
	popupMenu/2
	popupMenu/3
	popupMenu/4
	raise/1
	refresh/1
	refresh/2
	refreshRect/2
	refreshRect/3
	releaseMouse/1
	removeChild/2
	reparent/2
	screenToClient/1
	screenToClient/2
	scrollLines/2
	scrollPages/2
	scrollWindow/3
	scrollWindow/4
	setAcceleratorTable/2
	setAutoLayout/2
	setBackgroundColour/2
	setBackgroundStyle/2
	setCaret/2
	setClientSize/2
	setClientSize/2
	setClientSize/3
	setContainingSizer/2
	setCursor/2
	setMaxSize/2
	setMinSize/2
	setOwnBackgroundColour/2
	setOwnFont/2
	setOwnForegroundColour/2
	setDropTarget/2
	setExtraStyle/2
	setFocus/1
	setFocusFromKbd/1
	setFont/2
	setForegroundColour/2
	setHelpText/2
	setId/2
	setLabel/2
	setName/2
	setPalette/2
	setScrollbar/5
	setScrollbar/6
	setScrollPos/3
	setScrollPos/4
	setSize/2
	setSize/2
	setSize/3
	setSize/3
	setSize/5
	setSize/6
	setSizeHints/2
	setSizeHints/3
	setSizeHints/3
	setSizeHints/4
	setSizer/2
	setSizer/3
	setSizerAndFit/2
	setSizerAndFit/3
	setThemeEnabled/2
	setToolTip/2
	setToolTip/2
	setVirtualSize/2
	setVirtualSize/3
	setWindowStyle/2
	setWindowStyleFlag/2
	setWindowVariant/2
	shouldInheritColours/1
	show/1
	show/2
	thaw/1
	transferDataFromWindow/1
	transferDataToWindow/1
	update/1
	updateWindowUI/1
	updateWindowUI/2
	validate/1
	warpPointer/3
	setTransparent/2
	canSetTransparent/1
	isDoubleBuffered/1
	setDoubleBuffered/2
	getContentScaleFactor/1
	getDPI/1
	fromDIP/2
	fromDIP/2
	fromDIP/2
	fromDIP/2
	toDIP/2
	toDIP/2
	toDIP/2
	toDIP/2

	wxXmlResource
	new/0
	new/1
	new/2
	destroy/1
	attachUnknownControl/3
	attachUnknownControl/4
	clearHandlers/1
	compareVersion/5
	get/0
	getFlags/1
	getVersion/1
	getXRCID/1
	getXRCID/2
	initAllHandlers/1
	load/2
	loadBitmap/2
	loadDialog/3
	loadDialog/4
	loadFrame/3
	loadFrame/4
	loadIcon/2
	loadMenu/2
	loadMenuBar/2
	loadMenuBar/3
	loadPanel/3
	loadPanel/4
	loadToolBar/3
	set/1
	setFlags/2
	unload/2
	xrcctrl/3

	wx_misc
	displaySize/0
	setCursor/1
	getKeyState/1
	getMousePosition/0
	getMouseState/0
	setDetectableAutoRepeat/1
	bell/0
	findMenuItemId/3
	findWindowAtPoint/1
	beginBusyCursor/0
	beginBusyCursor/1
	endBusyCursor/0
	isBusy/0
	shutdown/0
	shutdown/1
	shell/0
	shell/1
	launchDefaultBrowser/1
	launchDefaultBrowser/2
	getEmailAddress/0
	getUserId/0
	getHomeDir/0
	newId/0
	registerId/1
	getCurrentId/0
	getOsDescription/0
	isPlatformLittleEndian/0
	isPlatform64Bit/0

	gl
	accum/2
	activeShaderProgram/2
	activeTexture/1
	alphaFunc/2
	areTexturesResident/1
	arrayElement/1
	attachShader/2
	'begin'/1
	'end'/0
	beginConditionalRender/2
	endConditionalRender/0
	beginQuery/2
	endQuery/1
	beginQueryIndexed/3
	endQueryIndexed/2
	beginTransformFeedback/1
	endTransformFeedback/0
	bindAttribLocation/3
	bindBuffer/2
	bindBufferBase/3
	bindBufferRange/5
	bindBuffersBase/3
	bindBuffersRange/5
	bindFragDataLocation/3
	bindFragDataLocationIndexed/4
	bindFramebuffer/2
	bindImageTexture/7
	bindImageTextures/2
	bindProgramPipeline/1
	bindRenderbuffer/2
	bindSampler/2
	bindSamplers/2
	bindTexture/2
	bindTextureUnit/2
	bindTextures/2
	bindTransformFeedback/2
	bindVertexArray/1
	bindVertexBuffer/4
	vertexArrayVertexBuffer/5
	bindVertexBuffers/4
	vertexArrayVertexBuffers/5
	bitmap/7
	blendColor/4
	blendEquation/1
	blendEquationi/2
	blendEquationSeparate/2
	blendEquationSeparatei/3
	blendFunc/2
	blendFunci/3
	blendFuncSeparate/4
	blendFuncSeparatei/5
	blitFramebuffer/10
	bufferData/4
	bufferStorage/4
	bufferSubData/4
	callList/1
	callLists/1
	checkFramebufferStatus/1
	clampColor/2
	clear/1
	clearAccum/4
	clearBufferData/5
	clearBufferSubData/7
	clearBufferfi/4
	clearBufferfv/3
	clearBufferiv/3
	clearBufferuiv/3
	clearColor/4
	clearDepth/1
	clearDepthf/1
	clearIndex/1
	clearStencil/1
	clearTexImage/5
	clearTexSubImage/11
	clientActiveTexture/1
	clientWaitSync/3
	clipControl/2
	clipPlane/2
	color3b/3
	color3bv/1
	color3d/3
	color3dv/1
	color3f/3
	color3fv/1
	color3i/3
	color3iv/1
	color3s/3
	color3sv/1
	color3ub/3
	color3ubv/1
	color3ui/3
	color3uiv/1
	color3us/3
	color3usv/1
	color4b/4
	color4bv/1
	color4d/4
	color4dv/1
	color4f/4
	color4fv/1
	color4i/4
	color4iv/1
	color4s/4
	color4sv/1
	color4ub/4
	color4ubv/1
	color4ui/4
	color4uiv/1
	color4us/4
	color4usv/1
	colorMask/4
	colorMaski/5
	colorMaterial/2
	colorPointer/4
	colorSubTable/6
	colorTable/6
	colorTableParameterfv/3
	colorTableParameteriv/3
	compileShader/1
	compressedTexImage1D/7
	compressedTexImage2D/8
	compressedTexImage3D/9
	compressedTexSubImage1D/7
	compressedTextureSubImage1D/7
	compressedTexSubImage2D/9
	compressedTextureSubImage2D/9
	compressedTexSubImage3D/11
	compressedTextureSubImage3D/11
	convolutionFilter1D/6
	convolutionFilter2D/7
	convolutionParameterf/3
	convolutionParameterfv/3
	convolutionParameteri/3
	convolutionParameteriv/3
	copyBufferSubData/5
	copyColorSubTable/5
	copyColorTable/5
	copyConvolutionFilter1D/5
	copyConvolutionFilter2D/6
	copyImageSubData/15
	copyPixels/5
	copyTexImage1D/7
	copyTexImage2D/8
	copyTexSubImage1D/6
	copyTexSubImage2D/8
	copyTexSubImage3D/9
	createBuffers/1
	createFramebuffers/1
	createProgram/0
	createProgramPipelines/1
	createQueries/2
	createRenderbuffers/1
	createSamplers/1
	createShader/1
	createShaderProgramv/2
	createTextures/2
	createTransformFeedbacks/1
	createVertexArrays/1
	cullFace/1
	debugMessageControl/5
	debugMessageInsert/5
	deleteBuffers/1
	deleteFramebuffers/1
	deleteLists/2
	deleteProgram/1
	deleteProgramPipelines/1
	deleteQueries/1
	deleteRenderbuffers/1
	deleteSamplers/1
	deleteShader/1
	deleteSync/1
	deleteTextures/1
	deleteTransformFeedbacks/1
	deleteVertexArrays/1
	depthFunc/1
	depthMask/1
	depthRange/2
	depthRangef/2
	depthRangeArrayv/2
	depthRangeIndexed/3
	detachShader/2
	dispatchCompute/3
	dispatchComputeIndirect/1
	drawArrays/3
	drawArraysIndirect/2
	drawArraysInstanced/4
	drawArraysInstancedBaseInstance/5
	drawBuffer/1
	drawBuffers/1
	drawElements/4
	drawElementsBaseVertex/5
	drawElementsIndirect/3
	drawElementsInstanced/5
	drawElementsInstancedBaseInstance/6
	drawElementsInstancedBaseVertex/6
	drawElementsInstancedBaseVertexBaseInstance/7
	drawPixels/5
	drawRangeElements/6
	drawRangeElementsBaseVertex/7
	drawTransformFeedback/2
	drawTransformFeedbackInstanced/3
	drawTransformFeedbackStream/3
	drawTransformFeedbackStreamInstanced/4
	edgeFlag/1
	edgeFlagv/1
	edgeFlagPointer/2
	disable/1
	disablei/2
	enable/1
	enablei/2
	disableClientState/1
	enableClientState/1
	disableVertexArrayAttrib/2
	disableVertexAttribArray/1
	enableVertexArrayAttrib/2
	enableVertexAttribArray/1
	evalCoord1d/1
	evalCoord1dv/1
	evalCoord1f/1
	evalCoord1fv/1
	evalCoord2d/2
	evalCoord2dv/1
	evalCoord2f/2
	evalCoord2fv/1
	evalMesh1/3
	evalMesh2/5
	evalPoint1/1
	evalPoint2/2
	feedbackBuffer/3
	fenceSync/2
	finish/0
	flush/0
	flushMappedBufferRange/3
	flushMappedNamedBufferRange/3
	fogf/2
	fogfv/2
	fogi/2
	fogiv/2
	fogCoordd/1
	fogCoorddv/1
	fogCoordf/1
	fogCoordfv/1
	fogCoordPointer/3
	framebufferParameteri/3
	framebufferRenderbuffer/4
	framebufferTexture/4
	framebufferTexture1D/5
	framebufferTexture2D/5
	framebufferTexture3D/6
	framebufferTextureFaceARB/5
	framebufferTextureLayer/5
	frontFace/1
	frustum/6
	genBuffers/1
	genFramebuffers/1
	genLists/1
	genProgramPipelines/1
	genQueries/1
	genRenderbuffers/1
	genSamplers/1
	genTextures/1
	genTransformFeedbacks/1
	genVertexArrays/1
	generateMipmap/1
	generateTextureMipmap/1
	getBooleani_v/2
	getBooleanv/1
	getDoublei_v/2
	getDoublev/1
	getFloati_v/2
	getFloatv/1
	getInteger64i_v/2
	getInteger64v/1
	getIntegeri_v/2
	getIntegerv/1
	getActiveAttrib/3
	getActiveSubroutineName/4
	getActiveSubroutineUniformName/4
	getActiveUniform/3
	getActiveUniformBlockiv/4
	getActiveUniformBlockName/3
	getActiveUniformName/3
	getActiveUniformsiv/3
	getAttachedShaders/2
	getAttribLocation/2
	getBufferParameteri64v/2
	getBufferParameterivARB/2
	getBufferParameteriv/2
	getBufferSubData/4
	getClipPlane/1
	getColorTable/4
	getColorTableParameterfv/2
	getColorTableParameteriv/2
	getCompressedTexImage/3
	getConvolutionFilter/4
	getConvolutionParameterfv/2
	getConvolutionParameteriv/2
	getDebugMessageLog/2
	getError/0
	getFragDataIndex/2
	getFragDataLocation/2
	getFramebufferAttachmentParameteriv/3
	getFramebufferParameteriv/2
	getGraphicsResetStatus/0
	getHistogram/5
	getHistogramParameterfv/2
	getHistogramParameteriv/2
	getInternalformati64v/4
	getInternalformativ/4
	getLightfv/2
	getLightiv/2
	getMapdv/3
	getMapfv/3
	getMapiv/3
	getMaterialfv/2
	getMaterialiv/2
	getMinmax/5
	getMinmaxParameterfv/2
	getMinmaxParameteriv/2
	getMultisamplefv/2
	getPixelMapfv/2
	getPixelMapuiv/2
	getPixelMapusv/2
	getPolygonStipple/0
	getProgramiv/2
	getProgramBinary/2
	getProgramInfoLog/2
	getProgramInterfaceiv/3
	getProgramPipelineiv/2
	getProgramPipelineInfoLog/2
	getProgramResourceIndex/3
	getProgramResourceLocation/3
	getProgramResourceLocationIndex/3
	getProgramResourceName/4
	getProgramStageiv/3
	getQueryIndexediv/3
	getQueryBufferObjecti64v/4
	getQueryBufferObjectiv/4
	getQueryBufferObjectui64v/4
	getQueryBufferObjectuiv/4
	getQueryObjecti64v/2
	getQueryObjectiv/2
	getQueryObjectui64v/2
	getQueryObjectuiv/2
	getQueryiv/2
	getRenderbufferParameteriv/2
	getSamplerParameterIiv/2
	getSamplerParameterIuiv/2
	getSamplerParameterfv/2
	getSamplerParameteriv/2
	getShaderiv/2
	getShaderInfoLog/2
	getShaderPrecisionFormat/2
	getShaderSource/2
	getString/1
	getStringi/2
	getSubroutineIndex/3
	getSubroutineUniformLocation/3
	getSynciv/3
	getTexEnvfv/2
	getTexEnviv/2
	getTexGendv/2
	getTexGenfv/2
	getTexGeniv/2
	getTexImage/5
	getTexLevelParameterfv/3
	getTexLevelParameteriv/3
	getTexParameterIiv/2
	getTexParameterIuiv/2
	getTexParameterfv/2
	getTexParameteriv/2
	getTransformFeedbackVarying/3
	getUniformdv/2
	getUniformfv/2
	getUniformiv/2
	getUniformuiv/2
	getUniformBlockIndex/2
	getUniformIndices/2
	getUniformLocation/2
	getUniformSubroutineuiv/2
	getVertexAttribIiv/2
	getVertexAttribIuiv/2
	getVertexAttribLdv/2
	getVertexAttribdv/2
	getVertexAttribfv/2
	getVertexAttribiv/2
	hint/2
	histogram/4
	indexd/1
	indexdv/1
	indexf/1
	indexfv/1
	indexi/1
	indexiv/1
	indexs/1
	indexsv/1
	indexub/1
	indexubv/1
	indexMask/1
	indexPointer/3
	initNames/0
	interleavedArrays/3
	invalidateBufferData/1
	invalidateBufferSubData/3
	invalidateFramebuffer/2
	invalidateSubFramebuffer/6
	invalidateTexImage/2
	invalidateTexSubImage/8
	isBuffer/1
	isEnabled/1
	isEnabledi/2
	isFramebuffer/1
	isList/1
	isProgram/1
	isProgramPipeline/1
	isQuery/1
	isRenderbuffer/1
	isSampler/1
	isShader/1
	isSync/1
	isTexture/1
	isTransformFeedback/1
	isVertexArray/1
	lightf/3
	lightfv/3
	lighti/3
	lightiv/3
	lightModelf/2
	lightModelfv/2
	lightModeli/2
	lightModeliv/2
	lineStipple/2
	lineWidth/1
	linkProgram/1
	listBase/1
	loadIdentity/0
	loadMatrixd/1
	loadMatrixf/1
	loadName/1
	loadTransposeMatrixd/1
	loadTransposeMatrixf/1
	logicOp/1
	map1d/6
	map1f/6
	map2d/10
	map2f/10
	mapGrid1d/3
	mapGrid1f/3
	mapGrid2d/6
	mapGrid2f/6
	materialf/3
	materialfv/3
	materiali/3
	materialiv/3
	matrixMode/1
	memoryBarrier/1
	memoryBarrierByRegion/1
	minSampleShading/1
	minmax/3
	multMatrixd/1
	multMatrixf/1
	multTransposeMatrixd/1
	multTransposeMatrixf/1
	multiDrawArrays/3
	multiDrawArraysIndirect/4
	multiDrawArraysIndirectCount/5
	multiTexCoord1d/2
	multiTexCoord1dv/2
	multiTexCoord1f/2
	multiTexCoord1fv/2
	multiTexCoord1i/2
	multiTexCoord1iv/2
	multiTexCoord1s/2
	multiTexCoord1sv/2
	multiTexCoord2d/3
	multiTexCoord2dv/2
	multiTexCoord2f/3
	multiTexCoord2fv/2
	multiTexCoord2i/3
	multiTexCoord2iv/2
	multiTexCoord2s/3
	multiTexCoord2sv/2
	multiTexCoord3d/4
	multiTexCoord3dv/2
	multiTexCoord3f/4
	multiTexCoord3fv/2
	multiTexCoord3i/4
	multiTexCoord3iv/2
	multiTexCoord3s/4
	multiTexCoord3sv/2
	multiTexCoord4d/5
	multiTexCoord4dv/2
	multiTexCoord4f/5
	multiTexCoord4fv/2
	multiTexCoord4i/5
	multiTexCoord4iv/2
	multiTexCoord4s/5
	multiTexCoord4sv/2
	endList/0
	newList/2
	normal3b/3
	normal3bv/1
	normal3d/3
	normal3dv/1
	normal3f/3
	normal3fv/1
	normal3i/3
	normal3iv/1
	normal3s/3
	normal3sv/1
	normalPointer/3
	objectPtrLabel/3
	ortho/6
	passThrough/1
	patchParameterfv/2
	patchParameteri/2
	pauseTransformFeedback/0
	pixelMapfv/3
	pixelMapuiv/3
	pixelMapusv/3
	pixelStoref/2
	pixelStorei/2
	pixelTransferf/2
	pixelTransferi/2
	pixelZoom/2
	pointParameterf/2
	pointParameterfv/2
	pointParameteri/2
	pointParameteriv/2
	pointSize/1
	polygonMode/2
	polygonOffset/2
	polygonOffsetClamp/3
	polygonStipple/1
	primitiveRestartIndex/1
	prioritizeTextures/2
	programBinary/3
	programParameteri/3
	programUniform1d/3
	programUniform1dv/3
	programUniform1f/3
	programUniform1fv/3
	programUniform1i/3
	programUniform1iv/3
	programUniform1ui/3
	programUniform1uiv/3
	programUniform2d/4
	programUniform2dv/3
	programUniform2f/4
	programUniform2fv/3
	programUniform2i/4
	programUniform2iv/3
	programUniform2ui/4
	programUniform2uiv/3
	programUniform3d/5
	programUniform3dv/3
	programUniform3f/5
	programUniform3fv/3
	programUniform3i/5
	programUniform3iv/3
	programUniform3ui/5
	programUniform3uiv/3
	programUniform4d/6
	programUniform4dv/3
	programUniform4f/6
	programUniform4fv/3
	programUniform4i/6
	programUniform4iv/3
	programUniform4ui/6
	programUniform4uiv/3
	programUniformMatrix2dv/4
	programUniformMatrix2fv/4
	programUniformMatrix2x3dv/4
	programUniformMatrix2x3fv/4
	programUniformMatrix2x4dv/4
	programUniformMatrix2x4fv/4
	programUniformMatrix3dv/4
	programUniformMatrix3fv/4
	programUniformMatrix3x2dv/4
	programUniformMatrix3x2fv/4
	programUniformMatrix3x4dv/4
	programUniformMatrix3x4fv/4
	programUniformMatrix4dv/4
	programUniformMatrix4fv/4
	programUniformMatrix4x2dv/4
	programUniformMatrix4x2fv/4
	programUniformMatrix4x3dv/4
	programUniformMatrix4x3fv/4
	provokingVertex/1
	popAttrib/0
	pushAttrib/1
	popClientAttrib/0
	pushClientAttrib/1
	popDebugGroup/0
	pushDebugGroup/4
	popMatrix/0
	pushMatrix/0
	popName/0
	pushName/1
	queryCounter/2
	rasterPos2d/2
	rasterPos2dv/1
	rasterPos2f/2
	rasterPos2fv/1
	rasterPos2i/2
	rasterPos2iv/1
	rasterPos2s/2
	rasterPos2sv/1
	rasterPos3d/3
	rasterPos3dv/1
	rasterPos3f/3
	rasterPos3fv/1
	rasterPos3i/3
	rasterPos3iv/1
	rasterPos3s/3
	rasterPos3sv/1
	rasterPos4d/4
	rasterPos4dv/1
	rasterPos4f/4
	rasterPos4fv/1
	rasterPos4i/4
	rasterPos4iv/1
	rasterPos4s/4
	rasterPos4sv/1
	readBuffer/1
	readPixels/7
	rectd/4
	rectdv/2
	rectf/4
	rectfv/2
	recti/4
	rectiv/2
	rects/4
	rectsv/2
	releaseShaderCompiler/0
	renderMode/1
	renderbufferStorage/4
	renderbufferStorageMultisample/5
	resetHistogram/1
	resetMinmax/1
	resumeTransformFeedback/0
	rotated/4
	rotatef/4
	sampleCoverage/2
	sampleMaski/2
	samplerParameterIiv/3
	samplerParameterIuiv/3
	samplerParameterf/3
	samplerParameterfv/3
	samplerParameteri/3
	samplerParameteriv/3
	scaled/3
	scalef/3
	scissor/4
	scissorArrayv/2
	scissorIndexed/5
	scissorIndexedv/2
	secondaryColor3b/3
	secondaryColor3bv/1
	secondaryColor3d/3
	secondaryColor3dv/1
	secondaryColor3f/3
	secondaryColor3fv/1
	secondaryColor3i/3
	secondaryColor3iv/1
	secondaryColor3s/3
	secondaryColor3sv/1
	secondaryColor3ub/3
	secondaryColor3ubv/1
	secondaryColor3ui/3
	secondaryColor3uiv/1
	secondaryColor3us/3
	secondaryColor3usv/1
	secondaryColorPointer/4
	selectBuffer/2
	separableFilter2D/8
	shadeModel/1
	shaderBinary/3
	shaderSource/2
	shaderStorageBlockBinding/3
	stencilFunc/3
	stencilFuncSeparate/4
	stencilMask/1
	stencilMaskSeparate/2
	stencilOp/3
	stencilOpSeparate/4
	texBuffer/3
	textureBuffer/3
	texBufferRange/5
	textureBufferRange/5
	texCoord1d/1
	texCoord1dv/1
	texCoord1f/1
	texCoord1fv/1
	texCoord1i/1
	texCoord1iv/1
	texCoord1s/1
	texCoord1sv/1
	texCoord2d/2
	texCoord2dv/1
	texCoord2f/2
	texCoord2fv/1
	texCoord2i/2
	texCoord2iv/1
	texCoord2s/2
	texCoord2sv/1
	texCoord3d/3
	texCoord3dv/1
	texCoord3f/3
	texCoord3fv/1
	texCoord3i/3
	texCoord3iv/1
	texCoord3s/3
	texCoord3sv/1
	texCoord4d/4
	texCoord4dv/1
	texCoord4f/4
	texCoord4fv/1
	texCoord4i/4
	texCoord4iv/1
	texCoord4s/4
	texCoord4sv/1
	texCoordPointer/4
	texEnvf/3
	texEnvfv/3
	texEnvi/3
	texEnviv/3
	texGend/3
	texGendv/3
	texGenf/3
	texGenfv/3
	texGeni/3
	texGeniv/3
	texImage1D/8
	texImage2D/9
	texImage2DMultisample/6
	texImage3D/10
	texImage3DMultisample/7
	texParameterIiv/3
	texParameterIuiv/3
	texParameterf/3
	texParameterfv/3
	texParameteri/3
	texParameteriv/3
	texStorage1D/4
	texStorage2D/5
	texStorage2DMultisample/6
	texStorage3D/6
	texStorage3DMultisample/7
	texSubImage1D/7
	texSubImage2D/9
	texSubImage3D/11
	textureBarrier/0
	textureView/8
	transformFeedbackBufferBase/3
	transformFeedbackBufferRange/5
	transformFeedbackVaryings/3
	translated/3
	translatef/3
	uniform1d/2
	uniform1dv/2
	uniform1f/2
	uniform1fv/2
	uniform1i/2
	uniform1iv/2
	uniform1ui/2
	uniform1uiv/2
	uniform2d/3
	uniform2dv/2
	uniform2f/3
	uniform2fv/2
	uniform2i/3
	uniform2iv/2
	uniform2ui/3
	uniform2uiv/2
	uniform3d/4
	uniform3dv/2
	uniform3f/4
	uniform3fv/2
	uniform3i/4
	uniform3iv/2
	uniform3ui/4
	uniform3uiv/2
	uniform4d/5
	uniform4dv/2
	uniform4f/5
	uniform4fv/2
	uniform4i/5
	uniform4iv/2
	uniform4ui/5
	uniform4uiv/2
	uniformMatrix2dv/3
	uniformMatrix2fv/3
	uniformMatrix2x3dv/3
	uniformMatrix2x3fv/3
	uniformMatrix2x4dv/3
	uniformMatrix2x4fv/3
	uniformMatrix3dv/3
	uniformMatrix3fv/3
	uniformMatrix3x2dv/3
	uniformMatrix3x2fv/3
	uniformMatrix3x4dv/3
	uniformMatrix3x4fv/3
	uniformMatrix4dv/3
	uniformMatrix4fv/3
	uniformMatrix4x2dv/3
	uniformMatrix4x2fv/3
	uniformMatrix4x3dv/3
	uniformMatrix4x3fv/3
	uniformBlockBinding/3
	uniformSubroutinesuiv/2
	useProgram/1
	useProgramStages/3
	validateProgram/1
	validateProgramPipeline/1
	vertex2d/2
	vertex2dv/1
	vertex2f/2
	vertex2fv/1
	vertex2i/2
	vertex2iv/1
	vertex2s/2
	vertex2sv/1
	vertex3d/3
	vertex3dv/1
	vertex3f/3
	vertex3fv/1
	vertex3i/3
	vertex3iv/1
	vertex3s/3
	vertex3sv/1
	vertex4d/4
	vertex4dv/1
	vertex4f/4
	vertex4fv/1
	vertex4i/4
	vertex4iv/1
	vertex4s/4
	vertex4sv/1
	vertexArrayElementBuffer/2
	vertexAttrib1d/2
	vertexAttrib1dv/2
	vertexAttrib1f/2
	vertexAttrib1fv/2
	vertexAttrib1s/2
	vertexAttrib1sv/2
	vertexAttrib2d/3
	vertexAttrib2dv/2
	vertexAttrib2f/3
	vertexAttrib2fv/2
	vertexAttrib2s/3
	vertexAttrib2sv/2
	vertexAttrib3d/4
	vertexAttrib3dv/2
	vertexAttrib3f/4
	vertexAttrib3fv/2
	vertexAttrib3s/4
	vertexAttrib3sv/2
	vertexAttrib4Nbv/2
	vertexAttrib4Niv/2
	vertexAttrib4Nsv/2
	vertexAttrib4Nub/5
	vertexAttrib4Nubv/2
	vertexAttrib4Nuiv/2
	vertexAttrib4Nusv/2
	vertexAttrib4bv/2
	vertexAttrib4d/5
	vertexAttrib4dv/2
	vertexAttrib4f/5
	vertexAttrib4fv/2
	vertexAttrib4iv/2
	vertexAttrib4s/5
	vertexAttrib4sv/2
	vertexAttrib4ubv/2
	vertexAttrib4uiv/2
	vertexAttrib4usv/2
	vertexAttribI1i/2
	vertexAttribI1iv/2
	vertexAttribI1ui/2
	vertexAttribI1uiv/2
	vertexAttribI2i/3
	vertexAttribI2iv/2
	vertexAttribI2ui/3
	vertexAttribI2uiv/2
	vertexAttribI3i/4
	vertexAttribI3iv/2
	vertexAttribI3ui/4
	vertexAttribI3uiv/2
	vertexAttribI4bv/2
	vertexAttribI4i/5
	vertexAttribI4iv/2
	vertexAttribI4sv/2
	vertexAttribI4ubv/2
	vertexAttribI4ui/5
	vertexAttribI4uiv/2
	vertexAttribI4usv/2
	vertexAttribL1d/2
	vertexAttribL1dv/2
	vertexAttribL2d/3
	vertexAttribL2dv/2
	vertexAttribL3d/4
	vertexAttribL3dv/2
	vertexAttribL4d/5
	vertexAttribL4dv/2
	vertexArrayAttribBinding/3
	vertexAttribBinding/2
	vertexAttribDivisor/2
	vertexArrayAttribFormat/6
	vertexArrayAttribIFormat/5
	vertexArrayAttribLFormat/5
	vertexAttribFormat/5
	vertexAttribIFormat/4
	vertexAttribIPointer/5
	vertexAttribLFormat/4
	vertexAttribLPointer/5
	vertexAttribPointer/6
	vertexArrayBindingDivisor/3
	vertexBindingDivisor/2
	vertexPointer/4
	viewport/4
	viewportArrayv/2
	viewportIndexedf/5
	viewportIndexedfv/2
	waitSync/3
	windowPos2d/2
	windowPos2dv/1
	windowPos2f/2
	windowPos2fv/1
	windowPos2i/2
	windowPos2iv/1
	windowPos2s/2
	windowPos2sv/1
	windowPos3d/3
	windowPos3dv/1
	windowPos3f/3
	windowPos3fv/1
	windowPos3i/3
	windowPos3iv/1
	windowPos3s/3
	windowPos3sv/1

	glu
	build1DMipmapLevels/9
	build1DMipmaps/6
	build2DMipmapLevels/10
	build2DMipmaps/7
	build3DMipmapLevels/11
	build3DMipmaps/8
	checkExtension/2
	cylinder/6
	deleteQuadric/1
	disk/5
	errorString/1
	getString/1
	lookAt/9
	newQuadric/0
	ortho2D/4
	partialDisk/7
	perspective/4
	pickMatrix/5
	project/6
	quadricDrawStyle/2
	quadricNormals/2
	quadricOrientation/2
	quadricTexture/2
	scaleImage/9
	sphere/4
	tesselate/2
	unProject/6
	unProject4/9

