ERLANG

wxErlang

Copyright © 2009-2024 Ericsson AB. All Rights Reserved.
wxErlang 2.4.1
March 7, 2024

Copyright © 2009-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 7, 2024

1.1 wx the erlang binding of wxWidgets

1 wxErlang User's Guide

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

1.1 wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document describes the erlang mapping to wxWidgets
and it's implementation. It is not a complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with the original APl so that the original
documentation and examples shall be as easy as possible to use.

wxErlang examples and test suite can be found in the erlang src release. They can also provide some help on how
to usethe API.

Thisiscurrently avery brief introduction to wx. The application is still under development, which means the interface
may change, and the test suite currently have a poor coverage ratio.

1.1.1 Contents

e Introduction

* Multiple processes and memory handling
e Event Handling

e Acknowledgments

1.1.2 Introduction

The original wxWidgets is an object-oriented (C++) APl and that is reflected in the erlang mapping. In most cases
each classin wxWidgets is represented as a module in erlang. This gives the wx application a huge interface, spread
over several modules, and it al starts with the wx module. The wx module contains functions to create and destroy
the GUI, i.e. wx: new 0, wx: dest r oy/ 0, and some other useful functions.

Objects or object references in wx should be seen as erlang processes rather than erlang terms. When you operate on
them they can change state, e.g. they are not functional objects as erlang terms are. Each object has a type or rather
aclass, which is manipulated with the corresponding module or by sub-classes of that object. Type checking is done
so that a module only operates on it's objects or inherited classes.

An object is created with new and destroyed with destroy. Most functions in the classes are named the same as their
C++ counterpart, except that for convenience, in erlang they start with alowercase letter and the first argument isthe
object reference. Optional arguments are last and expressed as tagged tuplesin any order.

For example the wxWindow C++ class is implemented in the wxWindow erlang module and the member
wxWindow:: Center OnPar ent is thus wxWindow: center OnPar ent. The following C++ code:

wxWindow MyWin = new wxWindow();
MyWin.CenterOnParent (wxVERTICAL);
delete MyWin;

would in erlang look like:

Ericsson AB. All Rights Reserved.: wxErlang | 1

1.1 wx the erlang binding of wxWidgets

MyWin = wxWindow:new(),
wxWindow: centerOnParent (MyWin, [{dir, ?wxVERTICAL}]),

wxWindow:destroy(MyWin),

When you are reading wxWidgets documentation or the examples, you will notice that some of the most basic classes
are missing in wx, they are directly mapped to corresponding erlang terms:

wxPoint is represented by { Xcoord,Y coord}

wxSizeis represented by { Width,Height}

wxRect is represented by { Xcoord,Y coord,Width,Height}
wxColour isrepresented by { Red,Green,Blue[,Alpha]}
wxPoint is represented by { Xcoord,Y coord}

wxString is represented by unicode:charlist()
wxGBPaosition is represented by { Row,Column}
wxGBSpan is represented by { RowSpan,ColumnSPan}
wxGridCellCoordsis represented by { Row,Column}

In the places where the erlang API differs from the original one it should be obvious from the erlang documentation
which representation has been used. E.g. the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.

Colours are represented with { Red,Green,Blue[,Alpha]}, the Alpha value is optional when used as an argument to
functions, but it will always be returned from wx functions.

Defines, enumerations and global variables existsinwx. hr | as defines. Most of these defines are constants but not
all. Some are platform dependent and therefore the global variables must beinstantiated during runtime. These will be
acquired from the driver with a call, so not all defines can be used in matching statements. Class local enumerations
will be prefixed with the class name and a underscore asin Cl assNanme_Enum

Additionally some global functions, i.e. non-class functions, exist in thewx_m sc module.

wxErlang isimplemented as a (threaded) driver and arather direct interface to the C++ API, with the drawback that
if the erlang programmer does an error, it might crash the emulator.

Since the driver is threaded it requires a smp enabled emulator, that provides athread safe interface to the driver.

1.1.3 Multiple processes and memory handling

Theintention isthat each erlang application callswx:new() once to setup it's GUI which creates an environment and a
memory mapping. To be able to use wx from several processes in your application, you must share the environment.
You can get the active environment with wx: get _env/ 0 and set it in the new processes with wx: set _env/ 1.
Two processes or applications which have both called wx:new() will not be able use each others objects.

wx:new(),
MyWin = wxFrame:new(wx:null(), 42, "Example", [1),
Env = wx:get env(),
spawn(fun() ->
wx:set env(Env),
%% Here you can do wx calls from your helper process.

end),

When wx: dest r oy/ 0 isinvoked or when all processes in the application have died, the memory is deleted and all
windows created by that application are closed.

2 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

Thewx application never cleansor garbage collects memory aslong asthe user applicationisaive. Most of the objects
are deleted when awindow is closed, or at least all the objects which have a parent argument that is non null. By using
WX CLASS: dest r oy/ 1 when possibleyou can avoid an increasing memory usage. Thisisespecially important when
wxWidgets assumes or recommends that you (or rather the C++ programmer) have allocated the object on the stack
since that will never be done in the erlang binding. For example wx DC class or its sub-classes or wxSi zer Fl ags.

Currently the dialogs show modal function freezes wxWidgets until the dialog is closed. That isintended but in erlang
where you can have several GUI applications running at the same time it causes trouble. Thiswill hopefully be fixed
in future wxWidgets releases.

1.1.4 Event Handling

Event handling in wx differs most from the original API. You must specify every event you want to handle in
wxWidgets, that is the same in the erlang binding but you can choose to receive the events as messages or handle
them with callback funs.

Otherwisethe event subscription is handled aswxWidgets dynamic event-handler connection. Y ou subscribeto events
of a certain type from objects with an 1D or within a range of 1Ds. The callback fun is optional, if not supplied the
event will be sent to the processthat called connect/2. Thus, ahandler isacallback fun or a process which will receive
an event message.

Eventsare handled in order from bottom to top, inthewidgets hierarchy, by thelast subscribed handler first. Depending
onif wxEvent : ski p() iscalled the event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.

Message events looks like #wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec }. The id is the
identifier of the object that received the event. The obj field containsthe object that you used connect on. Theuser Data
field contains a user supplied term, thisis an option to connect. And the event field contains arecord with event type
dependent information. The first element in the event record is always the type you subscribed to. For exampleif you
subscribed to key _up eventsyou will receive the #wx{ event =Event } where Event will be awxK ey event record
where Event #wxKey. type = key_up.

In wxWidgets the developer hasto call wkEvent : ski p() if hewantsthe event to be processed by other handlers.
Y ou can do the same in wx if you use callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the default it is false. True means that you get the
message but let the subsequent handlers also handle the event. If you want to change this behavior dynamically you
must use callbacks and call wxEvent : ski p() .

Callback event handling is done by using the optional callback fun/2 when attaching the handler. The
fun(#wx{},wxObject() must take two arguments where the first is the same as with message events described above
and the second is an object reference to the actual event object. With the event object you can call wxEvent : ski p()
and access al the data. When using callbacks you must call wxEvent : ski p() by yourself if you want any of the
events to be forwarded to the following handlers. The actual event objects are deleted after the fun returns.

The callbacks are always invoked by another process and have exclusive usage of the GUI when invoked. This means
that a callback fun cannot use the process dictionary and should not make calls to other processes. Calls to another
processinside acallback fun may cause adeadlock if the other processiswaiting on completion of hiscall to the GUI.

1.1.5 Acknowledgments

Mats-Ola Persson wrote the initial wxWidgets binding as part of his master thesis. The current version is atota re-
write but many ideas have been reused. The reason for the re-write was mostly due to the limited requirements he
had been given by us.

Also thanks to the wxWidgets team that develops and supports it so we have something to use.

Ericsson AB. All Rights Reserved.: wxErlang | 3

1.1 wx the erlang binding of wxWidgets

2 Reference Manual

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

4 | Ericsson AB. All Rights Reserved.: wxErlang

WX

WX

Erlang module

A port of wxWidgets.

Thisis the base api of wxWidgets. This module contains functions for starting and stopping the wx-server, as well
as other utility functions.

wxWidgetsis object oriented, and not functional. Thus, in wxErlang amodul e represents aclass, and the object created
by this class has an own type, wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.

Objects of aclass are created with wxCLASS:new(...) and destroyed with wxCLASS:destroy(). Member functions are
called with wxCLASS:member(Object, ...) instead of asin C++ Object.member(...).

Sub class modules inherit (non static) functions from their parents. The inherited functions are not documented in
the sub-classes.

This erlang port of wxWidgets tries to be a one-to-one mapping with the original wxWidgets library. Some things are
different though, as the optional arguments use property listsand can be in any order. The main differenceisthe event
handling which is different from the original library. See wxEvtHandler.

The following classes are implemented directly as erlang types:
wxPoint={ x,y} ,wxSize={ w,h} wxRect={ x,y,w,h} wxColour={r,g,b [,a}, wxString=unicode:chardata(),
wxGBPosition={r,c} ,wxGBSpan={ rs,cs} ,wxGridCell Coords={r,c} .

wxWidgets uses a process specific environment, which is created by wx:new/0. To be able to use the environment from
other processes, call get_env/0toretrievethe environment and set_env/1 to assign the environment in the other process.

Global (classless) functions are located in the wx_misc module.
DATA TYPES

wx_colour() = {R::byte(), G::byte(), B::byte()} | wx_colourd()
wx_colourd() = { R::byte(), G::byte(), B::byte(), A::byte()}

wx_datetime() = {{ Y ear::integer(), Month::integer(), Day::integer()}, { Hour::integer(), Minute::integer(),
Second::integer()} }

In Local Timezone

wx_enum() = integer()

Constant defined in wx.hrl

wx_env() = #wx_env{}

Opague process environment
wx_memory() = binary() | #wx_mem{}

Opagque memory reference
wx_object() = #wx_ref{}

Opaque object reference
wx_wxHtmILinkInfo() = #wxHtmlLinkInfo{ href=unicode:chardata(), target=unicode:chardata()}

Ericsson AB. All Rights Reserved.: wxErlang | 5

href
href

WX

wx_wxMouseState() = #wxM ouseState{ x=integer(), y=integer(), leftDown=boolean(), middleDown=boolean(),
rightDown=boolean(), controlDown=boolean(), shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}

See #wxMouseState{} defined in wx.hrl

Exports
parent class(X1l) -> term()

new() -> wx object()
Startsawx server.

new(Options::[Option]) -> wx object()
Types:
Option = {debug, list() | atom()} | {silent_start, boolean()}

Starts awx server. Option may be {debug, Level}, see debug/1. Or {silent_start, Bool}, which causes error messages
at startup to be suppressed. The latter can be used as a silent test of whether wx is properly installed or not.

destroy() -> ok

Stops awx server.

get env() -> wx env()

Gets this process's current wx environment. Can be sent to other processes to allow them use this process wx
environment.

See also: set_env/1.

set env(Wx _env::wx env()) -> ok
Sets the process wx environment, allows this process to use another process wx environment.

subscribe events() -> ok
Addsthe calling process to the list of of processes that are listening to wx application events.

At the moment these are all MacOSX specific events corresponding to Mac Newi | e() and friends from wxWidgets
WXApp:

e {newfile, ""}

e {open_file, Filenane}

o {print_file, Filenane}

e {open_url, Url}

e {reopen_app, ""}

The call always returns ok but will have sent any already received eventsto the calling process.

null() -> wx object()
Returns the null object

6 | Ericsson AB. All Rights Reserved.: wxErlang

href

WX

is null(Wx ref::wx object()) -> boolean()

Returnstrueif object is null, false otherwise

equal(Wx ref::wx object(), X2::wx object()) -> boolean()
Returnstrueif both arguments references the same object, fal se otherwise

getObjectType(Wx ref::wx object()) -> atom()
Returns the object type

typeCast(0ld::wx object(), NewType::atom()) -> wx object()

Casts the object to class NewType. It is needed when using functions like wxWindow:findwWindow/2, which returns
ageneric wxObject type.

batch(Fun::function()) -> term()

Batches all wx commands used in the fun. Improves performance of the command processing by grabbing the
wxWidgets thread so that no event processing will be done before the compl ete batch of commandsis invoked.

See also: foldl/3, foldr/3, foreach/2, map/2.

foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.

map(Fun::function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.

foldl(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.

foldr(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldr/3 but batches wx commands. See batch/1.

create memory(Size::integer()) -> wx memory()

Createsamemory area (of Sizein bytes) which can be used by an external library (i.e. opengl). It isup to the client to
keep areference to this object so it does not get garbage collected by erlang while still in use by the external library.

Thisisfar from erlang'sintentional usage and can crash the erlang emulator. Use it carefully.

get memory bin(Wx mem::wx memory()) -> binary()

Returns the memory area as abinary.

retain_memory(Wx_mem::wx_memory()) -> ok

Saves the memory from deletion until release_memory/1iscalled. If release_memory/1is not called the memory will
not be garbage collected.

Ericsson AB. All Rights Reserved.: wxErlang | 7

WX

release memory(Wx mem::wx memory()) -> ok

debug(Debug::Level | [Level]) -> ok
Types:
Level = none | verbose | trace | driver | integer()

Sets debug level. If debug level is'verbose' or 'trace’ each call is printed on console. If Level is'driver' each allocated
object and deletion is printed on the console.

demo() -> ok | {error, atom()}
Starts awxErlang demo if examples directory exists and is compiled

8 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

wX_object

Erlang module

wx_object - Generic wx object behaviour

Thisis abehaviour module that can be used for "sub classing” wx objects. It works like aregular gen_server module
and creates a server per object.

NOTE: Currently no form of inheritance isimplemented.
The user module should export:

init(Args) should return

{wxObject, State} | { wxObject, State, Timeout} | ignore | { stop, Reason}
Asynchronous window event handling:

handle_event(#wx{}, State) should return

{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

The user module can export the following callback functions:

handle_call(Msg, { From, Tag}, State) should return

{reply, Reply, State} | {reply, Reply, State, Timeout} | {noreply, State} | { noreply, State, Timeout} | { stop, Reason,
Reply, State}

handle_cast(Msg, State) should return

{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If the above are not exported but called, the wx_object process will crash. The user module can also export:

Infois message e.g. {'EXIT', P, R}, { nodedown, N}, ...
handle_info(Info, State) should return, ...
{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If a message is sent to the wx_object process when handle info is not exported, the message will be dropped and
ignored.

When stop is returned in one of the functions above with Reason = normal | shutdown | Term, terminate(State) is
caled. It lets the user module clean up, it is always called when server terminates or when wx_object() in the driver
is deleted. If the Parent process terminates the Moduleiterminate/2 function is called.

terminate(Reason, State)

Example:

Ericsson AB. All Rights Reserved.: wxErlang | 9

wx_object

-module(myDialog).
-export([new/2, show/1, destroy/1]). %% API
-export([init/1, handle call/3, handle event/2,
handle info/2, code change/3, terminate/2]).
new/2, showModal/1l, destroy/1]). %% Callbacks

%% Client API
new(Parent, Msg) ->
wx_object:start(?MODULE, [Parent,Id], [1]).

show(Dialog) ->
wx_object:call(Dialog, show modal).

destroy(Dialog) ->
wx_object:call(Dialog, destroy).

%% Server Implementation ala gen server
init([Parent, Str]) ->
Dialog = wxDialog:new(Parent, 42, "Testing", []),

wxDialog:connect(Dialog, command button clicked),
{Dialog, MyState}.

handle call(show, From, State) ->
wxDialog:show(State#state.win),
{reply, ok, State};

handle event (#wx{}, State) ->

io:format("Users clicked button~n",[1),
{noreply, State};

DATA TYPES
request_id() = term()

server_ref() = wx:wx_abject() | atom() | pid()
Exports

start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

Types:
Name = {local, atom()}
Mod = atom()

Args = term)
Flag = trace | log | {logfile, string()} | statistics | debug
Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start _link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types:

Mod = atom()

Args = term)

Flag = trace | log | {logfile, string()} | statistics | debug

10 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

Options = [{tineout, tinmeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

Types:
Name = {local, atom()}
Mod = atom()

Args = term)
Flag = trace | log | {logfile, string()} | statistics | debug
Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

stop(0bj) -> ok
Types.
bj = wx:wx_object() | atom() | pid()

Stops a generic wx_aobject server with reason 'normal’. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the process does not exist, an exception is raised.

stop(0Obj, Reason, Timeout) -> ok

Types:
] = wx:wx_object() | atonm() | pid()
Reason = term()
Ti meout = timeout ()

Stops a generic wx_object server with the given Reason. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the call times out, or if the process does not exist, an exception is raised.

call(0Obj, Request) -> term()

Types:
] = wx:wx_object() | atonm() | pid()
Request = term))

Make a call to awx_object server. The call waits until it gets a result. Invokes handle_call(Reguest, From, State) in
the server

call(Obj, Request, Timeout) -> term()
Types.
bj = wx:wx_object() | atom() | pid()
Request = term)
Ti meout = integer()
Make acall to awx_object server with atimeout. Invokes handle_call(Request, From, State) in server

send request(0Obj, Request::term()) -> request id()

Types:
bj = wx:wx_object() | atom() | pid()

Ericsson AB. All Rights Reserved.: wxErlang | 11

wx_object

Make an send_request to a generic server. and return a Requestld which can/should be used with wait_response/[1]
2]. Invokes handle_call(Request, From, State) in server.

wait response(RequestId::request id()) -> {reply, Reply::term()} | {error,
{term(), server ref()}}

Wait infinitely for areply from a generic server.

wait response(Key::request id(), Timeout::timeout()) -> {reply,
Reply::term()} | timeout | {error, {term(), server ref()}}

Wait 'timeout’ for areply from a generic server.

check response(Msg::term(), Key::request id()) -> {reply, Reply::term()} |
false | {error, {term(), server ref()}}

Check if areceived message was areply to a Requestid

cast(0Obj, Request) -> ok
Types:
hj = wx:wx_object() | atom() | pid()
Request = term))
Make a cast to awx_object server. Invokes handle_cast(Request, State) in the server

get pid(0bj) -> pid()
Types:

bj = wx:wx_object() | atom() | pid()
Get the pid of the object handle.

set pid(Obj, Pid::pid()) -> wx:wx object()
Types:

bj = wx:wx_object() | atom() | pid()
Sets the controlling process of the object handle.

reply(X1::{pid(), Tag::term()}, Reply::term()) -> pid()
Get the pid of the object handle.

12 | Ericsson AB. All Rights Reserved.: wxErlang

wxAcceleratorEntry

wxAcceleratorEntry

Erlang module

An object used by an application wishing to create an accelerator table (seewxAccel er at or Tabl e).
See: wxAccel er at or Tabl e, wxW ndow. set Accel er at or Tabl e/ 2
wxWidgets docs: wxAccelerator Entry

Data Types

wxAcceleratorEntry() = wx:wx object()

Exports

new() -> wxAcceleratorEntry()

new(Options :: [Option]) -> wxAcceleratorEntry()
new(Entry) -> wxAcceleratorEntry()
Types:

Entry = wxAcceleratorEntry()
Copy ctor.

getCommand(This) -> integer()
Types:
This = wxAcceleratorEntry()
Returns the command identifier for the accelerator table entry.

getFlags(This) -> integer()
Types.

This = wxAcceleratorEntry()
Returns the flags for the accelerator table entry.

getKeyCode(This) -> integer()
Types.

This = wxAcceleratorEntry()
Returns the keycode for the accelerator table entry.

set(This, Flags, KeyCode, Cmd) -> ok
Types.

This = wxAcceleratorEntry()

Flags = KeyCode = Cmd = integer()

set(This, Flags, KeyCode, Cmd, Options :: [Option]) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 13

href

wxAcceleratorEntry

This = wxAcceleratorEntry()
Flags = KeyCode = Cmd = integer()
Option = {item, wxMenultem:wxMenultem()}

Setsthe accelerator entry parameters.

destroy(This :: wxAcceleratorEntry()) -> ok
Destroys the object.

14 | Ericsson AB. All Rights Reserved.: wxErlang

wxAcceleratorTable

wxAcceleratorTable

Erlang module

An accelerator table allows the application to specify atable of keyboard shortcuts for menu or button commands.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the initial accelerator table for a
window.

Example:

Remark: An accelerator takes precedence over normal processing and can be a convenient way to program some event
handling. For example, you can use an accelerator table to enable a dialog with a multi-line text control to accept
CTRL-Enter as meaning 'OK".

Predefined objects (include wx.hrl): 2wxNullAcceleratorTable
See: wxAccel erat or Ent ry, wxW ndow: set Accel er at or Tabl e/ 2
wxWidgets docs: wxAccelerator Table

Data Types

wxAcceleratorTable() = wx:wx object()

Exports

new() -> wxAcceleratorTable()
Default ctor.

new(N, Entries) -> wxAcceleratorTable()
Types.

N = integer()

Entries = [wxAcceleratorEntry:wxAcceleratorEntry()]
Initializes the accelerator table from an array of wxAccel erat or Entry.

destroy(This :: wxAcceleratorTable()) -> ok
DestroysthewxAccel er at or Tabl e object.
See overview_refcount_destruct for moreinfo.

ok(This) -> boolean()
Types.

This = wxAcceleratorTable()
See i sCk/ 1.

isOk(This) -> boolean()
Types.

This = wxAcceleratorTable()
Returns true if the accelerator tableisvalid.

Ericsson AB. All Rights Reserved.: wxErlang | 15

href

wxActivateEvent

wxActivateEvent

Erlang module

An activate event is sent when awindow or application is being activated or deactivated.

Note: Until wxWidgets 3.1.0 activation events could be sent by wxMSW when the window was minimized. This
reflected the native MSW behaviour but was often surprising and unexpected, so starting from 3.1.0 such events are
not sent any more when the window isin the minimized state.

See: Overview events, WwxApp: : | sAct i ve (not implemented in wx)
This classis derived (and can use functions) from: wxEvent
wxWidgets docs: wxActivateEvent

Events

Usewx Evt Handl er: connect / 3 withwxAct i vat eEvent Type to subscribe to events of thistype.

Data Types

wxActivateEvent() = wx:wx object()

wxActivate() =
#wxActivate{type = wxActivateEvent:wxActivateEventType(),
active = boolean()}

wxActivateEventType() = activate | activate app | hibernate

Exports

getActive(This) -> boolean()
Types:
This = wxActivateEvent()
Returnstrueif the application or window is being activated, false otherwise.

16 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxArtProvider

wxArtProvider

Erlang module

WXArt Provi der classis used to customize the look of wxWidgets application.

When wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog), it does not use a hard-coded
resource but asks wxAr t Pr ovi der for it instead. This way users can plug in their own wxAr t Pr ovi der class
and easily replace standard art with their own version.

All that is needed is to derive a class from WXAr t Provi der, override
either its wWxArtProvider::CreateBitmp() (not implemented in wx) and/or its
WxArt Provi der:: Createl conBundl e() (not implemented in wx) methods and register the provider with
WxArt Provi der: : Push() (notimplementedinwx):

If you need bitmap images (of the same artwork) that should be displayed at different sizes you should probably
consider overriding wxAr t Pr ovi der : : Cr eat el conBundl e (not implemented in wx) and supplying icon
bundles that contain different bitmap sizes.

There's another way of taking advantage of this class: you can use it in your code and use platform native icons as
provided by get Bi t map/ 2 or get | con/ 2.

Identifying art resources

Every bitmap and icon bundle are known to wxAr t Pr ovi der under an unique ID that is used when requesting a
resource from it. The ID is represented by the AwxArtID type and can have one of these predefined values (you can
see bitmaps represented by these constants in the page_samples_artprov):

Additionally, any string recognized by custom art providers registered using wWxAr t Provi der: : Push (not
implemented in wx) may be used.

Note: When running under GTK+ 2, GTK+ stock item IDs (e.g. " gt k- cdr omi') may be used as well: For alist
of the GTK+ stock items please refer to the GTK+ documentation page. It is aso possible to load icons from the
current icon theme by specifying their name (without extension and directory components). Icon themes recognized
by GTK+ follow the freedesktop.org | con Themes specification. Note that themes are not guaranteed to contain all
icons, so WX Ar t Provi der may return AwxNullBitmap or wxNulllcon. The default theme is typically instaled in
/usr/sharel/icons/hicolor.

Clients

Thecl i ent istheentity that callswxAr t Provi der 'sget Bi t map/ 2 or get | con/ 2 function. It is represented
by wxClientl D type and can have one of these values:

Client ID serve as a hint to wxAr t Provi der that is supposed to help it to choose the best looking bitmap. For
exampleit is often desirable to use slightly different icons in menus and toolbars even though they represent the same
action (e.g. WxART_FILE_OPEN). Remember that thisis really only a hint for wxAr t Pr ovi der - it is common
that get Bi t map/ 2 returnsidentical bitmap for different client values!

See: Examples, wxAr t Pr ovi der , usage; stock ID list
wxWidgets docs: wxArtProvider

Ericsson AB. All Rights Reserved.: wxErlang | 17

href
href
href
href

wxArtProvider

Data Types

wxArtProvider() = wx:wx object()

Exports
getBitmap(Id) -> wxBitmap:wxBitmap()
Types:

Id = unicode:chardata()

getBitmap(Id, Options :: [Option]) -> wxBitmap:wxBitmap()

Types.
Id = unicode:chardata()
Option =

{client, unicode:chardata()} |
{size, {W :: integer(), H :: integer()}}

Query registered providers for bitmap with given ID.
Return: The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

getIcon(Id) -> wxIcon:wxIcon()
Types.
Id = unicode:chardata()

getIcon(Id, Options :: [Option]) -> wxIcon:wxIcon()
Types:

Id = unicode:chardata()

Option =

{client, unicode:chardata()} |
{size, {W :: integer(), H :: integer()}}

Sameasget Bi t map/ 2, but return awx| con object (or AwxNulllcon on failure).

18 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiDockArt

wxAuiDockArt

Erlang module

wxAui DockArt ispart of the wxAUI class framework. See also overview_aui.

wxAui DockAr t isthe art provider: provides all drawing functionality to the wxAui dock manager. This allows the
dock manager to have a pluggable look-and-feel.

By default, awxAui Manager uses an instance of this class called wxAui Def aul t DockArt (not implemented
in wx) which provides bitmap art and a colour scheme that is adapted to the major platforms look. You
can either derive from that class to alter its behaviour or write a completely new dock art class. Call
wxAui Manager : set Art Provi der/ 2 to force wxAUI to use your new dock art provider.

See: wxAui Manager , wxAui Panel nf o
wxWidgets docs: wxAuiDockArt

Data Types

wxAuiDockArt () = wx:wx _object()

Exports

getColour(This, Id) -> wx:wx colour4()
Types:

This = wxAuiDockArt()

Id = integer()
Get the colour of a certain setting.

i d can be one of the colour values of wxAui PaneDockArt Set ti ng.

getFont(This, Id) -> wxFont:wxFont()
Types:

This = wxAuiDockArt()

Id = integer()
Get afont setting.

getMetric(This, Id) -> integer()
Types:
This = wxAuiDockArt()
Id = integer()
Get the value of a certain setting.
i d can be one of the size values of wxAui PaneDockArt Setti ng.

setColour(This, Id, Colour) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 19

href

wxAuiDockArt

This = wxAuiDockArt()
Id = integer()
Colour = wx:wx _colour()
Set a certain setting with the value col our .

i d can be one of the colour values of wxAui PaneDockArt Setti ng.

setFont(This, Id, Font) -> ok
Types.

This = wxAuiDockArt()

Id = integer()

Font = wxFont:wxFont()
Set afont setting.

setMetric(This, Id, New val) -> ok
Types:
This = wxAuiDockArt()
Id = New val = integer()
Set acertain setting with the value new _val .
i d can be one of the size values of wxAui PaneDockArt Setti ng.

20 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

wxAuiManagerEvent

Erlang module

Event used to indicate various actions taken with wx Aui Manager .
SeewxAui Manager for available event types.

See: wxAui Manager , wxAui Panel nf o

This classis derived (and can use functions) from: wx Event
wxWidgets docs: wxAuiM anager Event

Events

Usewx Evt Handl er : connect / 3 withwxAui Manager Event Type to subscribe to events of thistype.

Data Types

wxAuiManagerEvent() = wx:wx object()

wxAuiManager() =
#wxAuiManager{type =
wxAuiManagerEvent:wxAuiManagerEventType(),
manager = wxAuiManager:wxAuiManager(),
pane = wxAuiPaneInfo:wxAuiPaneInfo(),
button = integer(),
veto flag = boolean(),
canveto flag = boolean(),
dc = wxDC:wxDC()}

wxAuiManagerEventType() =
aui pane button | aui pane close | aui pane maximize |
aul pane restore | aui pane activated | aui render |
aui find manager

Exports

setManager(This, Manager) -> ok
Types:
This = wxAuiManagerEvent()
Manager = wxAuiManager:wxAuiManager()

Setsthe wx Aui Manager this event is associated with.

getManager(This) -> wxAuiManager:wxAuiManager()
Types:

This = wxAuiManagerEvent()
Return: Thewx Aui Manager thisevent is associated with.

setPane(This, Pane) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 21

href

wxAuiManagerEvent

This wxAuiManagerEvent()
Pane = wxAuiPaneInfo:wxAuiPaneInfo()

Sets the pane this event is associated with.

getPane(This) -> wxAuiPaneInfo:wxAuiPaneInfo()
Types:

This = wxAuiManagerEvent()
Return: The pane this event is associated with.

setButton(This, Button) -> ok
Types.
This = wxAuiManagerEvent()
Button = integer()

Setsthe ID of the button clicked that triggered this event.

getButton(This) -> integer()
Types:

This = wxAuiManagerEvent()
Return: The ID of the button that was clicked.

setDC(This, Pdc) -> ok

Types:
This = wxAuiManagerEvent()
Pdc = wxDC:wxDC()

getDC(This) -> wxDC:wxDC()
Types:
This = wxAuiManagerEvent()

veto(This) -> ok
Types:
This = wxAuiManagerEvent()

veto(This, Options :: [Option]) -> ok
Types.

This = wxAuiManagerEvent()

Option = {veto, boolean()}

Cancelsthe action indicated by thisevent if canVet o/ 1 istrue.

getVeto(This) -> boolean()
Types:

This = wxAuiManagerEvent()
Return: trueif this event was vetoed.

22 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

See:vet o/ 2

setCanVeto(This, Can veto) -> ok
Types:
This = wxAuiManagerEvent()
Can_veto = boolean()

Sets whether or not this event can be vetoed.

canVeto(This) -> boolean()
Types.

This = wxAuiManagerEvent()
Return: true if this event can be vetoed.

See: vet o/ 2

Ericsson AB. All Rights Reserved.: wxErlang | 23

wxAuiManager

wxAuiManager

Erlang module

wxAui Manager isthe central class of the wxAUI class framework.

wxAui Manager manages the panes associated with it for aparticular wx Fr ane, using a paneswxAui Panel nf o
information to determine each pane's docking and floating behaviour.

wxAui Manager uses wxWidgets sizer mechanism to plan the layout of each frame. It uses a replaceable dock art
classto do all drawing, so all drawing islocalized in one area, and may be customized depending on an application's
specific needs.

wxAui Manager works as follows: the programmer adds panes to the class, or makes changes to existing pane
properties (dock position, floating state, show state, etc.). To apply these changes, wxAui Manager 'supdat e/ 1
functionis called. This batch processing can be used to avoid flicker, by modifying more than one pane at atime, and
then "committing" all of the changes at once by calling updat e/ 1.

Panes can be added quite easily:
Later on, the positions can be modified easily. The following will float an existing pane in atool window:
Layers, Rows and Directions, Positions

Inside wxAUI, the docking layout is figured out by checking several pane parameters. Four of these are important for
determining where a pane will end up:

Styles

This class supports the following styles:

See: Overview aui, wx Aui Not ebook, wxAui DockAr t , wxAui Panel nf o
This classis derived (and can use functions) from: wx Evt Handl er
wxWidgets docs: wxAuiM anager

Events

Event types emitted from this class. aui _pane_button, aui _pane_cl ose, aui _pane_naxi m ze,
aui _pane_restore,aui _pane_acti vated, aui _render

Data Types

wxAuiManager() = wx:wx _object()

Exports
new() -> wxAuiManager()

new(Options :: [Option]) -> wxAuiManager()
Types.
Option =
{managed wnd, wxWindow:wxWindow()} | {flags, integer()}
Constructor.

24 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxAuiManager

destroy(This :: wxAuiManager()) -> ok
Dtor.

addPane(This, Window) -> boolean()
Types:

This = wxAuiManager()

Window = wxWindow:wxWindow()

addPane(This, Window, Options :: [Option]) -> boolean()
addPane(This, Window, Pane info) -> boolean()
Types:
This = wxAuiManager()
Window = wxWindow:wxWindow ()
Pane info = wxAuiPaneInfo:wxAuiPaneInfo()
addPane/ 4 tells the frame manager to start managing a child window.

There are several versions of this function. The first version allows the full spectrum of pane parameter possibilities.
The second version is used for simpler user interfaces which do not require as much configuration. The last version
allows adrop position to be specified, which will determine where the pane will be added.

addPane(This, Window, Pane info, Drop pos) -> boolean()
Types:

This = wxAuiManager()

Window = wxWindow:wxWindow/()

Pane info = wxAuiPaneInfo:wxAuiPaneInfo()

Drop pos = {X :: integer(), Y :: integer()}

detachPane(This, Window) -> boolean()
Types.

This = wxAuiManager()

Window = wxWindow:wxWindow()

Tellsthewx Aui Manager to stop managing the pane specified by window.

Thewindow, if in afloated frame, is reparented to the frame managed by wx Aui Manager .

getAllPanes(This) -> [wxAuiPaneInfo:wxAuiPaneInfo()]
Types:

This = wxAuiManager()
Returns an array of all panes managed by the frame manager.

getArtProvider(This) -> wxAuiDockArt:wxAuiDockArt()
Types:

This = wxAuiManager()
Returns the current art provider being used.

See: wxAui DockAr t

Ericsson AB. All Rights Reserved.: wxErlang | 25

wxAuiManager

getDockSizeConstraint(This) ->
{Widthpct :: number(),
Heightpct :: number()}
Types.
This = wxAuiManager()
Returns the current dock constraint values.

Seeset DockSi zeConst r ai nt/ 3 for more information.

getFlags(This) -> integer()
Types:
This = wxAuiManager()
Returns the current AwxAuiManagerOption's flags.

getManagedWindow(This) -> wxWindow:wxWindow/()
Types.
This = wxAuiManager()

Returns the frame currently being managed by wxAui Manager .

getManager(Window) -> wxAuiManager()
Types:
Window = wxWindow:wxWindow()
Calling this method will return the wxAui Manager for agiven window.

Thew ndow parameter should specify any child window or sub-child window of the frame or window managed by
wxAui Manager .

Thew ndow parameter need not be managed by the manager itself, nor does it even need to be a child or sub-child
of amanaged window. It must however be inside the window hierarchy underneath the managed window.

getPane(This, Name) -> wxAuiPaneInfo:wxAuiPaneInfo()
getPane(This, Window) -> wxAuiPaneInfo:wxAuiPaneInfo()
Types:

This = wxAuiManager()

Window = wxWindow:wxWindow ()

get Pane/ 2 is used to lookup awxAui Panel nf o object either by window pointer or by pane name, which acts
asauniqueid for awindow pane.

The returned wx Aui Panel nf o object may then be modified to change a pane's look, state or position. After one or
more modificationsto wx Aui Panel nf o, updat e/ 1 should be called to commit the changes to the user interface.
If the lookup failed (meaning the pane could not be found in the manager), acall to the returned wx Aui Panel nf o's
IsOk() method will return false.

hideHint(This) -> ok
Types.
This = wxAuiManager()
hi deHi nt/ 1 hides any docking hint that may be visible.

26 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManager

insertPane(This, Window, Insert location) -> boolean()
Types.

This = wxAuiManager()

Window = wxWindow:wxWindow()

Insert location = wxAuiPaneInfo:wxAuiPaneInfo()

insertPane(This, Window, Insert location, Options :: [Option]) ->
boolean()

Types.

This = wxAuiManager()

Window = wxWindow:wxWindow/()

Insert location = wxAuiPaneInfo:wxAuiPaneInfo()

Option = {insert level, integer()}
This method is used to insert either a previously unmanaged pane window into the frame manager, or to insert a
currently managed pane somewhere else.

i nsert Pane/ 4 will push al panes, rows, or docks aside and insert the window into the position specified by
i nsert _| ocation.

Becausei nsert _| ocati on can specify either a pane, dock row, or dock layer, thei nsert _| evel parameter
is used to disambiguate this. The parameter i nsert | evel can take a value of wxAUI_INSERT_PANE,
wWxAUI_INSERT_ROW or wxAUI_INSERT_DOCK.

loadPaneInfo(This, Pane part, Pane) -> ok
Types:

This = wxAuiManager()

Pane part = unicode:chardata()

Pane = wxAuiPaneInfo:wxAuiPaneInfo()

| oadPanel nf o/ 3 is similar to LoadPerspective, with the exception that it only loads information about a single
pane.

This method writes the serialized data into the passed pane. Pointers to Ul elements are not modified.
Note: This operation also changes the name in the pane information!

See: | oadPer spective/ 3

See: savePanel nf o/ 2

See: savePer spective/ 1

loadPerspective(This, Perspective) -> boolean()
Types:

This = wxAuiManager()

Perspective = unicode:chardatal()

loadPerspective(This, Perspective, Options :: [Option]) ->

boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 27

wxAuiManager

This = wxAuiManager()
Perspective = unicode:chardata()
Option = {update, boolean()}

Loads a saved perspective.

A perspective is the layout state of an AUI managed window.

All currently existing panes that have an object in "perspective" with the same name ("equivalent") will receive the
layout parameters of the object in "perspective". Existing panesthat do not have an equivalent in "perspective” remain
unchanged, objects in "perspective" having no equivalent in the manager are ignored.

See: | oadPanel nf o/ 3
See: | oadPer spective/ 3

See: savePer spective/ 1

savePaneInfo(This, Pane) -> unicode:charlist()
Types:

This wxAuiManager ()

Pane = wxAuiPaneInfo:wxAuiPaneInfo()

savePanel nf o/ 2 is similar to SavePerspective, with the exception that it only saves information about a single
pane.

Return: The serialized layout parameters of the pane are returned within the string. Information about the pointers to
Ul elements stored in the pane are not serialized.

See: | oadPanel nfo/ 3
See: | oadPer spective/ 3
See: savePer spective/1

savePerspective(This) -> unicode:charlist()
Types:
This = wxAuiManager()

Savesthe entire user interface layout into an encoded wx St r i ng (hot implemented in wx), which can then be stored
by the application (probably using wxConfig).

See: | oadPer spective/ 3
See: | oadPanel nf o/ 3
See: savePanel nf o/ 2

setArtProvider(This, Art provider) -> ok
Types.
This = wxAuiManager()
Art provider = wxAuiDockArt:wxAuiDockArt()
Instructswx Aui Manager to use art provider specified by parameter art _pr ovi der for all drawing calls.

This alows pluggable look-and-feel features. The previous art provider object, if any, will be deleted by
wxAui Manager .

See: wxAui DockAr t

28 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManager

setDockSizeConstraint(This, Widthpct, Heightpct) -> ok
Types.

This = wxAuiManager()

Widthpct = Heightpct = number()

When auser creates anew dock by dragging awindow into adocked position, often timesthe large size of the window
will create a dock that is unwieldy large.

wxAui Manager by default limits the size of any new dock to 1/3 of the window size. For horizontal docks, this
would be 1/3 of the window height. For vertical docks, 1/3 of the width.

Calling this function will adjust this constraint value. The numbers must be between 0.0 and 1.0. For instance, calling
SetDockSizeContraint with 0.5, 0.5 will cause new docksto belimited to half of the size of the entire managed window.

setFlags(This, Flags) -> ok
Types:
This = wxAuiManager()
Flags = integer()
This method is used to specify AwxAuiManagerOption's flags.

f | ags specifies options which allow the frame management behaviour to be modified.

setManagedWindow(This, Managed wnd) -> ok
Types.

This = wxAuiManager()

Managed wnd = wxWindow:wxWindow ()

Called to specify the frame or window which isto be managed by wx Aui Manager .
Frame management is not restricted to just frames. Child windows or custom controls are a so allowed.

showHint (This, Rect) -> ok

Types:
This = wxAuiManager()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

Thisfunction is used by controls to explicitly show a hint window at the specified rectangle.

It is rarely called, and is mostly used by controls implementing custom pane drag/drop behaviour. The specified
rectangle should be in screen coordinates.

unInit(This) -> ok
Types.
This = wxAuiManager()
Dissociate the managed window from the manager.

Ericsson AB. All Rights Reserved.: wxErlang | 29

wxAuiManager

This function may be called before the managed frame or window is destroyed, but, since wxWidgets 3.1.4, it's
unnecessary to call it explicitly, as it will be called automatically when this window is destroyed, as well as when
the manager itself is.

update(This) -> ok
Types:
This = wxAuiManager()
This method is called after any number of changes are made to any of the managed panes.

updat e/ 1 must be invoked after addPane/ 4 or i nsert Pane/ 4 are called in order to "realize" or "commit"
the changes. In addition, any number of changes may be made to wxAui Panel nf o structures (retrieved with
get Pane/ 2), but to realize the changes, updat e/ 1 must be called. This construction allows pane flicker to be
avoided by updating the whole layout at one time.

30 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebookEvent

wxAuiNotebookEvent

Erlang module

This classis used by the events generated by wx Aui Not ebook.
See: wxAui Not ebook, wxBookCt r | Event

This class is derived (and can use functions) from: wxBookCt r | Event wxNot i f yEvent wxComrandEvent
wxEvent

wxWidgets docs: wxAuiNotebook Event

Events

Usewx Evt Handl er : connect / 3 withwxAui Not ebookEvent Type to subscribe to events of this type.

Data Types

wxAuiNotebookEvent() = wx:wx object()

wxAuiNotebook() =
#wxAuiNotebook{type =
wxAuiNotebookEvent:wxAuiNotebookEventType(),
old selection = integer(),
selection = integer(),
drag source = wxAuiNotebook:wxAuiNotebook()}

wxAuiNotebookEventType() =
command auinotebook page close |
command _auinotebook page changed |
command _auinotebook page changing |
command auinotebook button | command auinotebook begin drag |
command auinotebook end drag |
command_auinotebook drag motion |
command_auinotebook allow dnd |
command _auinotebook tab middle down |
command _auinotebook tab middle up |
command auinotebook tab right down |
command _auinotebook tab right up |
command_auinotebook page closed |
command_auinotebook drag done | command auinotebook bg dclick

Exports

setSelection(This, Page) -> ok

Types.
This = wxAuiNotebookEvent ()
Page = integer()

Sets the selection member variable.

getSelection(This) -> integer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 31

href

wxAuiNotebookEvent

This = wxAuiNotebookEvent()
Returns the currently selected page, or wx NOT_FOUND if none was selected.

Note: under Windows, get Sel ect i on/ 1 will returnthesamevalueasget A dSel ect i on/ 1 when called from
the EVT_BOCOKCTRL_PAGE_CHANG NG handler and not the page which is going to be selected.

setOldSelection(This, Page) -> ok

Types.
This = wxAuiNotebookEvent()
Page = integer()

Setsthe id of the page selected before the change.

getOldSelection(This) -> integer()
Types:
This = wxAuiNotebookEvent()
Returns the page that was sel ected before the change, wx NOT_FOUND if hone was sel ected.

setDragSource(This, S) -> ok
Types.
This = wxAuiNotebookEvent ()
S = wxAuiNotebook:wxAuiNotebook()

getDragSource(This) -> wxAuiNotebook:wxAuiNotebook()

Types:
This = wxAuiNotebookEvent()

32 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebook

wxAuiNotebook

Erlang module

wxAui Not ebook is part of the wxAUI class framework, which represents a notebook control, managing multiple
windows with associated tabs.

See also overview_aui.

wxAui Not ebook is a notebook control which implements many features common in applications with dockable
panes. Specifically, wxAui Not ebook implements functionality which allows the user to rearrange tab order via
drag-and-drop, split the tab window into many different splitter configurations, and toggle through different themes
to customize the control's look and feel.

Thedefault themethat isusediswx Aui Def aul t TabAr t (notimplemented inwx), which providesamodern, glossy
look and feel. The theme can be changed by calling set Art Provi der/ 2.

Styles

This class supports the following styles:

This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxAuiNotebook

Events

Event types emitted from this class: command_aui not ebook_page cl ose,
conmand_aui not ebook _page_cl osed, conmmand_aui not ebook _page changed,
conmand_aui not ebook_page_changi ng, command_aui not ebook_but t on,
conmand_aui not ebook_begi n_dr ag, command_aui not ebook_end_dr ag,
conmand_aui not ebook_drag_noti on, conmmand_aui not ebook_al | ow_dnd,
conmand_aui not ebook _drag_done, command_aui not ebook_tab_m ddl e_down,
conmmand_aui not ebook_tab_m ddl e_up, command_aui not ebook_tab_ri ght down,

conmand_aui not ebook_tab_ri ght up,command_aui not ebook _bg dclick

Data Types

wxAuiNotebook() = wx:wx object()

Exports

new() -> wxAuiNotebook()
Default ctor.

new(Parent) -> wxAuiNotebook()
Types:
Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxAuiNotebook()
Types.
Parent = wxWindow:wxWindow()

Option

Ericsson AB. All Rights Reserved.: wxErlang | 33

href

wxAuiNotebook

{id, integer()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Constructor.

Creates awxAuiNotebok control.

addPage(This, Page, Caption) -> boolean()
Types.

This wxAuiNotebook ()

Page = wxWindow:wxWindow()

Caption = unicode:chardata()

addPage(This, Page, Caption, Options :: [Option]) -> boolean()
Types:

This wxAuiNotebook ()

Page = wxWindow:wxWindow()

Caption = unicode:chardata()

Option = {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}

Adds apage.
If thesel ect parameter istrue, calling thiswill generate a page change event.

addPage(This, Page, Text, Select, Imageld) -> boolean()

Types:
This = wxAuiNotebook()
Page = wxWindow:wxWindow()

Text = unicode:chardata()
Select = boolean()
Imageld = integer()
Adds anew page.
The page must have the book control itself as the parent and must not have been added to this control previously.
The call to this function may generate the page changing events.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: i nsert Page/ 6
Since: 2.9.3

create(This, Parent) -> boolean()
Types:

34 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebook

This = wxAuiNotebook()
Parent = wxWindow:wxWindow()

create(This, Parent, Winid) -> boolean()
create(This, Parent, Winid :: [Option]) -> boolean()
Types:
This = wxAuiNotebook()
Parent = wxWindow:wxWindow()
Option
{id, integer()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}
Creates the notebook window.

create(This, Parent, Winid, Options :: [Option]) -> boolean()
Types:
This = wxAuiNotebook()
Parent = wxWindow:wxWindow()
Winid = integer()
Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Constructs the book control with the given parameters.

deletePage(This, Page) -> boolean()

Types:
This = wxAuiNotebook()
Page = integer()

Deletes a page at the given index.
Calling this method will generate a page change event.

getArtProvider(This) -> wxAuiTabArt:wxAuiTabArt()
Types.
This = wxAuiNotebook()

Returns the associated art provider.

getPage(This, Page idx) -> wxWindow:wxWindow()
Types:

This = wxAuiNotebook()

Page idx = integer()
Returns the page specified by the given index.

Ericsson AB. All Rights Reserved.: wxErlang | 35

wxAuiNotebook

getPageBitmap(This, Page) -> wxBitmap:wxBitmap()

Types.
This = wxAuiNotebook()
Page = integer()

Returns the tab bitmap for the page.

getPageCount(This) -> integer()
Types:

This = wxAuiNotebook()
Returns the number of pagesin the notebook.

getPageIndex(This, Page wnd) -> integer()

Types:
This = wxAuiNotebook()

Page wnd = wxWindow:wxWindow()
Returns the page index for the specified window.
If the window is not found in the notebook, wxNOT_FOUND is returned.

getPageText(This, Page) -> unicode:charlist()

Types:
This = wxAuiNotebook()
Page = integer()

Returns the tab label for the page.

getSelection(This) -> integer()
Types:

This = wxAuiNotebook()
Returns the currently selected page.

insertPage(This, Page idx, Page, Caption) -> boolean()

Types.
This = wxAuiNotebook()
Page idx = integer()
Page = wxWindow:wxWindow()
Caption = unicode:chardata()

insertPage(This, Page idx, Page, Caption, Options

boolean()
Types:

36 | Ericsson AB. All Rights Reserved.: wxErlang

[Option])

->

wxAuiNotebook

This = wxAuiNotebook()

Page idx = integer()

Page = wxWindow:wxWindow()

Caption = unicode:chardata()

Option = {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}
i nsert Page/ 6 issimilar to AddPage, but allows the ability to specify the insert location.

If thesel ect parameter istrue, calling thiswill generate a page change event.

insertPage(This, Index, Page, Text, Select, Imageld) -> boolean()
Types:

This = wxAuiNotebook()

Index = integer()

Page = wxWindow:wxWindow()

Text = unicode:chardata()

Select = boolean()

Imageld = integer()

Inserts anew page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/ 5

Since: 2.9.3

removePage(This, Page) -> boolean()

Types:
This = wxAuiNotebook()
Page = integer()

Removes a page, without deleting the window pointer.

setArtProvider(This, Art) -> ok
Types.

This = wxAuiNotebook()

Art = wxAuiTabArt:wxAuiTabArt()

Setsthe art provider to be used by the notebook.

setFont(This, Font) -> boolean()
Types:

This = wxAuiNotebook()

Font = wxFont:wxFont ()

Sets the font for drawing the tab labels, using a bold version of the font for selected tab labels.

setPageBitmap(This, Page, Bitmap) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 37

wxAuiNotebook

This wxAuiNotebook ()
Page = integer()
Bitmap = wxBitmap:wxBitmap()

Sets the bitmap for the page.
To remove a bitmap from the tab caption, pass wxNullBitmap.

setPageText(This, Page, Text) -> boolean()

Types.
This = wxAuiNotebook()
Page = integer()
Text = unicode:chardata()

Setsthe tab label for the page.

setSelection(This, New page) -> integer()
Types.
This = wxAuiNotebook()
New page = integer()
Sets the page selection.
Calling this method will generate a page change event.

setTabCtrlHeight(This, Height) -> ok
Types:

This = wxAuiNotebook()

Height = integer()
Setsthe tab height.

By default, the tab control height is calculated by measuring the text height and bitmap sizes on the tab captions.
Calling this method will override that calculation and set the tab control to the specified height parameter. A call to
this method will override any call toset Uni f or nBi t mapSi ze/ 2.

Specifying -1 as the height will return the control to its default auto-sizing behaviour.

setUniformBitmapSize(This, Size) -> ok
Types:

This wxAuiNotebook()

Size = {W :: integer(), H :: integer()}

Ensure that all tabs have the same height, even if some of them don't have bitmaps.

Passing 2wxDefaultSize as si ze undoes the effect of a previous call to this function and instructs the control to use

dynamic tab height.

destroy(This :: wxAuiNotebook()) -> ok
Destroys the object.

38 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

wxAuiPanelnfo

Erlang module

wxAui Panel nf o is part of the wxAUI class framework. See also overview_aui.

wxAui Panel nf o specifies al the parameters for a pane. These parameters specify where the pane is on the screen,
whether it is docked or floating, or hidden. In addition, these parameters specify the pane's docked position, floating
position, preferred size, minimum size, caption text among many other parameters.

See: wxAui Manager , wxAui DockAr t
wxWidgets docs: wxAuiPanelnfo

Data Types

wxAuiPaneInfo() = wx:wx object()

Exports
new() -> wxAuiPaneInfo()

new(C) -> wxAuiPaneInfo()
Types.

C = wxAuiPaneInfo()
Copy constructor.

bestSize(This, Size) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Size = {W :: integer(), H :: integer()}
best Si ze/ 3 setstheideal sizefor the pane.

The docking manager will attempt to use this size as much as possible when docking or floating the pane.

bestSize(This, X, Y) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

X =Y = integer()

bottom(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
bot t onT 1 setsthe pane dock position to the bottom side of the frame.

Thisis the same thing as calling Direction(wxAUI_DOCK_BOTTOM).

bottomDockable(This) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 39

href

wxAuiPanelnfo

This = wxAuiPaneInfo()

bottomDockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {b, boolean()}
bot t onDockabl e/ 2 indicates whether a pane can be docked at the bottom of the frame.

caption(This, C) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

C = unicode:chardata()

capt i on/ 2 setsthe caption of the pane.

captionVisible(This) -> wxAuiPanelInfo()
Types:
This = wxAuiPaneInfo()

captionVisible(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()
Option = {visible, boolean()}
CaptionVisible indicates that a pane caption should be visible.
If false, no pane caption is drawn.

centre(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
Cent er () (notimplemented in wx) sets the pane dock position to the left side of the frame.

The centre paneisthe spacein the middle after all border panes (Ieft, top, right, bottom) are subtracted from the layourt.
Thisis the same thing as calling Direction(wxAUI_DOCK_CENTRE).

centrePane(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
cent r ePane/ 1 specifiesthat the pane should adopt the default center pane settings.

Centre panes usually do not have caption bars. Thisfunction provides an easy way of preparing a paneto be displayed
in the center dock position.

closeButton(This) -> wxAuiPaneInfo()
Types:

40 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

This = wxAuiPaneInfo()

closeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}

cl oseBut t on/ 2 indicates that a close button should be drawn for the pane.

defaultPane(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()
def aul t Pane/ 1 specifiesthat the pane should adopt the default pane settings.

destroyOnClose(This) -> wxAuiPanelInfo()
Types:
This = wxAuiPanelInfo()

destroyOnClose(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {b, boolean()}
dest r oyOnd ose/ 2 indicates whether a pane should be destroyed when it is closed.

Normally a pane is simply hidden when the close button is clicked. Setting DestroyOnClose to true will cause the
window to be destroyed when the user clicks the pan€e's close button.

direction(This, Direction) -> wxAuiPaneInfo()
Types.

This = wxAuiPaneInfo()

Direction = integer()
di recti on/ 2 determines the direction of the docked pane.

Itisfunctionally thesameascallingl ef t/ 1,ri ght/ 1,top/ 1 or bott o 1, except that docking direction may
be specified programmatically viathe parameter.

dock(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()
dock/ 1 indicates that a pane should be docked.

Itisthe opposite of f | oat/ 1.

dockable(This) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 41

wxAuiPanelnfo

This = wxAuiPaneInfo()

dockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
Option = {b, boolean()}
dockabl e/ 2 specifies whether aframe can be docked or not.
It is the same as specifying TopDockabl e(b).BottomDockabl e(b).L eftDockable(b).RightDockable(b).

fixed(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()
fi xed/ 1 forces apaneto be fixed size so that it cannot be resized.

After callingfi xed/ 1,i sFi xed/ 1 will return true.

float(This) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()
f | oat/ 1 indicates that a pane should be floated.

It isthe opposite of dock/ 1.

floatable(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

floatable(This, Options :: [Option]) -> wxAuiPanelnfo()
Types:
This = wxAuiPanelInfo()
Option = {b, boolean()}
f | oat abl e/ 2 setswhether the user will be able to undock a pane and turn it into a floating window.

floatingPosition(This, Pos) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Pos = {X :: integer(), Y :: integer()}
fl oat i ngPosi ti on/ 3 setsthe position of the floating pane.

floatingPosition(This, X, Y) -> wxAuiPaneInfo()
Types:

42 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

This = wxAuiPaneInfo()
X =Y = integer()

floatingSize(This, Size) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

Size = {W :: integer(), H :: integer()}
fl oati ngSi ze/ 3 setsthe size of the floating pane.

floatingSize(This, X, Y) -> wxAuiPanelInfo()
Types.

This = wxAuiPanelInfo()

X =Y = integer()

gripper(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

gripper(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}

gri pper/ 2 indicates that a gripper should be drawn for the pane.

gripperTop(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

gripperTop(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

Option = {attop, boolean()}

gri pper Top/ 2 indicates that a gripper should be drawn at the top of the pane.

hasBorder(This) -> boolean()
Types.
This = wxAuiPaneInfo()
hasBor der / 1 returnstrue if the pane displays a border.

hasCaption(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasCapt i on/ 1 returnstrueif the pane displays a caption.

Ericsson AB. All Rights Reserved.: wxErlang | 43

wxAuiPanelnfo

hasCloseButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasCl oseBut t on/ 1 returnstrueif the pane displays a button to close the pane.

hasFlag(This, Flag) -> boolean()

Types.
This = wxAuiPaneInfo()
Flag = integer()

hasFl ag/ 2 returnstrueif the property specified by flag is active for the pane.

hasGripper(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasG i pper/ 1 returnstrueif the pane displays a gripper.

hasGripperTop(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasG i pper/ 1 returnstrueif the pane displays a gripper at the top.

hasMaximizeButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasMaxi m zeBut t on/ 1 returnstrue if the pane displays a button to maximize the pane.

hasMinimizeButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasM ni m zeBut t on/ 1 returnstrueif the pane displays a button to minimize the pane.

hasPinButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasPi nBut t on/ 1 returnstrue if the pane displays a button to float the pane.

hide(This) -> wxAuiPanelInfo()
Types:

This = wxAuiPanelInfo()
hi de/ 1 indicates that a pane should be hidden.

isBottomDockable(This) -> boolean()
Types:

44 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

This = wxAuiPaneInfo()
i sBott onDockabl e/ 1 returnstrueif the pane can be docked at the bottom of the managed frame.
See: | sDockabl e() (notimplemented in wx)

isDocked(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sDocked/ 1 returnstrueif the paneis currently docked.

isFixed(This) -> boolean()
Types:
This = wxAuiPanelInfo()
i sFi xed/ 1 returnstrueif the pane cannot be resized.

isFloatable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sFl oat abl e/ 1 returnstrue if the pane can be undocked and displayed as a floating window.

isFloating(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sFl oati ng/ 1 returnstrueif the paneisfloating.

isLeftDockable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sLeft Dockabl e/ 1 returnstrueif the pane can be docked on the left of the managed frame.

See: | sDockabl e() (notimplemented in wx)

isMovable(This) -> boolean()
Types.
This = wxAuiPaneInfo()
IsMoveable() returnstrue if the docked frame can be undocked or moved to another dock position.

isOk(This) -> boolean()
Types.
This = wxAuiPanelInfo()
i sOK/ 1 returnstrueif thewxAui Panel nf o structureisvalid.

A pane structure isvalid if it has an associated window.

Ericsson AB. All Rights Reserved.: wxErlang | 45

wxAuiPanelnfo

isResizable(This) -> boolean()
Types.
This = wxAuiPaneInfo()
i SResi zabl e/ 1 returnstrueif the pane can be resized.

isRightDockable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sRi ght Dockabl e/ 1 returnstrueif the pane can be docked on the right of the managed frame.

See: | sDockabl e() (notimplemented in wx)

isShown(This) -> boolean()
Types.
This = wxAuiPaneInfo()

i sShown/ 1 returnstrueif the paneis currently shown.

isToolbar(This) -> boolean()
Types:
This = wxAuiPanelInfo()
i sTool bar/ 1 returnstrueif the pane contains atoolbar.

isTopDockable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sTopDockabl e/ 1 returnstrueif the pane can be docked at the top of the managed frame.

See: | sDockabl e() (notimplemented in wx)

layer(This, Layer) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Layer = integer()
| ayer/ 2 determines the layer of the docked pane.

The dock layer is similar to an onion, the inner-most layer being layer 0. Each shell moving in the outward direction
has a higher layer number. This alows for more complex docking layout formation.

left(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()
| ef t/ 1 setsthe pane dock position to the |eft side of the frame.

Thisisthe same thing as calling Direction(wxAUI_DOCK_LEFT).

46 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

leftDockable(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

leftDockable(This, Options :: [Option]) -> wxAuiPanelnfo()
Types:

This = wxAuiPanelInfo()

Option = {b, boolean()}
| ef t Dockabl e/ 2 indicates whether a pane can be docked on the left of the frame.

maxSize(This, Size) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Size = {W :: integer(), H :: integer()}
maxSi ze/ 3 sets the maximum size of the pane.

maxSize(This, X, Y) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

X =Y = integer()

maximizeButton(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

maximizeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Option = {visible, boolean()}
maxi m zeBut t on/ 2 indicates that a maximize button should be drawn for the pane.

minSize(This, Size) -> wxAuiPaneInfo()
Types:

This wxAuiPanelInfo()

Size = {W :: integer(), H :: integer()}

m nSi ze/ 3 sets the minimum size of the pane.
Please note that thisis only partially supported as of thiswriting.

minSize(This, X, Y) -> wxAuiPaneInfo()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 47

wxAuiPanelnfo

This = wxAuiPaneInfo()
X =Y = integer()

minimizeButton(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

minimizeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}

m ni m zeBut t on/ 2 indicates that a minimize button should be drawn for the pane.

movable(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

movable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {b, boolean()}

Movable indicates whether a frame can be moved.

name(This, N) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
N = unicode:chardatal()
name/ 2 setsthe name of the pane so it can be referenced in lookup functions.

If anameis not specified by the user, arandom name is assigned to the pane when it is added to the manager.

paneBorder(This) -> wxAuiPanelInfo()
Types:
This = wxAuiPaneInfo()

paneBorder(This, Options :: [Option]) -> wxAuiPanelInfo()
Types.

This = wxAuiPanelInfo()

Option = {visible, boolean()}

PaneBorder indicates that a border should be drawn for the pane.

pinButton(This) -> wxAuiPaneInfo()
Types:

48 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

This = wxAuiPaneInfo()

pinButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}

pi nBut t on/ 2 indicates that a pin button should be drawn for the pane.

position(This, Pos) -> wxAuiPaneInfo()
Types.

This = wxAuiPaneInfo()

Pos = integer()
posi ti on/ 2 determinesthe position of the docked pane.

resizable(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

resizable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Option = {resizable, boolean()}

resi zabl e/ 2 allows a pane to be resized if the parameter is true, and forces it to be a fixed size if the parameter
isfase.

Thisissimply an antonym for f i xed/ 1.

right(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
ri ght/ 1 setsthe pane dock position to the right side of the frame.

Thisis the same thing as calling Direction(wxAUI_DOCK_RIGHT).

rightDockable(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

rightDockable(This, Options :: [Option]) -> wxAuiPanelInfo()
Types:

This = wxAuiPaneInfo()

Option = {b, boolean()}
ri ght Dockabl e/ 2 indicates whether a pane can be docked on the right of the frame.

Ericsson AB. All Rights Reserved.: wxErlang | 49

wxAuiPanelnfo

row(This, Row) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Row = integer()
r ow 2 determinesthe row of the docked pane.

safeSet(This, Source) -> ok
Types:
This = Source = wxAuiPaneInfo()
Write the safe parts of a Panelnfo object "source" into “this".

"Safe parts' are al non-Ul elements (e.g. al layout determining parameters like the size, position etc.)
parts' (pointers to button, frame and window) are not modified by this write operation.

Remark: This method is used when loading perspectives.

setFlag(This, Flag, Option state) -> wxAuiPaneInfo()

Types:
This = wxAuiPaneInfo()
Flag = integer()

Option state = boolean()
set Fl ag/ 3 turnsthe property given by flag on or off with the option_state parameter.

show(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPanelInfo()

show(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Option = {show, boolean()}

show 2 indicates that a pane should be shown.

toolbarPane(This) -> wxAuiPanelInfo()
Types:
This = wxAuiPaneInfo()
t ool bar Pane/ 1 specifies that the pane should adopt the default toolbar pane settings.

top(This) -> wxAuiPanelInfo()
Types.
This = wxAuiPaneInfo()
t op/ 1 setsthe pane dock position to the top of the frame.

Thisisthe same thing as calling Direction(wxAUI_DOCK_TOP).

50 | Ericsson AB. All Rights Reserved.: wxErlang

. "Unsafe

wxAuiPanelnfo

topDockable(This) -> wxAuiPanelInfo()
Types.
This = wxAuiPaneInfo()

topDockable(This, Options :: [Option]) -> wxAuiPanelnfo()
Types:

This = wxAuiPanelInfo()

Option = {b, boolean()}
t opDockabl e/ 2 indicates whether a pane can be docked at the top of the frame.

window(This, W) -> wxAuiPaneInfo()
Types.
This = wxAuiPanelInfo()
W = wxWindow:wxWindow()
wi ndow/ 2 assigns the window pointer that the wx Aui Panel nf o should use.

Thisnormally does not need to be specified, asthe window pointer isautomatically assigned to thewx Aui Panel nf o
structure as soon asiit is added to the manager.

getWindow(This) -> wxWindow:wxWindow()
Types:
This = wxAuiPaneInfo()

getFrame(This) -> wxFrame:wxFrame()
Types:
This = wxAuiPaneInfo()

getDirection(This) -> integer()
Types.
This = wxAuiPaneInfo()

getLayer(This) -> integer()
Types:
This = wxAuiPaneInfo()

getRow(This) -> integer()
Types:
This = wxAuiPaneInfo()

getPosition(This) -> integer()
Types.

This = wxAuiPaneInfo()

getFloatingPosition(This) -> {X :: integer(), Y :: integer()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 51

wxAuiPanelnfo

This = wxAuiPanelInfo()
getFloatingSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxAuiPaneInfo()

destroy(This :: wxAuiPaneInfo()) -> ok
Destroys the object.

52 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiSimpleTabArt

wxAuiSimpleTabArt

Erlang module

Another standard tab art provider for wx Aui Not ebook.

wxAui Si npl eTabArt isderived fromwxAui TabArt demonstrating how to write acompletely new tab art class.
It can also be used as alternative to wx Aui Def aul t TabArt (not implemented in wx).

This classis derived (and can use functions) from: wxAui TabAr t
wxWidgets docs: wxAuiSimpleT abArt

Data Types
wxAuiSimpleTabArt() = wx:wx object()

Exports
new() -> wxAuiSimpleTabArt()

destroy(This :: wxAuiSimpleTabArt()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 53

href

wxAuiTabArt

wxAuiTabArt

Erlang module

Tab art provider defines all the drawing functions used by wx Aui Not ebook.
This allows the wx Aui Not ebook to have a pluggable |ook-and-feel.

By default, awx Aui Not ebook uses an instance of this class called wx Aui Def aul t TabArt (not implemented in
wx) which provides bitmap art and a colour scheme that is adapted to the major platforms' look. Y ou can either derive
from that classto alter its behaviour or write a completely new tab art class.

Another example of creating a new wxAui Not ebook tab bar iswxAui Si npl eTabArt .
Call wxAui Not ebook: set Art Provi der/ 2 to make use of this new tab art.
wxWidgets docs: wxAuiTabArt

Data Types

wxAuiTabArt() = wx:wx object()

Exports

setFlags(This, Flags) -> ok
Types:
This = wxAuiTabArt()
Flags = integer()
Setsflags.

setMeasuringFont(This, Font) -> ok

Types:
This = wxAuiTabArt()
Font = wxFont:wxFont()

Sets the font used for cal culating measurements.

setNormalFont(This, Font) -> ok

Types.
This = wxAuiTabArt()
Font = wxFont:wxFont()

Sets the normal font for drawing labels.

setSelectedFont(This, Font) -> ok

Types:
This = wxAuiTabArt()
Font = wxFont:wxFont()

Setsthe font for drawing text for selected Ul elements.

54 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiTabArt

setColour(This, Colour) -> ok
Types.
This = wxAuiTabArt()
Colour = wx:wx colour()
Sets the colour of the inactive tabs.

Since: 2.9.2

setActiveColour(This, Colour)
Types:
This = wxAuiTabArt()
Colour = wx:wx_colour()
Sets the colour of the selected tab.

Since: 2.9.2

Ericsson AB. All Rights Reserved.: wxErlang | 55

wxBitmapButton

wxBitmapButton

Erlang module

A bitmap button is a control that contains a bitmap.

Notice that since wxWidgets 2.9.1 bitmap display is supported by the base wxBut t on classitself and the only tiny
advantage of using this classis that it allows specifying the bitmap in its constructor, unlike wxBut t on. Please see
the base class documentation for more information about images support in wxBut t on.

Styles

This class supports the following styles:

See: wxBut t on

This classis derived (and can use functions) from: wxBut t on wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxBitmapButton

Events

Event types emitted from this class: command_but t on_cl i cked

Data Types

wxBitmapButton() = wx:wx object()

Exports

new() -> wxBitmapButton()
Default ctor.

new(Parent, Id, Bitmap) -> wxBitmapButton()
Types:

Parent = wxWindow:wxWindow ()

Id = integer()

Bitmap = wxBitmap:wxBitmap()

new(Parent, Id, Bitmap, Options :: [Option]) -> wxBitmapButton()
Types.

Parent = wxWindow:wxWindow ()

Id = integer()

Bitmap = wxBitmap:wxBitmap()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()} |
{validator, wx:wx object()}

Constructor, creating and showing a button.

56 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxBitmapButton

Remark: The bitmap parameter is normally the only bitmap you need to provide, and wxWidgets will draw the button
correctly in its different states. If you want more control, call any of the functions Set Bi t mapPr essed() (not
implemented in wx), wxBut t on: set Bi t mapFocus/ 2, wxBut t on: set Bi t mapDi sabl ed/ 2

See: cr eat e/ 5, wxVal i dat or (not implemented in wx)

create(This, Parent, Id, Bitmap) -> boolean()
Types:

This = wxBitmapButton()

Parent = wxWindow:wxWindow/()

Id = integer()

Bitmap = wxBitmap:wxBitmap()

create(This, Parent, Id, Bitmap, Options :: [Option]) -> boolean()
Types.
This = wxBitmapButton()
Parent = wxWindow:wxWindow()
Id = integer()
Bitmap = wxBitmap:wxBitmap()
Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}
Button creation function for two-step creation.

For more details, see new 4.

newCloseButton(Parent, Winid) -> wxBitmapButton()
Types:

Parent = wxWindow:wxWindow()

Winid = integer()
Helper function creating a standard-looking "Close" button.

To get the best results, platform-specific code may need to be used to create a small, title bar-like "Close" button.
This function is provided to avoid the need to test for the current platform and creates the button with as native look
as possible.

Return: The new button.
Since: 2.9.5

destroy(This :: wxBitmapButton()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 57

wxBitmapDataObject

wxBitmapDataObject

Erlang module

wxBi t mapDat aCbj ect isaspecialization of wxDat aCbj ect for bitmap data. It can be used without change to
paste datainto thewxC i pboar d or awxDr opSour ce (not implemented in wx). A user may wish to derive anew
classfrom this classfor providing a bitmap on-demand in order to minimize memory consumption when offering data
in severa formats, such as a bitmap and GIF.

This class may be used asis, but get Bi t map/ 1 may be overridden to increase efficiency.

See: Overview dnd, wxDat aCbhj ect ,wxDat aCbj ect Si npl e (notimplementedinwx), wxFi | eDat aCbj ect ,
wx Text Dat aCbj ect , wxDat aCbj ect

This classis derived (and can use functions) from: wxDat aChj ect
wxWidgets docs: wxBitmapDataObj ect

Data Types

wxBitmapDataObject() = wx:wx object()

Exports
new() -> wxBitmapDataObject()

new(Options :: [Option]) -> wxBitmapDataObject()
new(Bitmap) -> wxBitmapDataObject()
Types:
Bitmap = wxBitmap:wxBitmap()
Constructor, optionally passing a bitmap (otherwise use set Bi t map/ 2 later).

getBitmap(This) -> wxBitmap:wxBitmap()
Types:

This = wxBitmapDataObject()
Returns the bitmap associated with the data object.

Y ou may wish to override this method when offering data on-demand, but thisisnot required by wxWidgets internals.
Use this method to get datain bitmap form from thewx Cl i pboar d.

setBitmap(This, Bitmap) -> ok
Types:
This = wxBitmapDataObject()
Bitmap = wxBitmap:wxBitmap()
Sets the bitmap associated with the data object.
This method is called when the data object receives data. Usually there will be no reason to override this function.

destroy(This :: wxBitmapDataObject()) -> ok
Destroys the object.

58 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxBitmap

wxBitmap

Erlang module

This class encapsul ates the concept of a platform-dependent bitmap, either monochrome or colour or colour with alpha
channel support.

If you need direct access the bitmap datainstead going through drawing to it using wx Merror y DC you need to use the
wxPi xel Dat a (not implemented in wx) class (either wxNativePixelData for RGB bitmaps or wxAlphaPixelData
for bitmaps with an additionally apha channel).

Note that many wx Bi t map functionstake at ype parameter, which is a value of the AvxBitmapType enumeration.
Thevalidity of those values depends however on the platform where your program is running and from the wxWidgets
configuration. If all possible wxWidgets settings are used:

In addition, wxBi t map can load and save all formats that wx| mage can; see wx| mage for more info. Of course,
you must have loaded the wx| nage handlers (see 2wxInitAlllmageHandlers() and wx| mage: : AddHandl er (not
implemented in wx)). Note that all available wxBitmapHandlers for a given wxWidgets port are automatically loaded
at startup so you won't need to use wx Bi t map: : AddHandl er (not implemented in wx).

More on the difference between wx | nage and wxBi t nap: wx| mage isjust abuffer of RGB byteswith an optional
buffer for the apha bytes. It is al generic, platform independent and image file format independent code. It includes
generic codefor scaling, resizing, clipping, and other manipulations of theimage data. OTOH, wxBi t map isintended
to be awrapper of whatever isthe native image format that is quickest/easiest to draw to aDC or to be the target of the
drawing operations performed on awx Menor y DC. By splitting the responsibiliti es between wxImage/wxBitmap like
this then it's easier to use generic code shared by all platforms and image types for generic operations and platform
specific code where performance or compatibility is needed.

Predefined objects (include wx.hrl): 2wxNullBitmap

See: Overview bitmap, Overview bitmap, wxDC: bl i t/ 6, wxl con, wxCur sor , wxMenor yDC, wx| nage,
wx Pi xel Dat a (not implemented in wx)

wxWidgets docs: wxBitmap

Data Types

wxBitmap() = wx:wx object()

Exports

new() -> wxBitmap()
Default constructor.

Constructs a bitmap object with no data; an assignment or another member function such as create/ 4 or
| oadFi | e/ 3 must be called subsequently.

new(Name) -> wxBitmap()
new(Sz) -> wxBitmap()
new(Img) -> wxBitmap()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 59

href
href
href

wxBitmap

Img = wxImage:wxImage() | wxBitmap:wxBitmap()

new
new

Width, Height) -> wxBitmap()
Name, Height :: [Option]) -> wxBitmap()

—~ o~~~

new(Sz, Height :: [Option]) -> wxBitmap()
new(Img, Height :: [Option]) -> wxBitmap()
Types:

Img = wxImage:wxImage()
Option = {depth, integer()}
Creates this bitmap object from the given image.
This hasto be done to actually display an image as you cannot draw an image directly on awindow.

The resulting bitmap will use the provided colour depth (or that of the current system if depth is ?
WXBITMAP_SCREEN_DEPTH) which entails that a colour reduction may take place.

On Windows, if there is a palette present (set with SetPalette), it will be used when creating the wxBi t map (most
useful in 8-bit display mode). On other platforms, the palette is currently ignored.

new(Bits, Width, Height) -> wxBitmap()
new(Width, Height, Height :: [Option]) -> wxBitmap()
Types:

Width = Height = integer()

Option = {depth, integer()}

Creates a new bitmap.

A depth of AwxBITMAP_SCREEN_DEPTH indicates the depth of the current screen or visual.

Some platforms only support 1 for monochrome and wxBITMAP_SCREEN_DEPTH for the current colour setting.
A depth of 32 including an alpha channel is supported under MSW, Mac and GTK+.

new(Bits, Width, Height, Options :: [Option]) -> wxBitmap()
Types.

Bits = binary()

Width = Height = integer()

Option = {depth, integer()}

Creates a bitmap from the given array bi t s.

You should only use this function for monochrome bitmaps (depth 1) in portable programs: in this case the bits
parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is passed without any changes
to the underlying CreateBitmap() API. Under other platforms, only monochrome bitmaps may be created using this
constructor and wx | mage should be used for creating colour bitmaps from static data.

destroy(This :: wxBitmap()) -> ok
Creates bitmap corresponding to the given cursor.
This can be useful to display a cursor as it cannot be drawn directly on awindow.

This constructor only existsin wxMSW and wxGTK (whereit isimplemented for GTK+ 2.8 or later) only.

60 | Ericsson AB. All Rights Reserved.: wxErlang

wxBitmap

Since: 3.1.0 Destructor. See overview_refcount_destruct for more info.

If the application omitsto delete the bitmap explicitly, the bitmap will be destroyed automatically by wxWidgetswhen
the application exits.

Warning: Do not delete a bitmap that is selected into a memory device context.

convertToImage(This) -> wxImage:wxImage()
Types.

This = wxBitmap()
Creates an image from a platform-dependent bitmap.

This preserves mask information so that bitmaps and images can be converted back and forth without loss in that
respect.

copyFromIcon(This, Icon) -> boolean()

Types.
This = wxBitmap()
Icon = wxIcon:wxIcon()

Creates the bitmap from an icon.

create(This, Sz) -> boolean()
Types:
This = wxBitmap()
Sz = {W :: integer(), H :: integer()}

create(This, Width, Height) -> boolean()
create(This, Sz, Height :: [Option]) -> boolean()
Types.

This = wxBitmap()

Sz = {W :: integer(), H :: integer()}

Option = {depth, integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

create(This, Width, Height, Options :: [Option]) -> boolean()
create(This, Width, Height, Dc) -> boolean()
Types:
This = wxBitmap()
Width = Height =
Dc = wxDC:wxDC()
Create a bitmap compatible with the given DC, inheriting its magnification factor.

integer()

Return: true if the creation was successful.
Since: 3.1.0

Ericsson AB. All Rights Reserved.: wxErlang | 61

wxBitmap

getDepth(This) -> integer()
Types:
This = wxBitmap()
Gets the colour depth of the bitmap.
A value of 1 indicates a monochrome bitmap.

getHeight(This) -> integer()
Types:
This = wxBitmap()
Gets the height of the bitmap in pixels.
See:get Wdt h/ 1, Get Si ze() (notimplemented in wx)

getPalette(This) -> wxPalette:wxPalette()
Types:
This = wxBitmap()
Gets the associated palette (if any) which may have been loaded from afile or set for the bitmap.
See: wxPal ette

getMask(This) -> wxMask:wxMask()
Types:
This = wxBitmap()
Gets the associated mask (if any) which may have been loaded from afile or set for the bitmap.
See: set Mask/ 2, wxMask

getWidth(This) -> integer()
Types:
This = wxBitmap()
Gets the width of the bitmap in pixels.
See: get Hei ght/ 1, Get Si ze() (not implemented in wx)

getSubBitmap(This, Rect) -> wxBitmap()

Types.
This = wxBitmap()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

Returns a sub bitmap of the current one as long as the rect belongs entirely to the bitmap.
This function preserves bit depth and mask information.

loadFile(This, Name) -> boolean()
Types:

62 | Ericsson AB. All Rights Reserved.: wxErlang

wxBitmap

This
Name

wxBitmap()
unicode:chardata()

loadFile(This, Name, Options :: [Option]) -> boolean()
Types.

This wxBitmap ()

Name = unicode:chardata()

Option = {type, wx:wx enum()}

Loads a bitmap from afile or resource.
Return: true if the operation succeeded, false otherwise.

Remark: A palette may be associated with the bitmap if one exists (especially for colour Windows bitmaps), and if
the code supportsit. Y ou can check if one has been created by using the get Pal et t e/ 1 member.

See: saveFil el 4

ok(This) -> boolean()
Types:

This = wxBitmap()
Seeri sCk/ 1.

isOk(This) -> boolean()
Types:

This = wxBitmap()
Returnstrueif bitmap datais present.

saveFile(This, Name, Type) -> boolean()

Types:
This = wxBitmap()
Name = unicode:chardata()
Type = wx:wx_enum()

saveFile(This, Name, Type, Options :: [Option]) -> boolean()

Types.
This = wxBitmap()
Name = unicode:chardata()

Type = wx:wx_enum()
Option = {palette, wxPalette:wxPalette()}
Saves abitmap in the named file.
Return: true if the operation succeeded, false otherwise.
Remark: Depending on how wxWidgets has been configured, not all formats may be available.
See: | oadFil e/ 3

Ericsson AB. All Rights Reserved.: wxErlang | 63

wxBitmap

setDepth(This, Depth) -> ok
Types:
This = wxBitmap()
Depth = integer()
Deprecated: Thisfunction is deprecated since version 3.1.2, dimensions and depth can only be set at construction time.
Sets the depth member (does not affect the bitmap data).

setHeight(This, Height) -> ok
Types:
This = wxBitmap()
Height = integer()
Deprecated: Thisfunction isdeprecated since version 3.1.2, dimensions and depth can only be set at construction time.
Sets the height member (does not affect the bitmap data).

setMask(This, Mask) -> ok

Types:
This = wxBitmap()
Mask = wxMask:wxMask()

Sets the mask for this bitmap.
Remark: The bitmap object owns the mask once this has been called.

Note: A mask can be set also for bitmap with an apha channel but doing so under wxMSW is not recommended
because performance of drawing such bitmap is not very good.

See: get Mask/ 1, wxMask

setPalette(This, Palette) -> ok
Types.

This = wxBitmap()

Palette = wxPalette:wxPalette()

Sets the associated pal ette.
(Not implemented under GTK+).
See: wxPal ett e

setWidth(This, Width) -> ok
Types:
This = wxBitmap()
Width = integer()
Deprecated: Thisfunction is deprecated since version 3.1.2, dimensions and depth can only be set at construction time.
Sets the width member (does not affect the bitmap data).

64 | Ericsson AB. All Rights Reserved.: wxErlang

wxBookCtriBase

wxBookCtriBase

Erlang module

A book control is a convenient way of displaying multiple pages of information, displayed one page at a time.
wxWidgets has five variants of this control:

This abstract class is the parent of all these book controls, and provides their basic interface. This is a pure virtual
class so you cannot allocate it directly.

See: Overview bookctrl
This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxBook CtriBase

Data Types

wxBookCtrlBase() = wx:wx object()

Exports

addPage(This, Page, Text) -> boolean()

Types.
This = wxBookCtrlBase()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

addPage(This, Page, Text, Options :: [Option]) -> boolean()

Types:
This = wxBookCtrlBase()
Page = wxWindow:wxWindow()

Text = unicode:chardata()
Option = {bSelect, boolean()} | {imageld, integer()}

Adds anew page.
The page must have the book control itself as the parent and must not have been added to this control previoudly.

The call to this function will generate the page changing and page changed eventsif sel ect istrue, but not when
inserting the very first page (as thereis no previous page selection to switch from in this case and so it wouldn't make
sense to e.g. veto such event).

Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: i nsert Page/ 5

insertPage(This, Index, Page, Text) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 65

href
href

wxBookCtriBase

This = wxBookCtrlBase()
Index = integer()

Page = wxWindow:wxWindow()
Text = unicode:chardata()

insertPage(This, Index, Page, Text, Options :: [Option]) ->
boolean()
Types:
This = wxBookCtrlBase()
Index = integer()
Page = wxWindow:wxWindow()
Text unicode:chardata()
Option = {bSelect, boolean()} | {imageIld, integer()}

Inserts a new page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/ 4

deletePage(This, Page) -> boolean()

Types:
This = wxBookCtrlBase()
Page = integer()

Deletes the specified page, and the associated window.

The call to this function generates the page changing events when deleting the currently selected page or a page
preceding it in the index order, but it does not send any events when deleting the last page: while in this case the
selection also changes, it becomes invalid and for compatibility reasons the control never generates events with the
invalid selection index.

removePage(This, Page) -> boolean()

Types:
This = wxBookCtrlBase()
Page = integer()

Deletes the specified page, without del eting the associated window.
See del et ePage/ 2 for anote about the events generated by this function.

deleteAllPages(This) -> boolean()

Types.
This = wxBookCtrlBase()
Deletes all pages.

getPage(This, Page) -> wxWindow:wxWindow ()
Types:

66 | Ericsson AB. All Rights Reserved.: wxErlang

wxBookCtriBase

This
Page

wxBookCtrlBase()
integer()

Returns the window at the given page position.

getPageCount(This) -> integer()
Types:

This = wxBookCtrlBase()
Returns the number of pagesin the control.

getCurrentPage(This) -> wxWindow:wxWindow()
Types.

This = wxBookCtrlBase()
Returns the currently selected page or NULL.

advanceSelection(This) -> ok
Types.
This = wxBookCtrlBase()

advanceSelection(This, Options :: [Option]) -> ok
Types:

This = wxBookCtrlBase()

Option = {forward, boolean()}
Cyclesthrough the tabs.

The call to this function generates the page changing events.

setSelection(This, Page) -> integer()

Types:
This = wxBookCtrlBase()
Page = integer()

Sets the selection to the given page, returning the previous selection.

Notice that the call to this function generates the page changing events, use the changeSel ect i on/ 2 function if
you don't want these events to be generated.

See: get Sel ection/ 1

getSelection(This) -> integer()
Types:
This = wxBookCtrlBase()
Returns the currently selected page, or wx NOT_FOUND if none was selected.

Note that this method may return either the previously or newly selected page when
cadled from the EVT_BOOKCTRL_PAGE CHANGED handler depending on the platfform and so
wxBookCt r | Event : get Sel ecti on/ 1 should be used instead in this case.

Ericsson AB. All Rights Reserved.: wxErlang | 67

wxBookCtriBase

changeSelection(This, Page) -> integer()

Types.
This = wxBookCtrlBase()
Page = integer()

Changes the selection to the given page, returning the previous selection.
This function behavesasset Sel ect i on/ 2 but doesnot generate the page changing events.
See overview_events _prog for more information.

hitTest(This, Pt) -> Result
Types:
Result = {Res :: integer(), Flags :: integer()}
This = wxBookCtrlBase()
Pt = {X :: integer(), Y :: integer()}
Returns the index of the tab at the specified position or wx NOT_FOUND if none.
If f | ags parameter isnon-NULL, the position of the point inside the tab is returned as well.

Return: Returns the zero-based tab index or wx NOT_FOUND if there is no tab at the specified position.

getPageText(This, NPage) -> unicode:charlist()
Types:

This = wxBookCtrlBase()

NPage = integer()
Returns the string for the given page.

setPageText(This, Page, Text) -> boolean()

Types:
This = wxBookCtrlBase()
Page = integer()
Text = unicode:chardata()
Sets the text for the given page.

68 | Ericsson AB. All Rights Reserved.: wxErlang

wxBookCtrlEvent

wxBookCtrlEvent

Erlang module

This class represents the events generated by book controls (wxNot ebook, wxLi st book, wxChoi cebook,
wx Tr eebook, wxAui Not ebook).

The PAGE_CHANGING events are sent before the current page is changed. It alows the program to examine
the current page (which can be retrieved with get O dSel ecti on/ 1) and to veto the page change by caling
wxNot i f yEvent : vet o/ 1 if, for example, the current valuesin the controls of the old page are invalid.

The PAGE_CHANGED events are sent after the page has been changed and the program cannot veto it any more, it
just informs it about the page change

To summarize, if the program isinterested in validating the page val ues before allowing the user to changeit, it should
process the PAGE_CHANGING event, otherwise PAGE_CHANGED is probably enough. In any case, it is probably
unnecessary to process both events at once.

See: wxNot ebook, wxLi st book, wxChoi cebook, wxTr eebook, wxTool book, wxAui Not ebook
This classis derived (and can use functions) from: wxNot i f yEvent wxConmandEvent wxEvent

wxWidgets docs: wxBook CtrIEvent

Data Types

wxBookCtrlEvent() = wx:wx object()

wxBookCtrl() =
#wxBookCtrl{type = wxBookCtrlEvent:wxBookCtrlEventType(),
nSel integer(),
n0ldSel = integer()}

wxBookCtrlEventType() =
command _notebook page changed |
command notebook page changing | choicebook page changed |
choicebook page changing | treebook page changed |
treebook page changing | toolbook page changed |
toolbook page changing | listbook page changed |
listbook page changing

Exports

getOldSelection(This) -> integer()
Types:
This = wxBookCtrlEvent()
Returns the page that was sel ected before the change, wx NOT_FOUND if hone was sel ected.

getSelection(This) -> integer()
Types.
This = wxBookCtrlEvent()
Returns the currently selected page, or wx NOT _FOUND if none was selected.

Note: under Windows, get Sel ecti on/ 1 will returnthe samevalueasget A dSel ect i on/ 1 when called from
the EVT_BOOKCTRL_PAGE_CHANG NG handler and not the page which is going to be selected.

Ericsson AB. All Rights Reserved.: wxErlang | 69

href

wxBookCtrlEvent

setOldSelection(This, Page) -> ok

Types.
This = wxBookCtrlEvent()
Page = integer()

Setsthe id of the page selected before the change.

setSelection(This, Page) -> ok

Types:
This = wxBookCtrlEvent()
Page = integer()

Sets the selection member variable.

70 | Ericsson AB. All Rights Reserved.: wxErlang

wxBoxSizer

wxBoxSizer

Erlang module

The basic idea behind abox sizer isthat windows will most often belaid out in rather simple basic geometry, typically
inarow or acolumn or several hierarchies of either.

For more information, please see overview_sizer_box.

See: Wwx Si zer , Overview sizer

This classis derived (and can use functions) from: wxSi zer
wxWidgets docs: wxBoxSizer

Data Types

wxBoxSizer() = wx:wx_object()

Exports

new(Orient) -> wxBoxSizer()
Types.

Orient = integer()
Constructor for awxBoxSi zer .

ori ent may be either of wxVERTICAL or wxHORIZONTAL for creating either a column sizer or arow sizer.

getOrientation(This) -> integer()
Types.
This = wxBoxSizer()
Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

destroy(This :: wxBoxSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 71

href
href

wxBrush

wxBrush

Erlang module

A brush isadrawing tool for filling in areas. It is used for painting the background of rectangles, ellipses, etc. It has
acolour and astyle.

On amonochrome display, wxWidgets shows all brushes as white unless the colour is really black.

Do not initialize objects on the stack before the program commences, since other required structures may not have
been set up yet. Instead, define global pointers to objects and create them in wxApp: : Onl ni t (not implemented
in wx) or when required.

An application may wish to create brushes with different characteristics dynamically, and there is the consequent
danger that a large number of duplicate brushes will be created. Therefore an application may wish to get
a pointer to a brush by using the global list of brushes 2wxTheBrushList, and calling the member function
wxBr ushLi st :: Fi ndOr Cr eat eBr ush() (not implemented in wx).

This class uses reference counting and copy-on-writeinternally so that assignments between two instances of this class
are very cheap. You can therefore use actual objects instead of pointers without efficiency problems. If an instance
of this classis changed it will create its own data internally so that other instances, which previously shared the data
using the reference counting, are not affected.

Predefined objects (include wx.hrl):
See: wxBr ushLi st (not implemented in wx), wx DC, wxDC: set Br ush/ 2
wxWidgets docs: wxBrush

Data Types

wxBrush() = wx:wx_object()

Exports

new() -> wxBrush()
Default constructor.
The brush will be uninitialised, and wx Br ush:i sCk/ 1 will return false.

new(Colour) -> wxBrush()
new(Brush) -> wxBrush()
Types:
Brush = wxBrush:wxBrush() | wxBitmap:wxBitmap()
Copy constructor, uses reference counting.

new(Colour, Options :: [Option]) -> wxBrush()
Types:
Colour = wx:wx colour()

Option {style, wx:wx enum()}

Constructs a brush from a colour object and st yl e.

72 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxBrush

destroy(This :: wxBrush()) -> ok
Destructor.
See overview_refcount_destruct for more info.

Remark: Although all remaining brushes are del eted when the application exits, the application should try to clean up
all brushesitsalf. Thisis because wxWidgets cannot know if a pointer to the brush object is stored in an application
data structure, and there is arisk of double deletion.

getColour(This) -> wx:wx colour4()
Types.

This = wxBrush()
Returns a reference to the brush colour.

See: set Col our/ 4

getStipple(This) -> wxBitmap:wxBitmap()
Types:

This = wxBrush()
Gets a pointer to the stipple bitmap.

If the brush does not have awx BRUSHSTYLE_STI PPLE style, this bitmap may be non-NULL but uninitialised (i.e.
wxBi t map:i sCOk/ 1 returnsfalse).

See: set Sti ppl e/ 2

getStyle(This) -> wx:wx_enum()
Types:
This = wxBrush()
Returns the brush style, one of the AwxBrushStyle values.

See: set Styl e/ 2,set Col our/ 4,set Sti ppl e/ 2

isHatch(This) -> boolean()
Types:
This = wxBrush()
Returnstrueif the style of the brush is any of hatched fills.

Seeiget Stylel/l

is0k(This) -> boolean()
Types:

This = wxBrush()
Returnstrueif the brush isinitialised.

Notice that an uninitialized brush object can't be queried for any brush properties and all callsto the accessor methods
on it will result in an assert failure.

setColour(This, Colour) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 73

wxBrush

This = wxBrush()
Colour = wx:wx_colour()

Sets the brush colour using red, green and blue values.
See: get Col our/ 1

setColour(This, Red, Green, Blue) -> ok
Types:

This = wxBrush()

Red = Green = Blue = integer()

setStipple(This, Bitmap) -> ok
Types:

This = wxBrush()

Bitmap = wxBitmap:wxBitmap()
Sets the stipple bitmap.

Remark: The style will be set to wxBRUSHSTYLE_STI PPLE, unlessthe bitmap has a mask associated to it, in which
case the style will be set to wBRUSHSTYLE_STI PPLE_MASK_OPAQUE.

See: WwxBi t map

setStyle(This, Style) -> ok
Types:

This = wxBrush()

Style = wx:wx_enum()
Setsthe brush style.
Seerget Style/l

74 | Ericsson AB. All Rights Reserved.: wxErlang

wxBufferedDC

wxBufferedDC

Erlang module

This class provides a simple way to avoid flicker: when drawing on it, everything is in fact first drawn on an in-
memory buffer (a wxBi t map) and then copied to the screen, using the associated wxDC, only once, when this
object is destroyed. wxBuf f er edDC itself istypically associated with wxCl i ent DC, if you want to use it in your
EVT_PAI NT handler, you should look a wxBuf f er edPai nt DCinstead.

When used like this, a valid DC must be specified in the constructor while the buf f er bitmap doesn't have to be
explicitly provided, by default this class will allocate the bitmap of required size itself. However using a dedicated
bitmap can speed up the redrawing process by eliminating the repeated creation and destruction of a possibly big
bitmap. Otherwise, wx Buf f er edDC can be used in the same way as any other device context.

Another possible use for wxBuf f er edDC is to use it to maintain a backing store for the window contents. In this
case, the associated DC may be NULL but a valid backing store bitmap should be specified.

Finally, please note that GTK+ 2.0 as well as macOS provide double buffering themselves natively. You can
either use wxW ndow. i sDoubl eBuf f er ed/ 1 to determine whether you need to use buffering or not, or use
wxAut oBuf f er edPai nt DC (not implemented in wx) to avoid needless double buffering on the systems which
already do it automatically.

See: wx DC, wx Menor yDC, wx Buf f er edPai nt DC, wx Aut oBuf f er edPai nt DC (not implemented in wx)
This classis derived (and can use functions) from: wxMenor y DC wx DC
wxWidgets docs: wxBufferedDC

Data Types

wxBufferedDC() = wx:wx object()

Exports

new() -> wxBufferedDC()
Default constructor.
Y ou must call one of thei ni t / 4 methods later in order to use the device context.

new(Dc) -> wxBufferedDC()
Types.
Dc = wxDC:wxDC()

new(Dc, Area) -> wxBufferedDC()
new(Dc, Area :: [Option]) -> wxBufferedDC()
Types.
Dc = wxDC:wxDC()
Option = {buffer, wxBitmap:wxBitmap()} | {style, integer()}
Creates abuffer for the provided dc.

i ni t/ 4 must not be called when using this constructor.

Ericsson AB. All Rights Reserved.: wxErlang | 75

href

wxBufferedDC

new(Dc, Area, Options :: [Option]) -> wxBufferedDC()
Types.
Dc = wxDC:wxDC()
Area = {W :: integer(), H :: integer()}
Option = {style, integer()}
Creates a buffer for the provided dc.
i ni t/ 4 must not be called when using this constructor.

destroy(This :: wxBufferedDC()) -> ok
Copies everything drawn on the DC so far to the underlying DC associated with this object, if any.

init(This, Dc) -> ok
Types.
This = wxBufferedDC()
Dc = wxDC:wxDC()

init(This, Dc, Area) -> ok
init(This, Dc, Area :: [Option]) -> ok
Types:
This = wxBufferedDC()
Dc = wxDC:wxDC()
Option = {buffer, wxBitmap:wxBitmap()} | {style, integer()}

init(This, Dc, Area, Options :: [Option]) -> ok
Types:
This = wxBufferedDC()
Dc = wxDC:wxDC()
Area = {W :: integer(), H :: integer()}
Option = {style, integer()}
Initializes the object created using the default constructor.

Please see the constructors for parameter details.

76 | Ericsson AB. All Rights Reserved.: wxErlang

wxBufferedPaintDC

wxBufferedPaintDC

Erlang module

This is a subclass of wxBufferedDC which can be used inside of an EVT_PAINT() event
handler to achieve double-buffered drawing. Just use this class instead of wxPai nt DC and make sure
wxW ndow: set BackgroundStyl e/ 2 is called with wxBG_STYLE _PAINT somewhere in the class
initialization code, and that's all you have to do to (mostly) avoid flicker. The only thing to watch out for is that if
you are using this class together with wxScr ol | ed (not implemented in wx), you probably do not want to call
wxScr ol | edW ndow: pr epar eDC/ 2 onit asit aready doesthisinternally for the real underlying wx Pai nt DC.

See: wxDC, wxBuf f er edDC, wx Aut oBuf f er edPai nt DC (not implemented in wx), wx Pai nt DC
This classis derived (and can use functions) from: wxBuf f er edDC wx Menor y DC wx DC
wxWidgets docs: wxBufferedPaintDC

Data Types

wxBufferedPaintDC() = wx:wx _object()

Exports

new(Window) -> wxBufferedPaintDC()
Types:
Window = wxWindow:wxWindow()

new(Window, Buffer) -> wxBufferedPaintDC()
new(Window, Buffer :: [Option]) -> wxBufferedPaintDC(C()

Types.
Window = wxWindow:wxWindow ()
Option = {style, integer()}

new(Window, Buffer, Options :: [Option]) -> wxBufferedPaintDC()

Types:
Window = wxWindow:wxWindow ()
Buffer = wxBitmap:wxBitmap()

Option = {style, integer()}

As with wxBuf f er edDC, you may either provide the bitmap to be used for buffering or let this object create one
internally (in the latter case, the size of the client part of the window is used).

Pass wxBUFFER_CLIENT_AREA for the st yl e parameter to indicate that just the client area of the window is
buffered, or wxBUFFER_VIRTUAL _AREA to indicate that the buffer bitmap covers the virtual area.

destroy(This :: wxBufferedPaintDC()) -> ok
Copies everything drawn on the DC so far to the window associated with this object, using awxPai nt DC.

Ericsson AB. All Rights Reserved.: wxErlang | 77

href

wxButton

wxButton

Erlang module

A button is a control that contains atext string, and is one of the most common elements of a GUI.
It may be placed on awxDi al og or on awxPanel panel, or indeed on aimost any other window.

By default, i.e. if none of the alignment styles are specified, thelabel is centered both horizontally and vertically. If the
button has both alabel and a bitmap, the alignment styles above specify the location of the rectangle combining both
thelabel and the bitmap and the bitmap position set withwx But t on: : Set Bi t mapPosi ti on() (notimplemented
in wx) defines the relative position of the bitmap with respect to the label (however currently non-default alignment
combinations are not implemented on all platforms).

Since version 2.9.1 wxBut t on supports showing both text and an image (currently only when using wxMSW,
WXGTK or wxOSX/Cocoa ports), see Set Bi t nap() (not implemented in wx) and set Bi t mapLabel / 2,
set Bi t mapDi sabl ed/ 2 &c methods. In the previous wxWidgets versions this functionality was only availablein
(the now trivial) wxBi t mapBut t on class which was only capable of showing an image without text.

A button may have either asingle image for all states or different images for the following states (different images are
not currently supported under macOS where the normal imageis used for all states):

All of the bitmaps must be of the same size and the normal bitmap must be set first (to avalid bitmap), before setting
any other ones. Also, if the size of the bitmaps is changed later, you need to change the size of the normal bitmap
before setting any other bitmaps with the new size (and you do need to reset all of them as their original values can
be lost when the normal bitmap size changes).

The position of the image inside the button be configured using Set Bi t napPosi ti on() (notimplementedinwx).
By default the image is on the lft of the text.

Please also notice that GTK+ uses aglobal setting called gt k- but t on- i mages to determine if the images should
be shown in the buttons at all. If it is off (whichisthe case in e.g. Gnome 2.28 by default), no images will be shown,
consistently with the native behaviour.

Styles

This class supports the following styles:

See: wxBi t mapBut t on

This classis derived (and can use functions) from: wxCont r ol wxW ndowwx Evt Handl er
wxWidgets docs; wxButton

Events

Event types emitted from this class: command_but t on_cl i cked

Data Types

wxButton() = wx:wx object()

Exports

new() -> wxButton()
Default ctor.

78 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxButton

new(Parent, Id) -> wxButton()
Types.
Parent = wxWindow:wxWindow/()

Id = integer()

new(Parent, Id, Options ::

Types:
Parent = wxWindow:wxWindow/()
Id = integer()
Option =

{label, unicode:chardata()} |
integer()}} |

{pos, {X :: integer(), Y ::
{size, {W :: integer(), H ::
{style, integer()} |

{validator, wx:wx object()}

Constructor, creating and showing a button.

[Option]) -> wxButton()

integer()}} |

The preferred way to create standard buttonsisto use default value of | abel . If nolabel issuppliedandi d isone of
standard IDsfrom thislist, a standard label will be used. In other words, if you use a predefined wx|1 D_XXX constant,
just omit the label completely rather than specifying it. In particular, help buttons (the oneswithi d of wx| D_HELP)
under macOS can't display any label at all and while wxBut t on will detect if the standard "Help" label is used and
ignore it, using any other label will prevent the button from correctly appearing as a help button and so should be

avoided

In addition to that, the button will be decorated with stock icons under GTK+ 2.
See: cr eat e/ 4, wxVal i dat or (not implemented in wx)

create(This, Parent, Id) -> boolean()
Types:
This = wxButton()

Parent wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options ::
Types:
This wxButton()
Parent wxWindow:wxWindow ()
Id = integer()
Option
{label, unicode:chardata()} |
{pos, {X :: integer(), Y ::
{size, {W :: integer(), H ::
{style, integer()} |
{validator, wx:wx object()}

Button creation function for two-step creation.

For more details, see new 3.

[Option]) -> boolean()

integer()}} |

integer()}} |

Ericsson AB. All Rights Reserved.: wxErlang | 79

wxButton

getDefaultSize() -> {W :: integer(), H :: integer()}
Returns the default size for the buttons.

It is advised to make all the dialog buttons of the same size and this function allows retrieving the (platform, and
current font dependent) size which should be the best suited for this.

The optional wi n argument is new since wxWidgets 3.1.3 and allows to get a per-monitor DPI specific size.

getDefaultSize(Win) -> {W :: integer(), H :: integer()}
Types.
Win = wxWindow:wxWindow()

setDefault(This) -> wxWindow:wxWindow()
Types:
This = wxButton()
This sets the button to be the default item in its top-level window (e.g.
the panel or the dialog box containing it).
Asnormal, pressing return causes the default button to be depressed when the return key is pressed.

See aso wxW ndow: set Focus/ 1 which sets the keyboard focus for windows and text panel items, and
wxTopLevel W ndow. : Set Def aul t It en() (notimplemented inwx).

Remark: Under Windows, only dialog box buttons respond to this function.
Return: the old default item (possibly NULL)

setLabel(This, Label) -> ok
Types:

This = wxButton()

Label = unicode:chardata()

Setsthe string |abel for the button.

getBitmapDisabled(This) -> wxBitmap:wxBitmap()
Types:
This = wxButton()
Returns the bitmap for the disabled state, which may be invalid.
See: set Bi t mapDi sabl ed/ 2
Since: 2.9.1 (availablein wxBi t mapBut t on only in previous versions)

getBitmapFocus(This) -> wxBitmap:wxBitmap()
Types:
This = wxButton()
Returns the bitmap for the focused state, which may be invalid.
See: set Bi t mapFocus/ 2
Since: 2.9.1 (availablein wxBi t mapBut t on only in previous versions)

80 | Ericsson AB. All Rights Reserved.: wxErlang

wxButton

getBitmapLabel(This) -> wxBitmap:wxBitmap()
Types:

This = wxButton()
Returns the bitmap for the normal state.

This is exactly the same as Get Bi t map() (not implemented in wx) but uses a name backwards-compatible with
wxBi t mapBut t on.

See: Set Bi t map() (not implemented in wx), set Bi t mapLabel / 2
Since: 2.9.1 (availablein wxBi t mapBut t on only in previous versions)

setBitmapDisabled(This, Bitmap) -> ok
Types:

This = wxButton()

Bitmap = wxBitmap:wxBitmap()
Sets the bitmap for the disabled button appearance.

If bi t map isinvalid, thedisabled bitmap isset to the automatically generated greyed out version of the normal bitmap,
i.e. the same bitmap asis used by default if this method is not called at all. Use Set Bi t map() (not implemented in
wx) with an invalid bitmap to remove the bitmap completely (for all states).

See: get Bi t mapDi sabl ed/ 1, set Bi t mrapLabel / 2, Set Bi t napPressed() (not implemented in wx),
set Bi t mapFocus/ 2

Since: 2.9.1 (availablein wxBi t mapBut t on only in previous versions)

setBitmapFocus(This, Bitmap) -> ok
Types:
This = wxButton()
Bitmap = wxBitmap:wxBitmap()
Sets the bitmap for the button appearance when it has the keyboard focus.
If bi t map isinvalid, the normal bitmap will be used in the focused state.

See: get Bi t mapFocus/ 1, setBit rapLabel /2, SetBi t mapPressed() (not implemented in wx),
set Bi t mapDi sabl ed/ 2

Since: 2.9.1 (availablein wxBi t mapBut t on only in previous versions)

setBitmapLabel(This, Bitmap) -> ok
Types.
This = wxButton()
Bitmap = wxBitmap:wxBitmap()
Sets the bitmap label for the button.
Remark: Thisisthe bitmap used for the unsel ected state, and for all other statesif no other bitmaps are provided.
See: Set Bi t map() (not implemented in wx), get Bi t mapLabel / 1
Since: 2.9.1 (availablein wxBi t mapBut t on only in previous versions)

destroy(This :: wxButton()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 81

wxCalendarCtrl

wxCalendarCtrl

Erlang module

The calendar control allows the user to pick a date. The user can move the current selection using the keyboard and
select the date (generating EVT_ CALENDAR event) by pressing <Ret ur n> or double clicking it.

Generic calendar has advanced possibilities for the customization of its display, described below. If you want to use
these possibilities on every platform, use wxGenericCaendarCtrl instead of wxCal endar Ct r | .

All global settings (such as colours and fonts used) can, of course, be changed. But also, the display style for each day
in the month can be set independently using wxCal endar Dat eAt t r class.

An item without custom attributes is drawn with the default colours and font and without border, but setting custom
attributes with set At t r / 3 allows modifying its appearance. Just create a custom attribute object and set it for the
day you want to be displayed specially (note that the control will take ownership of the pointer, i.e. it will delete it
itself). A day may be marked as being a holiday, even if it is not recognized as one by wx_dat et i me() using the
wxCal endar Dat eAt t r; set Hol i day/ 2 method.

As the attributes are specified for each day, they may change when the month is changed, so you will often want to
update them in EVT_CALENDAR_PAGE CHANGED event handler.

If neither the wx CAL_SUNDAY_FI RST or wxCAL_MONDAY_FI RST style is given, the first day of the week is
determined from operating system's settings, if possible. The native wxGTK calendar choosesthe first weekday based
on locale, and these styles have no effect oniit.

Styles
This class supports the following styles:

Note: Changing the selected date will trigger an EVT_CALENDAR_DAY, MONTH or YEAR event as well as an
EVT_CALENDAR_SEL_CHANGED event.

See: Examples, wxCal endar Dat eAtt r, wxCal endar Event ,wxDat ePi cker Ct r |
This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxCalendar Ctrl

Events

Event types emitted from this class: cal endar _sel _changed, cal endar _weekday_cl i cked

Data Types

wxCalendarCtrl() = wx:wx _object()

Exports

new() -> wxCalendarCtrl()
Default constructor.

new(Parent, Id) -> wxCalendarCtrl()
Types.

82 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxCalendarCtrl

Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxCalendarCtrl()
Types.
Parent = wxWindow:wxWindow ()
Id = integer()
Option =
{date, wx:wx datetime()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Doesthesameascr eat e/ 4 method.

create(This, Parent, Id) -> boolean()
Types.

This = wxCalendarCtrl()

Parent = wxWindow:wxWindow()

Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types.
This = wxCalendarCtrl()
Parent = wxWindow:wxWindow ()
Id = integer()
Option =
{date, wx:wx datetime()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Creates the control.

See wxW ndow. new 3 for the meaning of the parameters and the control overview for the possible styles.

destroy(This :: wxCalendarCtrl()) -> ok
Destroys the control.

setDate(This, Date) -> boolean()

Types:
This = wxCalendarCtrl()
Date = wx:wx datetime()
Sets the current date.

The dat e parameter must be valid and in the currently valid range as set by Set Dat eRange() (not implemented
in wx), otherwise the current date is not changed and the function returns false and, additionally, triggers an assertion
failureif the dateisinvaid.

Ericsson AB. All Rights Reserved.: wxErlang | 83

wxCalendarCtrl

getDate(This) -> wx:wx datetime()

Types.
This = wxCalendarCtrl()
Getsthe currently selected date.

enableYearChange(This) -> ok
Types.
This = wxCalendarCtrl()

enableYearChange(This, Options :: [Option]) -> ok
Types:

This = wxCalendarCtrl()

Option = {enable, boolean()}
Deprecated:

Thisfunction should be used instead of changingwx CAL_NO_YEAR_ CHANGE stylebit directly. It allowsor disallows
the user to change the year interactively. Only in genericwxCal endar Ctr | .

enableMonthChange(This) -> boolean()
Types.
This = wxCalendarCtrl()

enableMonthChange(This, Options :: [Option]) -> boolean()
Types:

This = wxCalendarCtrl()

Option = {enable, boolean()}
This function should be used instead of changing wx CAL_NO_MONTH_CHANGE style bit.

It allows or disallows the user to change the month interactively. Note that if the month cannot be changed, the year
cannot be changed neither.

Return: true if the value of this option really changed or falseif it was already set to the requested value.

enableHolidayDisplay(This) -> ok
Types:
This = wxCalendarCtrl()

enableHolidayDisplay(This, Options :: [Option]) -> ok
Types:
This = wxCalendarCtrl()
Option = {display, boolean()}
This function should be used instead of changing wx CAL_ SHOW HCOLI DAYS style bit directly.
It enables or disables the special highlighting of the holidays.

setHeaderColours(This, ColFg, ColBg) -> ok
Types:

84 | Ericsson AB. All Rights Reserved.: wxErlang

wxCalendarCtrl

This = wxCalendarCtrl()
ColFg = ColBg = wx:wx colour()
Set the colours used for painting the weekdays at the top of the control.
This method is currently only implemented in generic wxCal endar Ct r | and does nothing in the native versions.

getHeaderColourFg(This) -> wx:wx_colour4()
Types.

This = wxCalendarCtrl()
Gets the foreground colour of the header part of the calendar window.

This method is currently only implemented in generic wxCal endar Ct r | and always returnswxNul | Col our in
the native versions.

See: set Header Col our s/ 3

getHeaderColourBg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Gets the background colour of the header part of the calendar window.

This method is currently only implemented in generic wxCal endar Ct r | and always returnswxNul | Col our in
the native versions.

See: set Header Col our s/ 3

setHighlightColours(This, ColFg, ColBg) -> ok
Types:
This = wxCalendarCtrl()
ColFg = ColBg = wx:wx colour()
Set the colours to be used for highlighting the currently selected date.
This method is currently only implemented in generic wxCal endar Ct r | and does nothing in the native versions.

getHighlightColourFg(This) -> wx:wx_colour4()
Types:
This = wxCalendarCtrl()
Gets the foreground highlight colour.
Only in genericwx Cal endar Ctr | .

This method is currently only implemented in generic wxCal endar Ct r | and always returnswxNul | Col our in
the native versions.

See: set Hi ghl i ght Col ours/ 3

getHighlightColourBg(This) -> wx:wx colour4()
Types:

This = wxCalendarCtrl()
Gets the background highlight colour.

Ericsson AB. All Rights Reserved.: wxErlang | 85

wxCalendarCtrl

Only in genericwxCal endar Ctr 1 .

This method is currently only implemented in generic wxCal endar Ct r | and always returns wxNul | Col our in
the native versions.

See: set Hi ghl i ght Col ours/ 3

setHolidayColours(This, ColFg, ColBg) -> ok
Types.

This = wxCalendarCtrl()

ColFg = ColBg = wx:wx colour()

Sets the colours to be used for the holidays highlighting.

This method is only implemented in the generic version of the control and does nothing in the native ones. It should
also only be caled if the window styleincludeswx CAL_SHOW HOLI DAYS flag or enabl eHol i dayDi spl ay/ 2
had been called.

getHolidayColourFg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Return the foreground colour currently used for holiday highlighting.

Only useful with generic wxCal endar Ct r| as native versions currently don't support holidays display at al and
alwaysreturn wxNul | Col our .

See: set Hol i dayCol ours/ 3

getHolidayColourBg(This) -> wx:wx_colour4()
Types:

This = wxCalendarCtrl()
Return the background colour currently used for holiday highlighting.

Only useful with generic wxCal endar Ct r| as native versions currently don't support holidays display at al and
alwaysreturn wxNul | Col our .

See: set Hol i dayCol our s/ 3

getAttr(This, Day) -> wxCalendarDateAttr:wxCalendarDateAttr()
Types:
This = wxCalendarCtrl()
Day = integer()
Returns the attribute for the given date (should be in therange 1...31).
The returned pointer may be NULL. Only in genericwxCal endar Ct r | .

setAttr(This, Day, Attr) -> ok
Types.

86 | Ericsson AB. All Rights Reserved.: wxErlang

wxCalendarCtrl

This = wxCalendarCtrl()

Day = integer()

Attr = wxCalendarDateAttr:wxCalendarDateAttr()
Associates the attribute with the specified date (in the range 1...31).

If the pointer isNULL, the items attributeis cleared. Only in genericwxCal endar Ctr | .

setHoliday(This, Day) -> ok
Types:
This = wxCalendarCtrl()
Day = integer()
Marks the specified day as being a holiday in the current month.
This method is only implemented in the generic version of the control and does nothing in the native ones.

resetAttr(This, Day) -> ok
Types:
This = wxCalendarCtrl()
Day = integer()
Clears any attributes associated with the given day (in therange 1...31).
Only in genericwxCal endar Ctrl .

hitTest(This, Pos) -> Result

Types:
Result =
{Res :: wx:wx_enum(),
Date :: wx:wx datetime(),
Wd :: wx:wx_enum()}

This = wxCalendarCtrl()
Pos = {X :: integer(), Y :: integer()}

Returns one of wxCalendarHitTestResult constants and fills either dat e or wd pointer with the corresponding value
depending on the hit test code.

Not implemented in wxGTK currently.

Ericsson AB. All Rights Reserved.: wxErlang | 87

wxCalendarDateAttr

wxCalendarDateAttr

Erlang module

wxCal endar Dat eAtt r is a custom attributes for a calendar date. The objects of this class are used with
wxCal endar Ct rl .

See: wxCal endar Ctr |
wxWidgets docs: wxCalendar DateAttr

Data Types

wxCalendarDateAttr() = wx:wx object()

Exports
new() -> wxCalendarDateAttr()

new(Border) -> wxCalendarDateAttr()

new(Border :: [Option]) -> wxCalendarDateAttr()
Types:
Option =

{colText, wx:wx colour()}
{colBack, wx:wx colour()}
r(
o

I

I
{colBorder, wx:wx colou)} |
{font, wxFont: wxFont (

{border, wx:wxienum()}
Constructor for specifying all wxCal endar Dat eAt t r properties.

new(Border, Options :: [Option]) -> wxCalendarDateAttr()

Types:
Border = wx:wx_enum()
Option = {colBorder, wx:wx_colour()}

Constructor using default properties except the given border.

setTextColour(This, ColText) -> ok
Types.
This = wxCalendarDateAttr()
ColText = wx:wx _colour()

Sets the text (foreground) colour to use.

setBackgroundColour(This, ColBack) -> ok
Types:

This = wxCalendarDateAttr()

ColBack = wx:wx colour()

Sets the text background colour to use.

88 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCalendarDateAttr

setBorderColour(This, Col) -> ok
Types.
This = wxCalendarDateAttr()
Col = wx:wx _colour()

Sets the border colour to use.

setFont(This, Font) -> ok

Types:
This = wxCalendarDateAttr()
Font = wxFont:wxFont ()

Sets the font to use.

setBorder(This, Border) -> ok
Types.
This = wxCalendarDateAttr()
Border = wx:wx_enum()

Sets the border to use.

setHoliday(This, Holiday) -> ok
Types:
This = wxCalendarDateAttr()
Holiday = boolean()

If hol i day istrue, this calendar day will be displayed as a holiday.

hasTextColour(This) -> boolean()
Types:
This = wxCalendarDateAttr()
Returns true if a non-default text foreground colour is set.

hasBackgroundColour(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returnstrueif a non-default text background colour is set.

hasBorderColour(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returnstrueif a non-default border colour is set.

hasFont(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returnstrueif anon-default font is set.

Ericsson AB. All Rights Reserved.: wxErlang | 89

wxCalendarDateAttr

hasBorder(This) -> boolean()
Types.

This = wxCalendarDateAttr()
Returnstrueif anon-default (i.e. any) border is set.

isHoliday(This) -> boolean()
Types:

This = wxCalendarDateAttr()
Returnstrueif this calendar day is displayed as a holiday.

getTextColour(This) -> wx:wx colour4()
Types:

This = wxCalendarDateAttr()
Returns the text colour set for the calendar date.

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxCalendarDateAttr()
Returns the background colour set for the calendar date.

getBorderColour(This) -> wx:wx_ colour4()
Types:

This = wxCalendarDateAttr()
Returns the border colour set for the calendar date.

getFont(This) -> wxFont:wxFont()
Types:

This = wxCalendarDateAttr()
Returns the font set for the calendar date.

getBorder(This) -> wx:wx_enum()
Types.

This = wxCalendarDateAttr()
Returns the border set for the calendar date.

destroy(This :: wxCalendarDateAttr()) -> ok
Destroys the object.

90 | Ericsson AB. All Rights Reserved.: wxErlang

wxCalendarEvent

wxCalendarEvent

Erlang module

ThewxCal endar Event classis used together withwxCal endar Ct r |
See: wxCal endar Ctr |
This classis derived (and can use functions) from: wxDat eEvent wxConmandEvent wxEvent

wxWidgets docs: wxCalendar Event

Data Types

wxCalendarEvent() = wx:wx object()
wxCalendar() =

#wxCalendar{type = wxCalendarEvent:wxCalendarEventType(),
wday = wx:wx_enum(),
date = wx:wx _datetime()}

wxCalendarEventType() =
calendar _sel changed | calendar day changed |
calendar _month changed | calendar year changed |
calendar _doubleclicked | calendar weekday clicked

Exports

getWeekDay(This) -> wx:wx_enum()
Types:
This = wxCalendarEvent()
Returns the week day on which the user clicked in EVT_CALENDAR WEEKDAY_CLI| CKED handler.

It doesn't make sense to call thisfunction in other handlers.

getDate(This) -> wx:wx datetime()

Types.
This = wxCalendarEvent()
Returns the date.

Ericsson AB. All Rights Reserved.: wxErlang | 91

href

wxCaret

wxCaret

Erlang module

A caret is a blinking cursor showing the position where the typed text will appear. Text controls usually have their
own caret but wxCar et provides away to use a caret in other windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be possible to specify a bitmap to
be used for the caret shape.

A caret is always associated with awindow and the current caret can be retrieved using wxW ndow: get Car et / 1.
The same caret can't be reused in two different windows.

wxWidgets docs: wxCar et

Data Types

wxCaret() = wx:wx _object()

Exports

new(Window, Size) -> wxCaret()
Types:
Window = wxWindow:wxWindow()
Size = {W :: integer(), H :: integer()}

new(Window, Width, Height) -> wxCaret()
Types.

Window = wxWindow:wxWindow ()

Width = Height = integer()

Creates a caret with the given size (in pixels) and associates it with thewi ndow.

create(This, Window, Size) -> boolean()
Types.

This = wxCaret()

Window = wxWindow:wxWindow()

Size = {W :: integer(), H :: integer()}

create(This, Window, Width, Height) -> boolean()
Types:

This = wxCaret()

Window = wxWindow:wxWindow/()

Width = Height = integer()

Creates a caret with the given size (in pixels) and associates it with thewi ndow (same as the equivalent constructors).

92 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCaret

getBlinkTime() -> integer()

Returns the blink time which is measured in milliseconds and is the time elapsed between 2 inversions of the caret
(blink time of the caret isthe same for all carets, so this functionsis static).

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:
This = wxCaret()

getSize(This) -> {W :: integer(), H :: integer()}
Types:
This = wxCaret()

getWindow(This) -> wxWindow:wxWindow()
Types.

This = wxCaret()
Get the window the caret is associated with.

hide(This) -> ok
Types.
This = wxCaret()

Hides the caret, same as Show(false).

isOk(This) -> boolean()
Types:
This = wxCaret()
Returns true if the caret was created successfully.

isVisible(This) -> boolean()
Types:
This = wxCaret()

Returns true if the caret is visible and false if it is permanently hidden (if it is blinking and not shown currently but
will be after the next blink, this method still returns true).

move(This, Pt) -> ok
Types:
This = wxCaret()
Pt = {X :: integer(), Y :: integer()}

move(This, X, Y) -> ok
Types:

This = wxCaret()

X =Y = integer()

Move the caret to given position (in logical coordinates).

Ericsson AB. All Rights Reserved.: wxErlang | 93

wxCaret

setBlinkTime(Milliseconds) -> ok
Types.

Milliseconds = integer()
Sets the blink time for all the carets.

Warning: Under Windows, this function will change the blink time for all carets permanently (until the next time it
iscalled), even for carets in other applications.

See: get Bl i nkTi me/ 0

setSize(This, Size) -> ok

Types:
This = wxCaret()
Size = {W :: integer(), H :: integer()}

setSize(This, Width, Height) -> ok
Types:

This = wxCaret()

Width = Height = integer()

Changes the size of the caret.

show(This) -> ok
Types:
This = wxCaret()

show(This, Options :: [Option]) -> ok
Types.

This = wxCaret()

Option = {show, boolean()}

Shows or hides the caret.

Notice that if the caret was hidden N times, it must be shown N times as well to reappear on the screen.

destroy(This :: wxCaret()) -> ok
Destroys the object.

94 | Ericsson AB. All Rights Reserved.: wxErlang

wxCheckBox

wxCheckBox

Erlang module

A checkbox is alabelled box which by default is either on (checkmark is visible) or off (no checkmark). Optionally
(when the wxCHK_3STATE style flag is set) it can have athird state, called the mixed or undetermined state. Often
thisisused asa"Does Not Apply" state.

Styles

This class supports the following styles:

See: wxRadi oBut t on, wxCommrandEvent

This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxCheckBox

Events

Event types emitted from this class: conmmand_checkbox_cl i cked

Data Types

wxCheckBox () = wx:wx_object()

Exports

new() -> wxCheckBox()
Default constructor.

See: cr eat e/ 5, wxVal i dat or (notimplemented in wx)

new(Parent, Id, Label) -> wxCheckBox()
Types:

Parent = wxWindow:wxWindow()

Id = integer()

Label = unicode:chardata()

new(Parent, Id, Label, Options :: [Option]) -> wxCheckBox()
Types.

Parent = wxWindow:wxWindow/()

Id = integer()

Label = unicode:chardata()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()} |
{validator, wx:wx object()}

Constructor, creating and showing a checkbox.
See: cr eat e/ 5, wxVal i dat or (not implemented in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 95

href

wxCheckBox

destroy(This :: wxCheckBox()) -> ok
Destructor, destroying the checkbox.

create(This, Parent, Id, Label) -> boolean()
Types:

This = wxCheckBox()

Parent = wxWindow:wxWindow()

Id = integer()

Label = unicode:chardata()

create(This, Parent, Id, Label, Options :: [Option]) -> boolean()
Types.

This = wxCheckBox()

Parent = wxWindow:wxWindow()

Id = integer()

Label = unicode:chardata()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()} |
{validator, wx:wx object()}

Creates the checkbox for two-step construction.
Seenew 4 for details.

getValue(This) -> boolean()
Types:

This = wxCheckBox()
Gets the state of a 2-state checkbox.

Return: Returnstrueif it is checked, false otherwise.

get3StateValue(This) -> wx:wx_enum()
Types:

This = wxCheckBox()
Gets the state of a 3-state checkbox.

Asserts when the function is used with a 2-state checkbox.

is3rdStateAllowedForUser(This) -> boolean()
Types:

This = wxCheckBox()
Returns whether or not the user can set the checkbox to the third state.

Return: true if the user can set the third state of this checkbox, false if it can only be set programmatically or if it's
a 2-state checkbox.

96 | Ericsson AB. All Rights Reserved.: wxErlang

wxCheckBox

is3State(This) -> boolean()
Types.
This = wxCheckBox()
Returns whether or not the checkbox is a 3-state checkbox.

Return: trueif this checkbox is a 3-state checkbox, falseif it's a 2-state checkbox.

isChecked(This) -> boolean()
Types.
This = wxCheckBox()

This is just a maybe more readable synonym for get Val ue/ 1: just as the latter, it returns true if the checkbox is
checked and fal se otherwise.

setValue(This, State) -> ok
Types.
This = wxCheckBox()
State = boolean()

Sets the checkbox to the given state.
This does not cause awx EVT_CHECKBOX event to get emitted.

set3StateValue(This, State) -> ok
Types:

This = wxCheckBox()

State = wx:wx_enum()

Sets the checkbox to the given state.
This does not cause awx EVT_CHECKBOX event to get emitted.
Asserts when the checkbox is a 2-state checkbox and setting the state to wxCHK_UNDETERMINED.

Ericsson AB. All Rights Reserved.: wxErlang | 97

wxCheckListBox

wxCheckListBox

Erlang module

A wxCheckLi st Box islikeawxLi st Box, but allows itemsto be checked or unchecked.
When using this class under Windows wxWidgets must be compiled with wxUSE_ OWNER_DRAWN set to 1.
See: wxLi st Box, wxChoi ce, wxComboBox, wxLi st Ct r | , wxCommandEvent

Thisclassisderived (and can usefunctions) from: wxLi st Box wxCont r ol Wt hlt ens wxCont r ol wxW ndow
wxEvt Handl er

wxWidgets docs: wxCheckL istBox

Events

Event types emitted from this class. cormand_checkl i st box_t oggl ed

Data Types

wxCheckListBox () = wx:wx object()

Exports

new() -> wxCheckListBox()
Default constructor.

new(Parent, Id) -> wxCheckListBox()
Types.

Parent = wxWindow:wxWindow()

Id = integer()

new(Parent, Id, Options :: [Option]) -> wxCheckListBox()
Types.
Parent = wxWindow:wxWindow/()
Id = integer()
Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{choices, [unicode:chardata()]} |
{style, integer()} |
{validator, wx:wx object()}

Constructor, creating and showing alist box.

destroy(This :: wxCheckListBox()) -> ok
Destructor, destroying the list box.

check(This, Item) -> ok
Types:

98 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCheckListBox

This
Item

wxCheckListBox()
integer()

check(This, Item, Options :: [Option]) -> ok

Types.
This = wxCheckListBox()
Item = integer()

Option = {check, boolean()}
Checks the given item.
Note that calling this method does not result in awx EVT_CHECKLI STBOX event being emitted.

isChecked(This, Item) -> boolean()

Types:
This = wxCheckListBox()
Item = integer()

Returnstrueif the given item is checked, false otherwise.

Ericsson AB. All Rights Reserved.: wxErlang | 99

wxChildFocusEvent

wxChildFocusEvent

Erlang module

A child focus event is sent to a (parent-)window when one of its child windows gains focus, so that the window could
restore the focus back to its corresponding child if it losesit now and regains later.

Notice that child window is the direct child of the window receiving event. Use wxW ndow. f i ndFocus/ 0 to
retrieve the window which is actually getting focus.

See: Overview events
This classis derived (and can use functions) from: wx CommandEvent wxEvent

wxWidgets docs: wxChildFocusEvent

Events

Usewx Evt Handl er : connect / 3 withwxChi | dFocusEvent Type to subscribe to events of thistype.

Data Types

wxChildFocusEvent() = wx:wx object()

wxChildFocus() =
#wxChildFocus{type =
wxChildFocusEvent:wxChildFocusEventType()}

wxChildFocusEventType() = child focus

Exports

getWindow(This) -> wxWindow:wxWindow()
Types:
This = wxChildFocusEvent()
Returns the direct child which receives the focus, or a (grand-)parent of the control receiving the focus.

To get the actually focused control use wxW ndow: f i ndFocus/ 0.

100 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxChoicebook

wxChoicebook

Erlang module

wx Choi cebook is aclass similar to wxNot ebook, but uses awxChoi ce control to show the labels instead of
the tabs.

For usage documentation of this class, please refer to the base abstract class wxBookCitrl. You can also use the
page_samples_notebook to see wxChoi cebook in action.

wx Choi cebook alows the use of wxBookCtrlBase::GetControl Sizer(), allowing a program to add other controls
next to the choice control. This is particularly useful when screen space is restricted, as it often is when
wx Choi cebook isbeing employed.

Styles

This class supports the following styles:

See: Overview bookctrl, wxNot ebook, Examples

This classis derived (and can use functions) from: wxBookCt r | Base wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxChoicebook

Events

Event types emitted from this class: choi cebook _page_changed, choi cebook _page changi ng

Data Types

wxChoicebook() = wx:wx _object()

Exports

new() -> wxChoicebook()
Constructs a choicebook control.

new(Parent, Id) -> wxChoicebook()
Types:
Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxChoicebook()
Types:

Parent = wxWindow:wxWindow()

Id = integer()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()}

addPage(This, Page, Text) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 101

href
href
href

wxChoicebook

This = wxChoicebook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

addPage(This, Page, Text, Options :: [Option]) -> boolean()

Types:
This = wxChoicebook()
Page = wxWindow:wxWindow()
Text = unicode:chardata()

Option = {bSelect, boolean()} | {imageld, integer()}
Adds anew page.
The page must have the book control itself as the parent and must not have been added to this control previoudly.

The call to this function will generate the page changing and page changed eventsif sel ect istrue, but not when
inserting the very first page (as thereis no previous page selection to switch from in this case and so it wouldn't make
sense to e.g. veto such event).

Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: i nsert Page/ 5

advanceSelection(This) -> ok
Types.
This = wxChoicebook()

advanceSelection(This, Options :: [Option]) -> ok
Types:

This = wxChoicebook()

Option = {forward, boolean()}
Cyclesthrough the tabs.

The call to this function generates the page changing events.

assignImagelList(This, ImagelList) -> ok
Types:

This = wxChoicebook()

ImagelList = wxImagelList:wxImagelist()

Setsthe image list for the page control and takes ownership of thelist.
See: wx| magelLi st ,set | mageLi st/ 2

create(This, Parent, Id) -> boolean()
Types.

102 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoicebook

This = wxChoicebook()
Parent = wxWindow:wxWindow()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()

Types:
This = wxChoicebook()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{pos, {X :: integer(), Y :: integer()}} |

{size, {W :: integer(s, H :: integer()}} |

{style, integer()}

Create the choicebook control that has already been constructed with the default constructor.

deleteAllPages(This) -> boolean()
Types:

This = wxChoicebook()
Deletes all pages.

getCurrentPage(This) -> wxWindow:wxWindow()
Types.

This = wxChoicebook()
Returns the currently selected page or NULL.

getImagelList(This) -> wxImagelList:wxImagelList()
Types.

This = wxChoicebook()
Returns the associated image list, may be NULL.

See: wx| magelLi st ,set | nageLi st/ 2

getPage(This, Page) -> wxWindow:wxWindow ()

Types.
This = wxChoicebook()
Page = integer()

Returns the window at the given page position.

getPageCount(This) -> integer()
Types:

This = wxChoicebook()
Returns the number of pagesin the control.

Ericsson AB. All Rights Reserved.: wxErlang | 103

wxChoicebook

getPagelImage(This, NPage) -> integer()
Types.

This = wxChoicebook()

NPage = integer()
Returns the image index for the given page.

getPageText(This, NPage) -> unicode:charlist()
Types:

This = wxChoicebook()

NPage = integer()
Returns the string for the given page.

getSelection(This) -> integer()
Types:
This = wxChoicebook()
Returns the currently selected page, or wx NOT_FOUND if none was selected.

Note that this method may return either the previously or newly selected page when
cadled from the EVT_BOOKCTRL_PAGE CHANGED handler depending on the platform and so
wxBookCt r | Event : get Sel ect i on/ 1 should be used instead in this case.

hitTest(This, Pt) -> Result
Types.
Result = {Res :: integer(), Flags :: integer()}
This = wxChoicebook()
Pt = {X :: integer(), Y :: integer()}
Returns the index of the tab at the specified position or wx NOT_FOUND if none.
If f | ags parameter isnon-NULL, the position of the point inside the tab is returned as well.

Return: Returns the zero-based tab index or wx NOT_FOUND if there is no tab at the specified position.

insertPage(This, Index, Page, Text) -> boolean()
Types:

This = wxChoicebook()

Index = integer()

Page = wxWindow:wxWindow()

Text = unicode:chardata()

insertPage(This, Index, Page, Text, Options :: [Option]) ->

boolean()
Types:

104 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoicebook

This = wxChoicebook()

Index = integer()

Page = wxWindow:wxWindow()

Text = unicode:chardata()

Option = {bSelect, boolean()} | {imageld, integer()}
Inserts anew page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.

See: addPage/ 4

setImageList(This, ImagelList) -> ok
Types:
This = wxChoicebook()
ImagelList = wxImagelList:wxImagelist()
Setsthe image list to use.
It does not take ownership of theimage list, you must delete it yourself.

See: wx| mageli st ,assi gnl mageli st/ 2

setPageSize(This, Size) -> ok
Types:
This wxChoicebook()
Size = {W :: integer(), H :: integer()}

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

setPageImage(This, Page, Image) -> boolean()

Types:
This = wxChoicebook()
Page = Image = integer()

Sets the image index for the given page.
i mage isan index into the image list which was set with set | mageLi st/ 2.

setPageText(This, Page, Text) -> boolean()

Types.
This = wxChoicebook()
Page = integer()
Text = unicode:chardata()
Sets the text for the given page.

setSelection(This, Page) -> integer()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 105

wxChoicebook

This
Page

wxChoicebook()
integer()

Sets the selection to the given page, returning the previous selection.

Notice that the call to this function generates the page changing events, use the changeSel ect i on/ 2 function if
you don't want these events to be generated.

See: get Sel ection/ 1

changeSelection(This, Page) -> integer()

Types:
This = wxChoicebook()
Page = integer()

Changes the sdlection to the given page, returning the previous selection.
Thisfunction behavesasset Sel ect i on/ 2 but doesnot generate the page changing events.
See overview_events prog for more information.

destroy(This :: wxChoicebook()) -> ok
Destroys the object.

106 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoice

wxChoice

Erlang module

A choice item is used to select one of alist of strings. Unlike awxLi st Box, only the selection is visible until the
user pulls down the menu of choices.

Styles
This class supports the following styles:
See: wxLi st Box, wxConmboBox, wx ConmandEvent

This class is derived (and can use functions) from: wxControl Wthltens wxControl wxW ndow
wxEvt Handl er

wxWidgets docs: wxChoice

Events

Event types emitted from this class: conmmand_choi ce_sel ect ed

Data Types

wxChoice() = wx:wx_object()

Exports

new() -> wxChoice()
Default constructor.

See: creat e/ 7,wxVal i dat or (notimplemented in wx)

new(Parent, Id) -> wxChoice()
Types:
Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxChoice()
Types:

Parent = wxWindow:wxWindow/()

Id = integer()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{choices, [unicode:chardata()]} |
{style, integer()} |
{validator, wx:wx object()}

Constructor, creating and showing a choice.
See: creat e/ 7, wxVal i dat or (not implemented in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 107

href

wxChoice

destroy(This :: wxChoice()) -> ok
Destructor, destroying the choice item.

create(This, Parent, Id, Pos, Size, Choices) -> boolean()
Types:

This = wxChoice()

Parent = wxWindow:wxWindow()

Id = integer()

Pos = {X :: integer(), Y :: integer()}

Size = {W :: integer(), H :: integer()}

Choices = [unicode:chardata()]

create(This, Parent, Id, Pos, Size, Choices, Options :: [Option]) ->
boolean()
Types:
This = wxChoice()
Parent = wxWindow:wxWindow()
Id = integer()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]
Option = {style, integer()} | {validator, wx:wx object()}

delete(This, N) -> ok
Types:

This = wxChoice()

N = integer()
Deletes an item from the control.

The client data associated with the item will be also deleted if it is owned by the control. Note that it is an error
(signalled by an assert failure in debug builds) to remove an item with the index negative or greater or equal than the
number of itemsin the control.

If there is a currently selected item below the item being deleted, i.e if
wxControl Wt hltens: get Sel ection/ 1 returns a valid index greater than or equal to n, the selection is
invalidated when this function is called. However if the selected item appears before the item being deleted, the
selection is preserved unchanged.

SeeewxControl Wthltens:clear/1

getColumns(This) -> integer()
Types:

This = wxChoice()
Gets the number of columnsin this choice item.

Remark: Thisisimplemented for GTK and Matif only and always returns 1 for the other platforms.

108 | Ericsson AB. All Rights Reserved.: wxErlang

wxChoice

setColumns(This) -> ok
Types.
This = wxChoice()

setColumns(This, Options :: [Option]) -> ok
Types:
This = wxChoice()
Option = {n, integer()}
Sets the number of columnsin this choice item.
Remark: Thisisimplemented for GTK and Motif only and doesn’t do anything under other platforms.

Ericsson AB. All Rights Reserved.: wxErlang | 109

wxClientDC

wxClientDC

Erlang module

wxCl i ent DCis primarily useful for obtaining information about the window from outside EVT_PAINT() handler.
Typical use of this classisto obtain the extent of some text string in order to allocate enough size for awindow, e.g.

Note: While wxCl i ent DC may also be used for drawing on the client area of a window from outside an
EVT_PAINT() handler in some ports, this does not work on al platforms (neither wxOSX nor wxGTK
with GTK 3 Wayland backend support this, so drawing using wxCl i ent DC simply doesn't have any effect
there) and the only portable way of drawing is via wxPai nt DC. To redraw a small part of the window, use
wxW ndow: r ef reshRect / 3 to invalidate just this part and check wxW ndow. get Updat eRegi on/ 1 in the
paint event handler to redraw this part only.

wxCl i ent DC abjects should normally be constructed as temporary stack objects, i.e. don't store awxCl i ent DC
object.

A wxC i ent DCobject isinitialized to use the same font and colours as the window it is associated with.
See: wx DC, wx Menor y DC, wx Pai nt DC, wx W ndowDC, wxScr eenDC

This classis derived (and can use functions) from: wx W ndowDC wx DC

wxWidgets docs: wxClientDC

Data Types

wxClientDC() = wx:wx _object()

Exports

new(Window) -> wxClientDC()
Types:

Window = wxWindow:wxWindow()
Constructor.

Pass a pointer to the window on which you wish to paint.

destroy(This :: wxClientDC()) -> ok
Destroys the object.

110 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxClipboardTextEvent

wxClipboardTextEvent

Erlang module

This class represents the events generated by a control (typically awxText Ct r|1 but other windows can generate
these events as well) when its content gets copied or cut to, or pasted from the clipboard.

There are three types of corresponding events wWxEVT _TEXT _COPY, wWEVT_TEXT_CUT and
WXEVT_TEXT_PASTE.

If any of these events is processed (without being skipped) by an event handler, the corresponding operation doesn't
take place which allows preventing the text from being copied from or pasted to acontrol. It isalso possibleto examine
the clipboard contents in the PASTE event handler and transform it in some way before inserting in a control - for
example, changing its case or removing invalid characters.

Finally notice that a CUT event is always preceded by the COPY event which makes it possible to only process the
latter if it doesn't matter if the text was copied or cut.

Note: These events are currently only generated by wxText Ct r | in wxGTK and wxOSX but are also generated by
wx ConboBox without wxCB_READONLY stylein wxMSW.

See: wxCl i pboard
This classis derived (and can use functions) from: wx CommandEvent wxEvent
wxWidgets docs: wxClipboardTextEvent

Events

Usewx Evt Handl er : connect / 3 withwxd i pboar dText Event Type to subscribe to events of thistype.

Data Types

wxClipboardTextEvent() = wx:wx object()

wxClipboardText() =
#wxClipboardText{type =
wxClipboardTextEvent:wxClipboardTextEventType()}

wxClipboardTextEventType() =
command text copy | command text cut | command text paste

Ericsson AB. All Rights Reserved.: wxErlang | 111

href

wxClipboard

wxClipboard

Erlang module

A class for manipulating the clipboard.
To use the clipboard, you call member functions of the global AvxTheClipboard object.
See the overview_dataobject for further information.

Call open/ 1 to get ownership of the clipboard. If this operation returns true, you now own the clipboard. Call
set Dat a/ 2 to put dataon the clipboard, or get Dat a/ 2 toretrieve datafrom the clipboard. Call cl ose/ 1 toclose
the clipboard and relinquish ownership. Y ou should keep the clipboard open only momentarily.

For example:

Note: On GTK, the clipboard behavior can vary depending on the configuration of the end-user's machine. In order for
the clipboard data to persist after the window closes, a clipboard manager must be installed. Some clipboard managers
will automatically flush the clipboard after each new piece of data is added, while others will not. The @Flush()
function will force the clipboard manager to flush the data.

See: Overview dnd, Overview dataobject, wxDat aCbj ect
wxWidgets docs: wxClipboard

Data Types

wxClipboard() = wx:wx object()

Exports

new() -> wxClipboard()
Default constructor.

destroy(This :: wxClipboard()) -> ok
Destructor.

addData(This, Data) -> boolean()

Types:
This = wxClipboard()
Data = wxDataObject:wxDataObject()

Cadll this function to add the data object to the clipboard.
Thisis an obsolete synonym for set Dat a/ 2.

clear(This) -> ok
Types:
This = wxClipboard()
Clears the global clipboard object and the system's clipboard if possible.

close(This) -> ok
Types.

112 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxClipboard

This = wxClipboard()
Call thisfunction to close the clipboard, having opened it with open/ 1.

flush(This) -> boolean()
Types:
This = wxClipboard()

Flushes the clipboard: this means that the data which is currently on clipboard will stay available even after the
application exits (possibly eating memory), otherwise the clipboard will be emptied on exit.

Currently this method isimplemented in MSW and GTK and always returns fal se otherwise.

Note: On GTK, only the non-primary selection can be flushed. Calling this function when the clipboard is using the
primary selection will return false and not make any data available after the program exits.

Return: false if the operation is unsuccessful for any reason.

getData(This, Data) -> boolean()

Types.
This = wxClipboard()
Data = wxDataObject:wxDataObject()

Call thisfunction to fill dat a with data on the clipboard, if available in the required format.

Returns true on success.

isOpened(This) -> boolean()
Types:

This = wxClipboard()
Returns trueif the clipboard has been opened.

open(This) -> boolean()
Types:
This = wxClipboard()
Cadll this function to open the clipboard before calling set Dat a/ 2 and get Dat a/ 2.

Cdll cl ose/ 1 when you have finished with the clipboard. Y ou should keep the clipboard open for only a very short
time.

Return: true on success. This should be tested (as in the sample shown above).

setData(This, Data) -> boolean()

Types:
This = wxClipboard()
Data = wxDataObject:wxDataObject()

Call this function to set the data object to the clipboard.

The new data object replaces any previously set one, so if the application wants to provide clipboard datain several
different formats, it must use a composite data object supporting al of the formats instead of calling this function
several times with different data objects as this would only leave data from the last one in the clipboard.

After this function has been called, the clipboard owns the data, so do not delete the data explicitly.

Ericsson AB. All Rights Reserved.: wxErlang | 113

wxClipboard

usePrimarySelection(This) -> ok
Types.
This = wxClipboard()

usePrimarySelection(This, Options :: [Option]) -> ok
Types:
This = wxClipboard()
Option = {primary, boolean()}
On platforms supporting it (all X11-based ports), wxCl i pboar d usesthe CLIPBOARD X11 selection by defaullt.

When this function is called with true, all subsequent clipboard operations will use PRIMARY selection until this
function is called again with false.

On the other platforms, there is no PRIMARY selection and so al clipboard operations will fail. This allows
implementing the standard X 11 handling of the clipboard which consistsin copying datato the CLIPBOARD selection
only when the user explicitly requestsit (i.e. by selecting the " Copy" menu command) but putting the currently selected
text into the PRIMARY selection automatically, without overwriting the normal clipboard contents with the currently
selected text on the other platforms.

isSupported(This, Format) -> boolean()
Types:

This = wxClipboard()

Format = wx:wx_enum()

Returns true if there is data which matches the data format of the given data object currently avai | abl e on the
clipboard.

get() -> wxClipboard()
Returns the global instance (wxTheClipboard) of the clipboard object.

114 | Ericsson AB. All Rights Reserved.: wxErlang

wxCloseEvent

wxCloseEvent

Erlang module

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a frame or dialog box using the
window manager (X) or system menu (Windows). It can also be invoked by the application itself programmatically,
for example by calling the wx W ndow: ¢l ose/ 2 function.

Y ou should check whether the application is forcing the deletion of the window using canVet o/ 1. If thisisfalse,
you must destroy the window using wxW ndow: ' Destroy' / 1.

If the return valueistrue, it is up to you whether you respond by destroying the window.

If you don't destroy the window, you should call vet o/ 2 to let the calling code know that you did not destroy
the window. This allows the wxW ndow: ¢l ose/ 2 function to return true or false depending on whether the close
instruction was honoured or not.

Example of awxCl oseEvent handler:

The EVT_END_SESSION event is dightly different asit is sent by the system when the user session is ending (e.g.
because of log out or shutdown) and so all windows are being forcefully closed. At least under MSW, after the handler
for thisevent is executed the program is simply killed by the system. Because of this, the default handler for this event
provided by wxWidgets calls al the usua cleanup code (including wxApp: : OnExi t () (not implemented in wx))
so that it could still be executed and exit()s the process itself, without waiting for being killed. If this behaviour isfor
some reason undesirable, make sure that you define a handler for this event in your wxApp-derived class and do not
cal event . Ski p() init (but be aware that the system will still kill your application).

See: wxW ndow: cl ose/ 2, Overview windowdeletion
This classis derived (and can use functions) from: wx Event
wxWidgets docs: wxCloseEvent

Events

Usewx Evt Handl er : connect / 3 withwxC oseEvent Type to subscribe to events of thistype.

Data Types

wxCloseEvent() = wx:wx object()
wxClose() = #wxClose{type = wxCloseEvent:wxCloseEventType()}

wxCloseEventType() =
close window | end session | query end session

Exports

canVeto(This) -> boolean()
Types.
This = wxCloseEvent()
Returnstrueif you can veto a system shutdown or awindow close event.

Vetoing a window close event is not possible if the calling code wishes to force the application to exit, and so this
function must be called to check this.

Ericsson AB. All Rights Reserved.: wxErlang | 115

href
href

wxCloseEvent

getLogging0ff(This) -> boolean()
Types:
This = wxCloseEvent()
Returnstrueif the user isjust logging off or false if the system is shutting down.

This method can only be called for end session and query end session events, it doesn't make sense for close window
event.

setCanVeto(This, CanVeto) -> ok
Types.
This = wxCloseEvent()
CanVeto = boolean()

Sets the 'can veto' flag.

setLogging0ff(This, LoggingOff) -> ok
Types:

This = wxCloseEvent()

LoggingOff = boolean()

Sets the 'logging off" flag.

veto(This) -> ok
Types.
This = wxCloseEvent()

veto(This, Options :: [Option]) -> ok
Types:

This = wxCloseEvent()

Option = {veto, boolean()}

Call thisfrom your event handler to veto a system shutdown or to signal to the calling application that awindow close
did not happen.

Y ou can only veto a shutdown if canVet o/ 1 returnstrue.

116 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourData

wxColourData

Erlang module

This class holds avariety of information related to colour dialogs.
See: wx_col or (), wxCol our bi al og, Overview cmndlg
wxWidgets docs: wxColour Data

Data Types

wxColourData() = wx:wx _object()

Exports

new() -> wxColourData()
Constructor.

Initializes the custom colours to wxNul | Col our, the dat a colour setting to black, and the choose full setting
to true.

destroy(This :: wxColourData()) -> ok
Destructor.

getChooseFull(This) -> boolean()
Types.
This = wxColourData()

Under Windows, determines whether the Windows colour dialog will display the full dialog with custom colour
selection controls.

Has no meaning under other platforms.
The default value istrue.

getColour(This) -> wx:wx_colour4()
Types:

This = wxColourData()
Gets the current colour associated with the colour dialog.

The default colour is black.

getCustomColour(This, I) -> wx:wx_colour4()
Types.

This = wxColourData()

I = integer()
Returns custom colours associated with the colour dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 117

href
href

wxColourData

setChooseFull(This, Flag) -> ok

Types.
This = wxColourData()
Flag = boolean()

Under Windows, tells the Windows colour dialog to display the full dialog with custom colour selection controls.
Under other platforms, has no effect.
The default valueis true.

setColour(This, Colour) -> ok
Types:
This = wxColourData()
Colour = wx:wx _colour()
Sets the default colour for the colour dialog.

The default colour is black.

setCustomColour(This, I, Colour) -> ok
Types:

This = wxColourData()

I = integer()

Colour = wx:wx colour()
Sets custom colours for the colour dialog.

118 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourDialog

wxColourDialog

Erlang module

This class represents the colour chooser dialog.

Starting from wxWidgets 3.1.3 and currently in the MSW port only, this dialog generates
WXEVT_COLOUR_CHANGED events while it is being shown, i.e. from inside its wxDi al og: showivbdal / 1
method, that notify the program about the change of the currently selected colour and allow it to e.g. preview the effect
of selecting this colour. Note that if you react to this event, you should also correctly revert to the previously selected
colour if the dialog is cancelled by the user.

Example of using this class with dynamic feedback for the selected colour:

See: Overview cmndlg, wx_col or (), wxCol our Dat a, wxCol our Di al ogEvent (notimplemented in wx), ?
wxGetCol ourFromUser()

Thisclassisderived (and can usefunctions) from: wxDi al og wxTopLevel W ndowwxW ndowwxEvt Handl er

wxWidgets docs: wxColour Dialog

Data Types

wxColourDialog() = wx:wx object()
Exports

new() -> wxColourDialog()
new(Parent) -> wxColourDialog()

Types:
Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxColourDialog()
Types.

Parent = wxWindow:wxWindow()

Option = {data, wxColourData:wxColourData()}
Constructor.

Pass a parent window, and optionally a pointer to a block of colour data, which will be copied to the colour dialog's
colour data.

Custom colours from colour data object will be used in the dialog's colour palette. Invalid entries in custom colours
list will beignored on some platforms(GTK) or replaced with white colour on platforms where custom colours palette
has fixed size (MSW).

See: wxCol our Dat a

destroy(This :: wxColourDialog()) -> ok
Destructor.

Ericsson AB. All Rights Reserved.: wxErlang | 119

href
href

wxColourDialog

create(This, Parent) -> boolean()
Types.

This = wxColourDialog()

Parent = wxWindow:wxWindow()

create(This, Parent, Options :: [Option]) -> boolean()
Types:
This = wxColourDialog()

Parent = wxWindow:wxWindow()
Option = {data, wxColourData:wxColourData()}
Sameasnew 2.

getColourData(This) -> wxColourData:wxColourData()
Types:

This = wxColourDialog()
Returns the colour data associated with the colour dialog.

120 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourPickerCtrl

wxColourPickerCtrl

Erlang module

This control alows the user to select a colour. The generic implementation is a button which brings up a
wx Col our Di al og when clicked. Native implementation may differ but thisisusually a (small) widget which give
access to the colour-chooser dialog. It isonly availableif wxUSE_COLOURPI CKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxCol our Di al og, wxCol our Pi cker Event

This classis derived (and can use functions) from: wxPi cker Base wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxColour Picker Ctr|

Events

Event types emitted from this class: conmmand_col our pi cker _changed

Data Types

wxColourPickerCtrl() = wx:wx object()

Exports
new() -> wxColourPickerCtrl()

new(Parent, Id) -> wxColourPickerCtrl()
Types.

Parent = wxWindow:wxWindow()

Id = integer()

new(Parent, Id, Options :: [Option]) -> wxColourPickerCtrl()
Types.
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{col, wx:wx_colour()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Initializes the object and callscr eat e/ 4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 121

href

wxColourPickerCtrl

This = wxColourPickerCtril()
Parent = wxWindow:wxWindow ()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:
This = wxColourPickerCtril()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{col, wx:wx_colour()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Creates a colour picker with the given arguments.
Return: true if the control was successfully created or falseif creation failed.

getColour(This) -> wx:wx_colour4()
Types:

This = wxColourPickerCtrl()
Returns the currently selected colour.

setColour(This, Colname) -> ok
setColour(This, Col) -> ok
Types.
This = wxColourPickerCtril()
Col = wx:wx_colour()

Sets the currently selected colour.
Seewx Col our: : Set () (notimplemented in wx).

destroy(This :: wxColourPickerCtrl()) -> ok
Destroys the object.

122 | Ericsson AB. All Rights Reserved.: wxErlang

wxColourPickerEvent

wxColourPickerEvent

Erlang module

This event classis used for the events generated by wx Col our Pi cker Ctrl .
See: wxCol our Pi cker Ctrl
This classis derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxColour Picker Event

Events

Usewx Evt Handl er : connect / 3 withwxCol our Pi cker Event Type to subscribe to events of this type.

Data Types

wxColourPickerEvent() = wx:wx object()

wxColourPicker() =
#wxColourPicker{type =
wxColourPickerEvent:wxColourPickerEventType(),
colour = wx:wx_colour()}

wxColourPickerEventType() = command colourpicker changed

Exports

getColour(This) -> wx:wx_colour4()
Types.

This = wxColourPickerEvent()
Retrieve the colour the user has just selected.

Ericsson AB. All Rights Reserved.: wxErlang | 123

href

wxComboBox

wxComboBox

Erlang module

A combobox is like a combination of an edit control and alistbox.

It can be displayed as static list with editable or read-only text field; or adrop-down list with text field; or adrop-down
list without atext field depending on the platform and presence of wxCB_READONLY style.

A combobox permits a single selection only. Combobox items are numbered from zero.

If you need a customized combobox, have a look a wxConboCtrl (not implemented in wx),
wx Oaner Dr awnConboBox (not implemented in wx), wx ConboPopup (not implemented in wx) and the ready-to-
use wxBi t mapConboBox (not implemented in wx).

Pleaserefer towx Text Ent r y (not implemented in wx) documentation for the description of methods operating with
the text entry part of the combobox and to wx | t entCont ai ner (not implemented in wx) for the methods operating
with the list of strings. Notice that at least under MSW wx ConboBox doesn't behave correctly if it contains strings
differing in case only so portable programs should avoid adding such strings to this control.

Styles
This class supports the following styles:
See: wxLi st Box, wxText Ct rl ,wxChoi ce, wxConmmandEvent

This class is derived (and can use functions) from: wxControl Wthltenms wxControl wxW ndow
wxEvt Handl er

wxWidgets docs: wxComboBox

Events

Event types emitted from this class. command_conbobox_sel ect ed, conmand_t ext updat ed,
command_t ext _ent er, conbobox_dr opdown, conbobox_cl oseup

Data Types

wxComboBox () = wx:wx object()

Exports

new() -> wxComboBox()

Default constructor.

new(Parent, Id) -> wxComboBox()
Types:
Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxComboBox()
Types:

124 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxComboBox

Parent = wxWindow:wxWindow()

Id = integer()

Option =
{value, unicode:chardata()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{choices, [unicode:chardata()]} |
{style, integer()} |
{validator, wx:wx object()}

Constructor, creating and showing a combobox.
See: cr eat e/ 8, wxVal i dat or (not implemented in wx)

destroy(This :: wxComboBox()) -> ok
Destructor, destroying the combobox.

create(This, Parent, Id, Value, Pos, Size, Choices) -> boolean()
Types:

This = wxComboBox()

Parent = wxWindow:wxWindow()

Id = integer()

Value = unicode:chardata()

Pos = {X :: integer(), Y :: integer()}

Size = {W :: integer(), H :: integer()}

Choices = [unicode:chardata()]

create(This, Parent, Id, Value, Pos, Size, Choices,
Options :: [Option]) ->
boolean()
Types.
This = wxComboBox()
Parent = wxWindow:wxWindow()
Id = integer()
Value = unicode:chardata()
Pos = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Choices = [unicode:chardata()]
Option = {style, integer()} | {validator, wx:wx object()}

canCopy(This) -> boolean()
Types:
This = wxComboBox()
Returnstrueif the selection can be copied to the clipboard.

Ericsson AB. All Rights Reserved.: wxErlang | 125

wxComboBox

canCut(This) -> boolean()
Types:
This = wxComboBox()
Returns trueif the selection can be cut to the clipboard.

canPaste(This) -> boolean()
Types:
This = wxComboBox()
Returnstrueif the contents of the clipboard can be pasted into the text control.

On some platforms (Motif, GTK) thisis an approximation and returns true if the control is editable, false otherwise.

canRedo(This) -> boolean()
Types.
This = wxComboBox()

Returnstrueif thereis aredo facility available and the last operation can be redone.

canUndo(This) -> boolean()
Types:
This = wxComboBox()
Returnstrueif thereis an undo facility available and the last operation can be undone.

copy(This) -> ok
Types:

This = wxComboBox()
Copies the selected text to the clipboard.

cut(This) -> ok
Types:
This = wxComboBox()
Copies the selected text to the clipboard and removes it from the control.

getInsertionPoint(This) -> integer()
Types:

This = wxComboBox()
SameaswxText Ctrl : getlnsertionPoint/1.

Note: Under wxM SW, this function always returns O if the combobox doesn't have the focus.

getLastPosition(This) -> integer()
Types:
This = wxComboBox ()

Returns the zero based index of the last position in the text control, which is equal to the number of charactersin
the control.

126 | Ericsson AB. All Rights Reserved.: wxErlang

wxComboBox

getValue(This) -> unicode:charlist()
Types.

This = wxComboBox ()
Gets the contents of the control.

Noticethat for amultiline text control, the lines will be separated by (Unix-style) \ n characters, even under Windows
where they are separated by a\ r \ n sequence in the native control.

paste(This) -> ok
Types:
This = wxComboBox ()
Pastes text from the clipboard to the text item.

redo(This) -> ok
Types:
This = wxComboBox()
If thereisaredo facility and the last operation can be redone, redoes the last operation.

Does nothing if thereis no redo facility.

replace(This, From, To, Value) -> ok

Types:
This = wxComboBox()
From = To = integer()

Value = unicode:chardata()

Replaces the text starting at the first position up to (but not including) the character at the last position with the given
text.

This function puts the current insertion point position at t o as a side effect.

remove(This, From, To) -> ok
Types:

This wxComboBox ()

From = To = integer()

Removes the text starting at the first given position up to (but not including) the character at the last position.

This function puts the current insertion point position at t o as a side effect.

setInsertionPoint(This, Pos) -> ok
Types:

This = wxComboBox()

Pos = integer()
Sets the insertion point at the given position.

setInsertionPointEnd(This) -> ok
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 127

wxComboBox

This = wxComboBox()
Setsthe insertion point at the end of the text control.

Thisisequivalent to calling set | nserti onPoi nt/ 2 withget Last Posi ti on/ 1 argument.

setSelection(This, N) -> ok
Types:
This = wxComboBox()
N = integer()
Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.

Note that this does not cause any command events to be emitted nor does it deselect any other items in the controls
which support multiple selections.

See:wxControl Wthltens: set String/3,wxControl Wthltens: setStringSel ection/2

setSelection(This, From, To) -> ok

Types:
This = wxComboBox()
From = To = integer()

SameaswxText Ctrl : set Sel ecti on/ 3.

setValue(This, Text) -> ok

Types:
This = wxComboBox()
Text = unicode:chardata()

Sets the text for the combobox text field.

For normal, editable comboboxes with a text entry field calling this method will generate a wxEVT_TEXT
event, consistently withwxText Ct r| : set Val ue/ 2 behaviour, usewxText Ct r | : changeVal ue/ 2 if thisis
undesirable.

For controls with wxCB_READONLY style the method behaves somewhat differently: the string must be in the
combobox choices list (the check for thisis case-insensitive) and wx EVT_TEXT isnot generated in this case.

undo(This) -> ok
Types:
This = wxComboBox()
If thereis an undo facility and the last operation can be undone, undoes the last operation.

Does nothing if there is no undo facility.

128 | Ericsson AB. All Rights Reserved.: wxErlang

wxCommandEvent

wxCommandEvent

Erlang module

This event class contains information about command events, which originate from avariety of simple controls.

Note that wxCommandEvents and wxCommandEvent-derived event classes by default and unlike other wxEvent-
derived classes propagate upward from the source window (the window which emits the event) up to the first parent
which processes the event. Be sure to read overview_events propagation.

More complex controls, such aswxTr eeCt r | , have separate command event classes.
This classis derived (and can use functions) from: wx Event
wxWidgets docs: wxCommandEvent

Events

Usewx Evt Handl er : connect / 3 withwxCommandEvent Type to subscribe to events of this type.

Data Types

wxCommandEvent () = wx:wx _object()

wxCommand () =
#wxCommand{type = wxCommandEvent:wxCommandEventType(),
cmdString = unicode:chardata(),
commandInt = integer(),
extralLong = integer()}

wxCommandEventType() =
command button clicked | command checkbox clicked |
command choice selected | command listbox selected |
command listbox doubleclicked | command text updated |
command text enter | text maxlen | command menu selected |
command slider updated | command radiobox selected |
command_ radiobutton selected | command scrollbar updated |
command vlbox selected | command combobox selected |
combobox_dropdown | combobox closeup | command tool rclicked |
command _tool enter | tool dropdown |
command checklistbox toggled | command togglebutton clicked |
command left click | command left dclick |
command right click | command set focus | command kill focus |
command enter | notification message click |
notification message dismissed | notification message action

Exports

getClientData(This) -> term()
Types:
This = wxCommandEvent ()
Returns client object pointer for alistbox or choice selection event (not valid for a deselection).

Ericsson AB. All Rights Reserved.: wxErlang | 129

href

wxCommandEvent

getExtraLong(This) -> integer()
Types.
This = wxCommandEvent()
Returns extra information dependent on the event objects type.

If the event comes from a listbox selection, it is a boolean determining whether the event was a selection (true) or a
deselection (false). A listbox desel ection only occurs for multiple-selection boxes, and in this case the index and string
values are indeterminate and the listbox must be examined by the application.

getInt(This) -> integer()
Types.
This = wxCommandEvent ()

Returnstheinteger identifier corresponding to alistbox, choice or radiobox selection (only if the event was aselection,
not a deselection), or a boolean value representing the value of a checkbox.

For a menu item, this method returns -1 if the item is not checkable or a boolean value (true or false) for checkable
itemsindicating the new state of the item.

getSelection(This) -> integer()
Types:
This = wxCommandEvent()
Returnsitem index for alistbox or choice selection event (not valid for a deselection).

getString(This) -> unicode:charlist()
Types:

This = wxCommandEvent()
Returnsitem string for alistbox or choice selection event.

If one or several items have been deselected, returns the index of the first deselected item. If some items have been
selected and others deselected at the same time, it will return the index of the first selected item.

isChecked(This) -> boolean()
Types.
This = wxCommandEvent()

This method can be used with checkbox and menu events: for the checkboxes, the method returns true for a selection
event and false for a deselection one.

For the menu events, this method indicates if the menu item just has become checked or unchecked (and thus only
makes sense for checkable menu items).

Notice that this method cannot be used with wxCheckLi st Box currently.

isSelection(This) -> boolean()
Types.
This = wxCommandEvent ()
For alistbox or similar event, returnstrueif it isaselection, falseif it is a deselection.

If some items have been selected and others deselected at the same time, it will return true.

130 | Ericsson AB. All Rights Reserved.: wxErlang

wxCommandEvent

setInt(This, IntCommand) -> ok
Types.
This = wxCommandEvent()
IntCommand = integer()

Setsthe m _conmandl nt member.

setString(This, String) -> ok
Types:
This = wxCommandEvent()
String = unicode:chardatal()

Setsthem conmandSt r i ng member.

Ericsson AB. All Rights Reserved.: wxErlang | 131

wxContextMenuEvent

wxContextMenuEvent

Erlang module

This classis used for context menu events, sent to give the application a chance to show a context (popup) menu for
awxW ndow.

Note that if getPosition/1 returns wxDefaultPosition, this means that the event originated from a
keyboard context button event, and you should compute a suitable position yourself, for example by calling
wx_Imi sc: get MousePosi ti on/ 0.

Notice that the exact sequence of mouse eventsis different acrossthe platforms. For example, under MSW the context
menu event is generated after EVT_RI GHT_UP event and only if it was not handled but under GTK the context
menu event is generated after EVT_RI GHT_DOWN event. Thisis correct in the sense that it ensures that the context
menu is shown according to the current platform Ul conventions and also means that you must not handle (or call
wxEvent : ski p/ 2 in your handler if you do have one) neither right mouse down nor right mouse up event if you
plan on handling EVT_CONTEXT_MENU event.

See: wxComandEvent , Overview events
This classis derived (and can use functions) from: wx CommandEvent wxEvent
wxWidgets docs: wxContextM enuEvent

Events

Usewx Evt Handl er : connect / 3 withwxCont ext MenuEvent Type to subscribe to events of thistype.

Data Types

wxContextMenuEvent() = wx:wx object()

wxContextMenu() =
#wxContextMenu{type =
wxContextMenuEvent:wxContextMenuEventType(),
pos = {X :: integer(), Y :: integer()}}
wxContextMenuEventType() = context menu

Exports

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:
This = wxContextMenuEvent()
Returns the position in screen coordinates at which the menu should be shown.
UsewxW ndow: screenToCl i ent/ 2 to convert to client coordinates.
Y ou can also omit a position from wxW ndow. popupMenu/ 4 in order to use the current mouse pointer position.

If the event originated from a keyboard event, the value returned from this function will be wxDefaultPosition.

setPosition(This, Point) -> ok
Types.

132 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxContextMenuEvent

This = wxContextMenuEvent()
Point = {X :: integer(), Y :: integer()}
Sets the position at which the menu should be shown.

Ericsson AB. All Rights Reserved.: wxErlang | 133

wxControlWithltems

wxControlWithltems

Erlang module

This is convenience class that derives from both wxCont r ol and wx| t enCont ai ner (not implemented in wx).
It isused as basis for some wxWidgets controls (wx Choi ce and wxLi st Box).

See: wx| t enCont ai ner (not implemented in wx), wx| t entCont ai ner | nmut abl e (not implemented in wx)
This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxControlWithltems

Data Types

wxControlWWithItems() = wx:wx object()

Exports

append(This, Item) -> integer()

Types:
This = wxControlWithItems()
Item = unicode:chardata()

Appends item into the contral.

Return: The return value is the index of the newly inserted item. Note that this may be different from the last one if
the control is sorted (e.g. haswxLB_SORT or wxCB_SORT style).

append(This, Item, ClientData) -> integer()
Types:

This wxControlWithItems()

Item = unicode:chardata()

ClientData = term()

Appends item into the control.

Return: The return value is the index of the newly inserted item. Note that this may be different from the last one if
the control is sorted (e.g. haswxLB_SORT or wxCB_SORT style).

appendStrings(This, Items) -> integer()
Types:

This = wxControlWithItems()

Items = [unicode:chardata()]

Appends several items at once into the control.

Noticethat calling this method is usually much faster than appending them one by oneif you need to add alot of items.

appendStrings(This, Items, ClientsData) -> integer()
Types.

134 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxControlWithltems

This = wxControlWithItems()

Items = [unicode:chardata()]

ClientsData = [term()]
Appends several items at once into the control.

Noticethat calling this method is usually much faster than appending them one by oneif you need to add alot of items.

clear(This) -> ok
Types.

This = wxControlWithItems()
Removes all items from the control.

cl ear/ 1 aso deletes the client data of the existing itemsiif it is owned by the control.

delete(This, N) -> ok
Types:
This = wxControlWithItems()
N = integer()
Deletes an item from the control.
The client data associated with the item will be also deleted if it is owned by the control. Note that it is an error

(signalled by an assert failure in debug builds) to remove an item with the index negative or greater or equal than the
number of itemsin the control.

If there is a currently selected item below the item being deleted, i.e. if get Sel ecti on/ 1 returns a valid index
greater than or equal to n, the selectionisinvalidated when thisfunction is called. However if the selected item appears
before the item being deleted, the selection is preserved unchanged.

See:clear/1

findString(This, String) -> integer()
Types.

This = wxControlWithItems()

String = unicode:chardata()

findString(This, String, Options :: [Option]) -> integer()
Types:

This = wxControlWithItems()

String unicode:chardata()

Option {bCase, boolean()}
Finds an item whose label matches the given string.

Return: The zero-based position of the item, or wxNOT_FOUND if the string was not found.

getClientData(This, N) -> term()
Types:
This = wxControlWithItems()
N = integer()
Returns a pointer to the client data associated with the given item (if any).

Ericsson AB. All Rights Reserved.: wxErlang | 135

wxControlWithltems

It is an error to call this function for a control which doesn't have typed client data at all although it is OK to call it
even if the given item doesn't have any client data associated with it (but other items do).

Noticethat the returned pointer is still owned by the control and will be deleted by it, useDet achCl i ent Qbj ect ()
(not implemented in wx) if you want to remove the pointer from the control.

Return: A pointer to the client data, or NULL if not present.

setClientData(This, N, Data) -> ok
Types.

This = wxControlWithItems()

N = integer()

Data = term()

Associates the given typed client data pointer with the given item: the dat a object will be deleted when the item is
deleted (either explicitly by using del et e/ 2 or implicitly when the control itself is destroyed).

Note that it is an error to call this function if any untyped client data pointers had been associated with the control
items before.

getCount(This) -> integer()
Types.

This = wxControlWithItems()
Returns the number of items in the control.

See:i sEnpty/ 1

getSelection(This) -> integer()
Types:
This = wxControlWithItems()
Returns the index of the selected item or wxNOT_FOUND if no item is selected.
Return: The position of the current selection.

Remark: This method can be wused with single selection list boxes only, you should use
wxLi st Box: get Sel ecti ons/ 1 for thelist boxeswith wxLB_MULTIPLE style.

See: set Sel ection/ 2,get StringSel ection/1

getString(This, N) -> unicode:charlist()
Types:
This = wxControlWithItems()
N = integer()
Returns the label of the item with the given index.
Return: The label of the item or an empty string if the position was invalid.

getStringSelection(This) -> unicode:charlist()
Types.
This = wxControlWithItems()
Returns the label of the selected item or an empty string if no itemis selected.

136 | Ericsson AB. All Rights Reserved.: wxErlang

wxControlWithltems

See: get Sel ection/ 1

insert(This, Item, Pos) -> integer()

Types:
This = wxControlWithItems()
Item = unicode:chardata()

Pos = integer()
Inserts item into the control.

Return: The return valueisthe index of the newly inserted item. If the insertion failed for some reason, -1 is returned.

insert(This, Item, Pos, ClientData) -> integer()
Types:

This = wxControlWithItems()

Item = unicode:chardata()

Pos = integer()

ClientData = term()
Insertsitem into the control.

Return: The return valueisthe index of the newly inserted item. If the insertion failed for some reason, -1 is returned.

insertStrings(This, Items, Pos) -> integer()
Types:
This = wxControlWithItems()
Items = [unicode:chardata()]
Pos = integer()
Inserts several items at once into the control.
Noticethat calling this method isusually much faster than inserting them one by oneif you need to insert alot of items.
Return: The return valueistheindex of the last inserted item. If the insertion failed for some reason, -1 is returned.

insertStrings(This, Items, Pos, ClientsData) -> integer()
Types:
This = wxControlWithItems()
Items = [unicode:chardata()]
Pos = integer()
ClientsData = [term()]
Inserts several items at once into the control.
Noticethat calling this method isusually much faster than inserting them one by oneif you need to insert alot of items.

Return: The return value is the index of the last inserted item. If the insertion failed for some reason, -1 isreturned.

isEmpty(This) -> boolean()
Types:
This = wxControlWithItems()
Returnstrueif the control is empty or falseif it has some items.

Ericsson AB. All Rights Reserved.: wxErlang | 137

wxControlWithltems

See: get Count / 1

select(This, N) -> ok

Types:
This = wxControlWithItems()
N = integer()

Thisisthesameasset Sel ect i on/ 2 and exists only because it is slightly more natural for controls which support
multiple selection.

setSelection(This, N) -> ok
Types:
This = wxControlWithItems()
N = integer()
Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.

Note that this does not cause any command events to be emitted nor does it deselect any other items in the controls
which support multiple selections.

See:set String/3,setStringSel ection/?2

setString(This, N, String) -> ok
Types:

This = wxControlWithItems()

N = integer()

String = unicode:chardata()
Setsthe label for the given item.

setStringSelection(This, String) -> boolean()
Types:

This = wxControlWithItems()

String = unicode:chardata()

Selects the item with the specified string in the control.
This method doesn't cause any command events to be emitted.

Notice that this method is case-insensitive, i.e. the string is compared with al the elements of the control case-
insensitively and the first matching entry is selected, even if it doesn't have exactly the same case as this string and
there is an exact match afterwards.

Return: true if the specified string has been selected, falseif it wasn't found in the control.

138 | Ericsson AB. All Rights Reserved.: wxErlang

wxControl

wxControl

Erlang module

Thisisthe base class for a control or "widget".

A control is generally asmall window which processes user input and/or displays one or more item of data.
See: wxVal i dat or (not implemented in wx)

This classis derived (and can use functions) from: wxW ndowwxEvt Handl er

wxWidgets docs: wxControl

Events

Event types emitted from this class: cormand_t ext _copy, command_t ext _cut,command_t ext _paste

Data Types

wxControl() = wx:wx object()

Exports

getLabel(This) -> unicode:charlist()
Types.
This = wxControl()
Returns the control's label, asit was passed to set Label / 2.

Note that the returned string may contains mnemonics ("&" characters) if they were passed to the set Label / 2
function; use Get Label Text () (notimplemented in wx) if they are undesired.

Also note that the returned string is always the string which was passed to set Label / 2 but may be different from
the string passed to Set Label Text () (not implemented in wx) (since this last one escapes mnemonic characters).

setLabel(This, Label) -> ok
Types:

This = wxControl()

Label = unicode:chardata()
Sets the control's label.

All "&" charactersinthel abel arespecia and indicate that the following character isanmenoni c¢ for this control
and can be used to activate it from the keyboard (typically by using Al t key in combination withit). Toinsert aliteral
ampersand character, you need to double it, i.e. use "&&". If this behaviour is undesirable, use Set Label Text ()
(not implemented in wx) instead.

Ericsson AB. All Rights Reserved.: wxErlang | 139

href

wxCursor

wxCursor

Erlang module

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a picture that might indicate
the interpretation of a mouse click. As with icons, cursorsin X and MS Windows are created in a different manner.
Therefore, separate cursors will be created for the different environments. Platform-specific methods for creating a
wxCur sor object are catered for, and this is an occasion where conditional compilation will probably be required
(seewx| con for an example).

A single cursor object may be used in many windows (any subwindow type). The wxWidgets convention is
to set the cursor for a window, as in X, rather than to set it globally as in MS Windows, although a global
wx_ni sc: set Cursor/ 1 functionisalso available for MS Windows use.

Creating a Custom Cursor

Thefollowing isan example of creating acursor from 32x32 bitmap data (down_bits) and amask (down_mask) where
lisblack and Oiswhitefor thebits, and 1 is opaque and O istransparent for the mask. It works on Windows and GTK +.

Predefined objects (include wx.hrl):

See: wxBi t map, wxl con, wxW ndow: set Cur sor/ 2, wx_mi sc: set Cur sor/ 1, AwxStockCursor
This classis derived (and can use functions) from: wxBi t map

wxWidgets docs: wxCur sor

Data Types

wxCursor() = wx:wx_object()

Exports

new() -> wxCursor()
Default constructor.

new(CursorName) -> wxCursor()
new(Image) -> wxCursor()
new(CursorId) -> wxCursor()
Types:

CursorId = wx:wx_enum()
Constructs a cursor using a cursor identifier.

new(CursorName, Options :: [Option]) -> wxCursor()
Types.

CursorName = unicode:chardata()

Option =

{type, wx:wx enum()} |
{hotSpotX, integer()} |
{hotSpotY, integer()}

Constructs a cursor by passing a string resource name or filename.

140 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxCursor

The arguments hot Spot X and hot Spot Y are only used when there's no hotspot info in the resource/image-file to
load (e.g. when using wx Bl TMAP_TYPE_| COunder wxMSW or wx Bl TMAP_TYPE_XPMunder wxGTK).

destroy(This :: wxCursor()) -> ok
Destroys the cursor.
See reference-counted object destruction for more info.

A cursor can be reused for more than one window, and does not get destroyed when the window is destroyed.
wxWidgets destroys all cursors on application exit, although it is best to clean them up explicitly.

ok(This) -> boolean()
Types:

This = wxCursor()
Seeri sCk/ 1.

is0k(This) -> boolean()
Types:

This = wxCursor()
Returnstrueif cursor datais present.

Ericsson AB. All Rights Reserved.: wxErlang | 141

wxDataObject

wxDataObject

Erlang module

AwxDat aCbj ect representsdatathat can be copied to or from the clipboard, or dragged and dropped. Theimportant
thing about wx Dat aCbj ect isthat thisisa'smart' piece of dataunlike 'dumb’ data containers such asmemory buffers
or files. Being 'smart' here means that the data object itself should know what data formats it supports and how to
render itself in each of its supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested from a data object or
from which the data object may be set. In the general case, an object may support different formats on 'input' and
‘output’, i.e. it may be able to render itself in a given format but not be created from data on this format or vice versa.
wxDat aQbj ect defines the wxDat aCbj ect : : Di recti on (not implemented in wx) enumeration type which
distinguishes between them.

Seewx Dat aFor mat (not implemented in wx) documentation for more about formats.

Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable for the situations when you
really need to support multiple formats, but may be annoying if you only want to do something simple like cut and
paste text.

To provide a solution for both cases, wxWidgets has two predefined classes which derive from wxDat aCbj ect :
wxDat aQbj ect Si npl e (not implemented in wx) and wxDat aCbj ect Conposi t e (not implemented in wx).
wxDat aQbj ect Si npl e (nhot implemented in wx) isthe simplest wxDat aCbj ect possible and only holds datain
asingle format (such as HTML or text) and wxDat aCbj ect Conposi t e (not implemented in wx) is the simplest
way to implement awx Dat aCbj ect that does support multiple formats because it achieves this by simply holding
several wxDat aCbj ect Si npl e (not implemented in wx) objects.

So, you have severa solutions when you need awxDat aObj ect class (and you need one as soon as you want to
transfer data via the clipboard or drag and drop):

Please note that the easiest way to use drag and drop and the clipboard with multiple formats is by
using wxDat aChj ect Conposi te (not implemented in wx), but it is not the most efficient one as each
wxDat aQbj ect Si npl e (not implemented in wx) would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as Word, RTF, HTML, Unicode
and plain text to the clipboard and even today's computers are in trouble. For this case, you will have to derive from
wxDat aObj ect directly and make it enumerate its formats and provide the data in the requested format on demand.

Notethat neither the GTK + datatransfer mechanismsfor clipboard and drag and drop, nor OLE datatransfer, copi es
any data until another application actually requests the data. This is in contrast to the 'feel’ offered to the user of a
program who would normally think that the data resides in the clipboard after having pressed 'Copy' - in redlity it is
only declared to beavai | abl e.

Y ou may also derive your own data object classes from wx Cust onDat aCbj ect (not implemented in wx) for user-
defined types. The format of user-defined data is given as a mime-type string literal, such as "application/word" or
"image/png”. These strings are used as they are under Unix (so far only GTK+) to identify aformat and are trandated
into their Windows equivalent under Win32 (using the OLE | DataObject for data exchange to and from the clipboard
and for drag and drop). Note that the format string translation under Windows is not yet finished.

Each class derived directly from wxDat aCObj ect must override and implement all of its functions which are pure
virtual in the base class. The data objects which only render their data or only set it (i.e. work in only one direction),
should return 0 from Get For mat Count () (not implemented in wx).

See: Overview dnd, Examples, wxFi | eDat aCbj ect, wxText Dat aCbj ect, wxBi t mapDat aChj ect
wx Cust onDat aCbj ect (not implemented in wx), wxDr opTar get (not implemented in wx), wxDr opSour ce
(notimplemented inwx), wx Text Dr opTar get (notimplementedinwx), wxFi | eDr opTar get (notimplemented
in wx)

142 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxDataObject

wxWidgets docs: wxDataObj ect

Data Types

wxDataObject() = wx:wx object()

Ericsson AB. All Rights Reserved.: wxErlang | 143

href

wxDateEvent

wxDateEvent

Erlang module

Thisevent class holdsinformation about adate change and is used together withwx Dat ePi cker Ct r | . It also serves
asabase classfor wxCal endar Event .

This classis derived (and can use functions) from: wx ConmandEvent wxEvent
wxWidgets docs: wxDateEvent

Data Types
wxDateEvent() = wx:wx object()
wxDate() =
#wxDate{type = wxDateEvent:wxDateEventType(),
date = wx:wx_datetime()}

wxDateEventType() = date changed

Exports

getDate(This) -> wx:wx datetime()

Types:
This = wxDateEvent()
Returns the date.

144 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxDatePickerCtrl

wxDatePickerCtrl

Erlang module

This control allows the user to select a date. Unlike wxCal endar Ctr 1, which is a relatively big control,
wxDat ePi cker Ct rl isimplemented as a small window showing the currently selected date. The control can be
edited using the keyboard, and can a so display a popup window for more user-friendly date selection, depending on
the styles used and the platform.

Itisonly availableif wxUSE_DATEPI CKCTRL is set to 1.

Styles

This class supports the following styles:

See: wxTi nePi cker Ctr | (not implemented in wx), wxCal endar Ct r | , wxDat eEvent

This classis derived (and can use functions) from: wxPi cker Base wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxDatePicker Ctrl

Events

Event types emitted from this class: dat e_changed

Data Types

wxDatePickerCtrl() = wx:wx object()

Exports

new() -> wxDatePickerCtrl()
Default constructor.

new(Parent, Id) -> wxDatePickerCtrl()
Types.

Parent = wxWindow:wxWindow()

Id = integer()

new(Parent, Id, Options :: [Option]) -> wxDatePickerCtrl()
Types:
Parent = wxWindow:wxWindow ()
Id = integer()
Option =
{date, wx:wx datetime()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Initializes the object and calls Cr eat e() (not implemented in wx) with all the parameters.

Ericsson AB. All Rights Reserved.: wxErlang | 145

href

wxDatePickerCtrl

getRange(This, Dtl, Dt2) -> boolean()
Types.

This = wxDatePickerCtrl()

Dtl = Dt2 = wx:wx datetime()

If the control had been previously limited to arange of datesusing set Range/ 3, returnsthe lower and upper bounds
of thisrange.

If no rangeis set (or only one of the boundsis set), dt 1 and/or dt 2 are set to be invalid.

Notice that when using a native MSW implementation of this control the lower range is aways set, even if
set Range/ 3 hadn't been called explicitly, as the native control only supports dates |ater than year 1601.

Return: false if no range limits are currently set, true if at least one bound is set.

getValue(This) -> wx:wx datetime()
Types:

This = wxDatePickerCtrl()
Returns the currently entered date.

For a control with wx DP_ALLOANONE style the returned value may be invalid if no date is entered, otherwise it is
awaysvalid.

setRange(This, Dtl1l, Dt2) -> ok
Types:
This = wxDatePickerCtrl()
Dtl = Dt2 = wx:wx_datetime()
Setsthe valid range for the date selection.

If dt 1 isvalid, it becomes the earliest date (inclusive) accepted by the control. If dt 2 isvalid, it becomes the latest
possible date.

Notice that if the current value is not inside the new range, it will be adjusted to lie inside it, i.e. calling this method
can change the control value, however no events are generated by it.

Remark: If the current value of the control is outside of the newly set range bounds, the behaviour is undefined.

setValue(This, Dt) -> ok
Types.
This = wxDatePickerCtrl()
Dt = wx:wx datetime()

Changes the current value of the control.

The date should be valid unless the control was created with wx DP_ALL OANONE style and included in the currently
selected range, if any.

Calling this method does not result in a date change event.

destroy(This :: wxDatePickerCtrl()) -> ok
Destroys the object.

146 | Ericsson AB. All Rights Reserved.: wxErlang

wxDCOverlay

wxDCOverlay

Erlang module

Connects an overlay with adrawing DC.
See: wxOver | ay, wxDC
wxWidgets docs: wxDCOverlay

Data Types

wxDCOverlay() = wx:wx object()

Exports

new(Overlay, Dc) -> wxDCOverlay()
Types:
Overlay = wxOverlay:wxOverlay()
Dc = wxDC:wxDC()

Convenience wrapper that behaves the same using the entire area of the dc.

new(Overlay, Dc, X, Y, Width, Height) -> wxDCOverlay()

Types:
Overlay = wxOverlay:wxOverlay()
Dc = wxDC:wxDC()
X =Y = Width = Height = integer()

Connects this overlay to the corresponding drawing dc, if the overlay is not initialized yet this call will do so.

destroy(This :: wxDCOverlay()) -> ok

Removes the connection between the overlay and the dc.

clear(This) -> ok
Types:
This = wxDCOverlay()
Clears the layer, restoring the state at the last init.

Ericsson AB. All Rights Reserved.: wxErlang | 147

href

wxDC

wxDC

Erlang module

A wxDCisa"devi ce context" ontowhich graphicsand text can be drawn. It isintended to represent different
output devices and offers acommon abstract API for drawing on any of them.

wxWidgets offers an alternative drawing APl based on the modern drawing backends GDI+, CoreGraphics, Cairo
and Direct2D. SeewxGr aphi csCont ext ,wxG aphi csRender er and related classes. Thereisaso awx GCDC
linking the APIs by offering the wx DC API on top of awxGr aphi csCont ext .

wxDC is an abstract base class and cannot be created directly. Use wxPai nt DC, wxCl i ent DC, wxW ndowDC,
wx Scr eenDC, wxMenor yDC or wxPr i nt er DC (not implemented in wx). Notice that device contexts which are
associated with windows (i.e. wxCl i ent DC, wxW ndowDC and wx Pai nt DC) use the window font and colours by
default (starting with wxWidgets 2.9.0) but the other device context classes use system-default values so you always
must set the appropriate fonts and colours before using them.

In addition to the versions of the methods documented below, there are also versions which accept single { X,Y}
parameter instead of the two wxCoord ones or { X,Y} and { Width,Height} instead of the four wxCoord parameters.

Beginning with wxWidgets 2.9.0 the entire wx DC code has been reorganized. All platform dependent code (actually
all drawing code) has been moved into backend classes which derive from a common wxDClmpl class. The user-
visible classes such aswxCl i ent DC and wx Pai nt DC merely forward all calls to the backend implementation.

Device and logical units
In the wx DC context there is adistinction between | ogi cal unitsand devi ce units.

Devi ce units are the units native to the particular device; e.g. for a screen, adevice unitisapi xel . For a printer,
the device unit is defined by the resolution of the printer (usually given in DPI : dot-per-inch).

Allwx DCfunctionsuseinstead | ogi cal units, unlesswhereexplicitly stated. Logical unitsarearbitrary units mapped
to device units using the current mapping mode (see set Maphbde/ 2).

This mechanism allows reusing the same code which prints on e.g. awindow on the screen to print on e.g. a paper.
Support for Transparency / Alpha Channel

In general wxDC methods don't support apha transparency and the apha component of wx_col or () is simply
ignored and you need to use wxG aphi csCont ext for full transparency support. There are, however, a few
exceptions: first, under macOS and GTK+ 3 colourswith alphachannel are supported in all the normal wxDC-derived
classesasthey usewxGr aphi csCont ext internally. Second, under all platformswx SVGFi | e DC (hot implemented
in wx) also fully supports alpha channel. In both of these cases the instances of wxPen or wxBr ush that are built
fromwx_col or () usethe colour's alpha values when stroking or filling.

Support for Transformation Matrix

On some platforms (currently under MSW, GTK+ 3, macOS) wxDC has support for applying an arbitrary affine
transformation matrix to its coordinate system (since 3.1.1 this feature is also supported by wx GCDC in al ports).
Call CanUseTransformivatri x() (not implemented in wx) to check if this support is available and then
cal Set Transformvatri x() (not implemented in wx) if it is. If the transformation matrix is not supported,
Set Transf ormvatri x() (notimplemented in wx) always simply returnsf al se and doesn't do anything.

Thisfeature is only available when wxUSE_DC_TRANSFORM_MATRI X build option is enabled.

See: Overview dc, wxG aphi csContext, wxDCFontChanger (not implemented in wx),
wxDCText Col our Changer (not implemented in wx), wxDCPenChanger (not implemented in wx),
wx DCBr ushChanger (not implemented inwx), wxDCCl i pper (not implemented in wx)

wxWidgets docs: wxDC

148 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxDC

Data Types

wxDC() = wx:wx object()

Exports

blit(This, Dest, Size, Source, Src) -> boolean()
Types:
This = wxDC()
Dest = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Source = wxDC()
Src = {X :: integer(), Y :: integer()}

blit(This, Dest, Size, Source, Src, Options :: [Option]) ->
boolean()
Types:
This = wxDC()
Dest = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}
Source = wxDC()
Src = {X :: integer(), Y :: integer()}
Option =
{rop, wx:wx_enum()} |
{useMask, boolean()} |
{srcPtMask, {X :: integer(), Y :: integer()}}

Copy from a source DC to this DC.

With this method you can specify the destination coordinates and the size of area to copy which will be the same for
both the source and target DCs. If you need to apply scaling while copying, use St r et chBl i t () (notimplemented
in wx).

Notice that source DC coordinates xsr ¢ and ysr ¢ are interpreted using the current source DC coordinate system,
i.e. the scale, origin position and axis directions are taken into account when transforming them to physical (pixel)
coordinates.

Remark: Thereis partia support for bl i t / 6 inwxPost Scr i pt DC, under X.
See: StretchBlit () (notimplemented inwx), wxMenor yDC, wxBi t map, wx Mask

calcBoundingBox(This, X, Y) -> ok
Types:
This = wxDC()
X =Y = integer()
Adds the specified point to the bounding box which can be retrieved withm nX/ 1, maxX/ 1 and mi nY/ 1, maxY/ 1
functions.

See: r eset Boundi ngBox/ 1

Ericsson AB. All Rights Reserved.: wxErlang | 149

wxDC

clear(This) -> ok
Types:
This = wxDC()
Clears the device context using the current background brush.

Note that set Backgr ound/ 2 method must be used to set the brush used by cl ear / 1, the brush used for filling
the shapes set by set Br ush/ 2 isignored by it.

If no background brush was set, solid white brush is used to clear the device context.

crossHair(This, Pt) -> ok
Types:
This = wxDC()
Pt = {X :: integer(), Y :: integer()}
This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

destroyClippingRegion(This) -> ok
Types:
This = wxDC()
Destroys the current clipping region so that none of the DC is clipped.

See: set O i ppi ngRegi on/ 3

deviceToLogicalX(This, X) -> integer()
Types:

This = wxDC()

X = integer()

Convert devi ce X coordinateto logical coordinate, using the current mapping mode, user scale factor, device origin
and axis orientation.

deviceTolLogicalXRel(This, X) -> integer()
Types:
This = wxDC()
X = integer()
Convert devi ce X coordinate to relative logical coordinate, using the current mapping mode and user scale factor
but ignoring the axis orientation.

Usethisfor converting awidth, for example.

deviceToLogicalY(This, Y) -> integer()
Types:

This = wxDC()

Y = integer()

Convertsdevi ce Y coordinateto logical coordinate, using the current mapping mode, user scale factor, deviceorigin
and axis orientation.

150 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

deviceToLogicalYRel(This, Y) -> integer()
Types:
This = wxDC()
Y = integer()
Convert devi ce Y coordinate to relative logical coordinate, using the current mapping mode and user scale factor
but ignoring the axis orientation.

Usethisfor converting a height, for example.

drawArc(This, PtStart, PtEnd, Centre) -> ok
Types:
This = wxDC()
PtStart = PtEnd = Centre = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawBitmap(This, Bmp, Pt) -> ok
Types:
This = wxDC()
Bmp = wxBitmap:wxBitmap()
Pt = {X :: integer(), Y :: integer()}

drawBitmap(This, Bmp, Pt, Options :: [Option]) -> ok
Types:

This = wxDC()

Bmp = wxBitmap:wxBitmap()

Pt = {X :: integer(), Y :: integer()}

Option = {useMask, boolean()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawCheckMark(This, Rect) -> ok

Types.
This = wxDC()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawCircle(This, Pt, Radius) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 151

wxDC

This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Radius = integer()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawEllipse(This, Rect) -> ok

Types.
This = wxDC()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawEllipse(This, Pt, Size) -> ok

Types:
This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Size = {W :: integer(), H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawEllipticArc(This, Pt, Sz, Sa, Ea) -> ok
Types:

This = wxDC()

Pt = {X :: integer(), Y :: integer()}

Sz = {W :: integer(), H integer()}

Sa = Ea = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawIcon(This, Icon, Pt) -> ok

Types:
This = wxDC()
Icon = wxIcon:wxIcon()

Pt = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawLabel(This, Text, Rect) -> ok
Types:

152 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

This = wxDC()
Text = unicode:chardata()
Rect =

{X :: integer(),

Y :: integer(),

W :: integer(),

H :: integer()}

drawLabel(This, Text, Rect, Options :: [Option]) -> ok

Types:
This = wxDC()
Text = unicode:chardata()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

Option = {alignment, integer()} | {indexAccel, integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawLine(This, Ptl, Pt2) -> ok
Types:
This = wxDC()
Ptl = Pt2 = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawLines(This, Points) -> ok
Types:
This = wxDC()
Points = [{X :: integer(), Y :: integer()}]

drawLines(This, Points, Options :: [Option]) -> ok
Types:

This = wxDC()

Points = [{X :: integer(), Y :: integer()}]

Option = {xoffset, integer()} | {yoffset, integer()}
Draws linesusing an array of points of size n adding the optional offset coordinate.

The current pen is used for drawing the lines.

drawPolygon(This, Points) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 153

wxDC

This = wxDC()
Points = [{X :: integer(), Y :: integer()}]

drawPolygon(This, Points, Options :: [Option]) -> ok

Types.
This = wxDC()
Points = [{X :: integer(), Y :: integer()}]
Option =

{xoffset, integer()} |
{yoffset, integer()} |
{fillStyle, wx:wx _enum()}

Draws afilled polygon using an array of points of size n, adding the optional offset coordinate.
Thefirst and last points are automatically closed.
The last argument specifies the fill rule: wx ODDEVEN_RULE (the default) or wx W NDI NG_RULE.

The current pen is used for drawing the outline, and the current brush for filling the shape. Using a transparent brush
suppresses filling.

drawPoint(This, Pt) -> ok
Types:
This = wxDC()
Pt = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRectangle(This, Rect) -> ok

Types.
This = wxDC()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRectangle(This, Pt, Sz) -> ok
Types:
This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Sz = {W :: integer(), H :: integer()}
This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

154 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

drawRotatedText(This, Text, Point, Angle) -> ok
Types.
This = wxDC()
Text = unicode:chardata()
Point = {X :: integer(), Y :: integer()}
Angle = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRoundedRectangle(This, Rect, Radius) -> ok

Types:
This = wxDC()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

Radius = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawRoundedRectangle(This, Pt, Sz, Radius) -> ok
Types:

This = wxDC()

Pt = {X :: integer(), Y :: integer()}

Sz = {W :: integer(), H :: integer()}

Radius = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

drawText(This, Text, Pt) -> ok
Types:
This = wxDC()
Text = unicode:chardata()
Pt = {X :: integer(), Y :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

endDoc(This) -> ok
Types:
This = wxDC()
Ends a document (only relevant when outputting to a printer).

Ericsson AB. All Rights Reserved.: wxErlang | 155

wxDC

endPage(This) -> ok
Types:
This = wxDC()
Ends a document page (only relevant when outputting to a printer).

floodFill(This, Pt, Col) -> boolean()
Types.
This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Col = wx:wx_colour()

floodFill(This, Pt, Col, Options :: [Option]) -> boolean()
Types:

This = wxDC()

Pt = {X :: integer(), Y :: integer()}

Col = wx:wx_colour()

Option = {style, wx:wx enum()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

getBackground(This) -> wxBrush:wxBrush()
Types:
This = wxDC()
Gets the brush used for painting the background.
See: set Backgr ound/ 2

getBackgroundMode(This) -> integer()
Types:
This = wxDC()
Returns the current background mode: wx PENSTYLE_SOLI D or wx PENSTYLE_TRANSPARENT.
See: set Backgr oundMode/ 2

getBrush(This) -> wxBrush:wxBrush()

Types:
This = wxDC()
Gets the current brush.

See: set Brush/ 2

getCharHeight(This) -> integer()
Types:

This = wxDC()
Gets the character height of the currently set font.

156 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

getCharWidth(This) -> integer()
Types:
This = wxDC()
Gets the average character width of the currently set font.

getClippingBox(This) -> Result
Types.
Result =
{X :: integer(),
Y :: integer(),
Width :: integer()
Height :: integer(
This = wxDC()

Gets the rectangle surrounding the current clipping region. If no clipping
region is set this function returns the extent of the device context. @ enarks
Clipping region is given in logical coordinates. @aram x |f non-<span

)}

class='literal' >NULL, filled in with the |ogical horizontal coordinate
of the top left corner of the clipping region if the function returns true
or 0 otherwise. @aramy |If non-NULL, filled in

with the logical vertical coordinate of the top left corner of the clipping
region if the function returns true or O otherwi se. @aramw dth If non-NULL, filled in with the width of the clipping region if
the function returns true or the device context wi dth otherwi se. @aramheight |f
non-NULL, filled in with the height of the clipping
region if the function returns true or the device context height otherw se.

Return: true if there is a clipping region or false if there is no active clipping region (note that this return value is
available only since wxWidgets 3.1.2, this function didn't return anything in the previous versions).

getFont(This) -> wxFont:wxFont()

Types:
This = wxDC()
Gets the current font.

Notice that even athough each device context object has some default font after creation, this method would return
awxNullFont initially and only after calling set Font / 2 avalid font is returned.

getLayoutDirection(This) -> wx:wx_enum()
Types:

This = wxDC()
Gets the current layout direction of the device context.

On platforms where RTL layout is supported, the return value will either be wxLayout _Left ToRi ght or
wxLayout _Ri ght ToLeft.If RTL layout is not supported, the return value will bewxLayout _Def aul t .

See: set Layout Di rection/ 2

getLogicalFunction(This) -> wx:wx_enum()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 157

wxDC

This = wxDC()
Getsthe current logical function.

See: set Logi cal Functi on/ 2

getMapMode(This) -> wx:wx_enum()
Types:

This = wxDC()
Gets the current mapping mode for the device context.
See: set MaphMbde/ 2

getMultiLineTextExtent(This, String) ->
{W :: integer(), H :: integer()}

Types:

This = wxDC()

String = unicode:chardata()
Gets the dimensions of the string using the currently selected font.
stri ng isthetext string to measure.
Return: The text extent as a { Width,Height} object.
Note: This function works with both single-line and multi-line strings.

See: wxFont , set Font/ 2, get Parti al Text Ext ent s/ 2, get Text Extent/ 3

getMultiLineTextExtent(This, String, Options :: [Option]) ->
{W :: integer(),
H :: integer(),
HeightLine :: integer()}
Types:
This = wxDC()
String = unicode:chardata()
Option = {font, wxFont:wxFont()}
Gets the dimensions of the string using the currently selected font.
st ri ng isthetext string to measure, hei ght Li ne, if non NULL, iswhereto store the height of asingle line.
The text extent is set in the given wand h pointers.

If the optional parameter f ont is specified and valid, then it is used for the text extent calculation, otherwise the
currently selected font is used.

If string isempty, its horizontal extent is O but, for convenience when using this function for allocating enough
space for a possibly multi-line string, its vertical extent is the same as the height of an empty line of text. Please note
that this behaviour differs from that of get Text Ext ent/ 3.

Note: This function works with both single-line and multi-line strings.
See: wxFont , set Font/ 2, get Parti al Text Ext ent s/ 2, get Text Extent/ 3

getPartialTextExtents(This, Text) -> Result
Types:

158 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

Result = {Res :: boolean(), Widths :: [integer()]}
This = wxDC()
Text = unicode:chardata()
Fillsthewi dt hs array with the widths from the beginning of t ext to the corresponding character of t ext .

Thegeneric version simply buildsarunning total of thewidthsof each character usingget Text Ext ent / 3, however
if the various platforms have a native API function that is faster or more accurate than the generic implementation
then it should be used instead.

See: get MUl ti Li neText Ext ent/ 3, get Text Extent/ 3

getPen(This) -> wxPen:wxPen()
Types:
This = wxDC()
Gets the current pen.
See: set Pen/ 2

getPixel(This, Pos) -> Result

Types:
Result = {Res :: boolean(), Colour :: wx:wx colour4()}
This = wxDC()
Pos = {X :: integer(), Y :: integer()}

Getsincol our thecolour at the specified location.

This method isn't available for wxPost Scri pt DCor wxMet af i | eDC (not implemented in wx) nor for any DCin
wxOSX port and simply returns fal se there.

Note: Setting apixel can be done using dr awPoi nt / 2.

Note: This method shouldn't be used with wx Pai nt DC as accessing the DC while drawing can result in unexpected
results, notably in wxGTK.

getPPI(This) -> {W :: integer(), H :: integer()}
Types:

This = wxDC()
Returns the resolution of the device in pixels per inch.

getSize(This) -> {W :: integer(), H :: integer()}
Types:
This = wxDC()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

getSizeMM(This) -> {W :: integer(), H :: integer()}
Types:
This = wxDC()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

Ericsson AB. All Rights Reserved.: wxErlang | 159

wxDC

getTextBackground(This) -> wx:wx_colour4()
Types.

This = wxDC()
Gets the current text background colour.

See: set Text Backgr ound/ 2

getTextExtent(This, String) -> {W :: integer(), H :: integer()}
Types.

This = wxDC()

String = unicode:chardata()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

getTextExtent(This, String, Options :: [Option]) -> Result
Types:
Result =
{W :: integer(),
H :: integer(),
Descent :: integer(),
ExternallLeading :: integer()}

This = wxDC()
String = unicode:chardata()
Option {theFont, wxFont:wxFont()}

Gets the dimensions of the string using the currently selected font.

stri ng isthetext string to measure, descent isthe dimension from the baseline of the font to the bottom of the
descender, and ext er nal Leadi ng isany extravertical space added to thefont by thefont designer (usually iszero).

The text extent is returned in w and h pointers or as a { Width,Height} object depending on which version of this
function is used.

If the optional parameter f ont is specified and valid, then it is used for the text extent calculation. Otherwise the
currently selected font is.

If st ri ng isempty, itsextent is 0 in both directions, as expected.
Note: This function only works with single-line strings.
See: wxFont , set Font/ 2,get Parti al Text Extents/ 2,get Mul ti Li neText Extent/3

getTextForeground(This) -> wx:wx_colour4()
Types.

This = wxDC()
Gets the current text foreground colour.

See: set Text For egr ound/ 2

getUserScale(This) -> {X :: number(), Y :: number()}
Types.

160 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

This = wxDC()
Gets the current user scale factor.
See: set User Scal e/ 3

gradientFillConcentric(This, Rect, InitialColour, DestColour) ->

ok
Types.
This = wxDC()
Rect =
{X integer(),
Y :: integer(),
W integer(),

H :: integer()}
InitialColour = DestColour = wx:wx colour()

Fill the area specified by rect with aradia gradient, starting fromi ni ti al Col our at the centre of the circle and
fading to dest Col our onthecircle outside.

Thecircleis placed at the centre of r ect .
Note: Currently thisfunction is very slow, don't useit for real-time drawing.

gradientFillConcentric(This, Rect, InitialColour, DestColour,
CircleCenter) ->

ok
Types:
This = wxDC()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

InitialColour = DestColour = wx:wx colour()
CircleCenter = {X :: integer(), Y :: integer()}

Fill the area specified by rect with aradial gradient, starting fromi ni ti al Col our at the centre of the circle and
fading to dest Col our onthecircle outside.

ci rcl eCent er aretherelative coordinates of centre of the circlein the specifiedr ect .
Note: Currently this function is very slow, don't useit for real-time drawing.

gradientFillLinear(This, Rect, InitialColour, DestColour) -> ok
Types.

This = wxDC()

Rect

{X :: integer(),
Y :: integer(),
W :: integer(),

Ericsson AB. All Rights Reserved.: wxErlang | 161

wxDC

H :: integer()}
InitialColour = DestColour = wx:wx colour()

gradientFillLinear(This, Rect, InitialColour, DestColour,
Options :: [Option]) ->

ok
Types:

This = wxDC()

Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

InitialColour = DestColour = wx:wx colour()
Option = {nDirection, wx:wx_enum()}

Fill the area specified by r ect with a linear gradient, starting from i ni ti al Col our and eventually fading to
dest Col our.

ThenDi r ect i on specifies the direction of the colour change, default isto usei ni t i al Col our on the left part
of therectangle and dest Col our ontheright one.

logicalToDeviceX(This, X) -> integer()
Types.

This = wxDC()

X = integer()

Convertslogical X coordinate to device coordinate, using the current mapping mode, user scale factor, device origin
and axis orientation.

logicalToDeviceXRel(This, X) -> integer()
Types:

This = wxDC()

X = integer()

Convertslogical X coordinate to relative device coordinate, using the current mapping mode and user scale factor but
ignoring the axis orientation.

Use thisfor converting awidth, for example.

logicalToDeviceY(This, Y) -> integer()
Types.

This = wxDC()

Y = integer()

Convertslogica Y coordinate to device coordinate, using the current mapping mode, user scale factor, device origin
and axis orientation.

logicalToDeviceYRel(This, Y) -> integer()
Types:

162 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

This = wxDC()
Y = integer()

Convertslogica Y coordinate to relative device coordinate, using the current mapping mode and user scale factor but
ignoring the axis orientation.

Usethisfor converting a height, for example.

maxX(This) -> integer()
Types:
This = wxDC()
Gets the maximum horizontal extent used in drawing commands so far.

maxY(This) -> integer()
Types:
This = wxDC()
Gets the maximum vertical extent used in drawing commands so far.

minX(This) -> integer()
Types:
This = wxDC()
Gets the minimum horizontal extent used in drawing commands so far.

minY(This) -> integer()
Types:
This = wxDC()
Gets the minimum vertical extent used in drawing commands so far.

is0k(This) -> boolean()
Types:

This = wxDC()
Returnstrueif the DC is ok to use.

resetBoundingBox(This) -> ok
Types:
This = wxDC()
Resets the bounding box: after a call to this function, the bounding box doesn't contain anything.

See: cal cBoundi ngBox/ 3

setAxisOrientation(This, XLeftRight, YBottomUp) -> ok
Types:

This = wxDC()

XLeftRight = YBottomUp = boolean()

Setsthe x and y axis orientation (i.e. the direction from lowest to highest values on the axis).

Ericsson AB. All Rights Reserved.: wxErlang | 163

wxDC

The default orientation is x axis from left to right and y axis from top down.

setBackground(This, Brush) -> ok
Types:

This = wxDC()

Brush = wxBrush:wxBrush()

Sets the current background brush for the DC.

setBackgroundMode(This, Mode) -> ok

Types:
This = wxDC()
Mode = integer()

node may be one of WxPENSTYLE _SOLI D and wx PENSTYLE_TRANSPARENT
This setting determines whether text will be drawn with a background colour or not.

setBrush(This, Brush) -> ok
Types:

This = wxDC()

Brush = wxBrush:wxBrush()
Sets the current brush for the DC.

If the argument is 2AwxNullBrush (or another invalid brush; seewxBr ush: i sOk/ 1), the current brush is selected out
of the device context (leaving wx DC without any valid brush), allowing the current brush to be destroyed safely.

See: wxBr ush, wxMenor yDC, (for the interpretation of colours when drawing into a monochrome bitmap)

setClippingRegion(This, Rect) -> ok

Types:
This = wxDC()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

setClippingRegion(This, Pt, Sz) -> ok
Types:
This = wxDC()
Pt = {X :: integer(), Y :: integer()}
Sz = {W :: integer(), H :: integer()}
This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

164 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

setDeviceOrigin(This, X, Y) -> ok
Types:
This = wxDC()
X =Y = integer()
Setsthe device origin (i.e. the origin in pixels after scaling has been applied).
This function may be useful in Windows printing operations for placing a graphic on a page.

setFont(This, Font) -> ok
Types:

This wxDC ()

Font = wxFont:wxFont()
Sets the current font for the DC.

If the argument is AwxNullFont (or another invalid font; see wxFont : i sCk/ 1), the current font is selected out of
the device context (leaving wx DC without any valid font), allowing the current font to be destroyed safely.

See: wx Font

setLayoutDirection(This, Dir) -> ok
Types:

This = wxDC()

Dir = wx:wx_enum()
Sets the current layout direction for the device context.
See: get Layout Direction/1

setLogicalFunction(This, Function) -> ok
Types:

This = wxDC()

Function = wx:wx_enum()
Sets the current logical function for the device context.

Note: Thisfunctionisnot fully supported in al ports, dueto the limitations of the underlying drawing model. Notably,
wx | NVERT which was commonly used for drawing rubber bands or other moving outlinesin the past, is not, and will
not, be supported by wxGTK3 and wxMac. The suggested alternative is to draw temporarily objects normally and
refresh the (affected part of the) window to remove them later.

It determines how asour ce pixe (from apen or brush colour, or source device context if using bl i t / 6) combines
withadest i nat i on pixel in the current device context. Text drawing is not affected by this function.

See WxRasterOperationM ode enumeration values for more info.

The default is wx COPY, which simply draws with the current colour. The others combine the current colour and the
background using alogical operation.

setMapMode(This, Mode) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 165

wxDC

This wxDC ()
Mode = wx:wx_enum()

The mapping mode of the device context defines the unit of measurement used to convert | ogi cal unitstodevi ce
units.

Note that in X, text drawing isn't handled consistently with the mapping mode; a font is always specified in point
size. However, setting the user scale (see set User Scal e/ 3) scales the text appropriately. In Windows, scalable
TrueType fonts are always used; in X, results depend on availability of fonts, but usually areasonable match isfound.

The coordinate origin is always at the top left of the screen/printer.

Drawing to aWindows printer device context uses the current mapping mode, but mapping mode s currently ignored
for PostScript output.

setPalette(This, Palette) -> ok
Types:
This = wxDC()
Palette = wxPalette:wxPalette()
If thisisawindow DC or memory DC, assigns the given pal ette to the window or bitmap associated with the DC.

If the argument is AwxNullPalette, the current palette is selected out of the device context, and the original palette
restored.

See: wxPal ett e

setPen(This, Pen) -> ok
Types:

This = wxDC()

Pen = wxPen:wxPen()
Sets the current pen for the DC.

If the argument is wxNullPen (or ancther invalid pen; see wxPen: i sCk/ 1), the current pen is selected out of the
device context (leaving wx DC without any valid pen), allowing the current pen to be destroyed safely.

See: wxMenor yDC, for the interpretation of colours when drawing into a monochrome bitmap

setTextBackground(This, Colour) -> ok
Types:

This = wxDC()

Colour = wx:wx _colour()

Sets the current text background colour for the DC.

setTextForeground(This, Colour) -> ok
Types:

This = wxDC()

Colour = wx:wx _colour()

Sets the current text foreground colour for the DC.
See: wxMenor yDC, for the interpretation of colours when drawing into a monochrome bitmap

166 | Ericsson AB. All Rights Reserved.: wxErlang

wxDC

setUserScale(This, XScale, YScale) -> ok
Types.

This = wxDC()

XScale = YScale = number()

Sets the user scaling factor, useful for applications which require 'zooming'.

startDoc(This, Message) -> boolean()
Types.

This = wxDC()

Message = unicode:chardata()

Starts a document (only relevant when outputting to a printer).
nmessage isamessage to show while printing.

startPage(This) -> ok
Types:
This = wxDC()
Starts a document page (only relevant when outputting to a printer).

Ericsson AB. All Rights Reserved.: wxErlang | 167

wxDialog

wxDialog

Erlang module

A dialog box isawindow with atitle bar and sometimes a system menu, which can be moved around the screen. It can
contain controls and other windows and is often used to allow the user to make some choice or to answer a question.

Dialogs can be made scrollable, automatically, for computers with low resolution screens: please see
overview_dialog_autoscrolling for further details.

Dialogs usually contain either a single button allowing to close the dialog or two buttons, one accepting the changes
and the other one discarding them (such button, if present, is automatically activated if the user pressesthe"Esc" key).
By default, buttons with the standard wxID_OK and wxID_CANCEL identifiers behave as expected. Starting with
wxWidgets 2.7 it is also possible to use a button with adifferent identifier instead, seeset Affi rmati vel d/ 2 and
Set Escapel d() (notimplemented in wx).

Also natice that the cr eat eBut t onSi zer/ 2 should be used to create the buttons appropriate for the current
platform and positioned correctly (including their order which is platform-dependent).

Modal and Modeless

There are two kinds of dialog, modal and modeless. A modal dialog blocks program flow and user input on other
windows until it is dismissed, whereas a model ess dialog behaves more like a frame in that program flow continues,
and input in other windowsis still possible. To show amodal dialog you should usetheshowivbdal / 1 method while
to show adialog modelessly you simply use show/ 2, just as with frames.

Note that the modal dialog is one of the very few examples of wxWindow-derived objects which may be created on
the stack and not on the heap. In other words, while most windows would be created like this:

Y ou can achieve the same result with dialogs by using simpler code:

An application can defineawx Cl oseEvent handler for the dialog to respond to system close events.
Styles

This class supports the following styles:

See: Overview dialog, wxFr ane, Overview validator

This classis derived (and can use functions) from: wx TopLevel W ndowwxW ndowwx Evt Handl er
wxWidgets docs: wxDialog

Events

Event types emitted from thisclass: ¢l ose_wi ndow, i ni t _di al og

Data Types

wxDialog() = wx:wx object()

Exports

new() -> wxDialog()
Default constructor.

new(Parent, Id, Title) -> wxDialog()
Types:

168 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxDialog

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardatal()

new(Parent, Id, Title, Options :: [Option]) -> wxDialog()
Types:
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Constructor.
See:createl/ 5

destroy(This :: wxDialog()) -> ok
Destructor.
Deletes any child windows before deleting the physical window.

See overview_windowdel etion for more info.

create(This, Parent, Id, Title) -> boolean()
Types:

This = wxDialog()

Parent = wxWindow:wxWindow/()

Id = integer()

Title = unicode:chardata()

create(This, Parent, Id, Title, Options :: [Option]) -> boolean()
Types.
This = wxDialog()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Used for two-step dialog box construction.
See: new 4

createButtonSizer(This, Flags) -> wxSizer:wxSizer()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 169

wxDialog

This = wxDialog()
Flags = integer()
Creates a sizer with standard buttons.

f I ags isahit list of the following flags. wxOK, wxCANCEL, wxY ES, wxNO, wxAPPLY , wxCLOSE, wxHELP,
wWXNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

Thisfunction usescr eat eSt dDi al ogBut t onSi zer / 2 internally for most platforms but doesn't create the sizer
at al for the platforms with hardware buttons (such as smartphones) for which it sets up the hardware buttons
appropriately and returns NULL, so don't forget to test that the return value is valid before using it.

createStdDialogButtonSizer(This, Flags) ->
wxStdDialogButtonSizer:wxStdDialogButtonSizer()

Types:
This = wxDialog()
Flags = integer()
Createsawx St dDi al ogBut t onSi zer with standard buttons.

f 1 ags isahit list of the following flags. wxOK, wxCANCEL, wxY ES, wxNO, wxAPPLY , wxCLOSE, wxHELP,
WXNO_DEFAULT.

The sizer lays out the buttons in a manner appropriate to the platform.

endModal(This, RetCode) -> ok
Types:
This = wxDialog()
RetCode = integer()
Ends amodal dialog, passing avalue to be returned from the showbdal / 1 invocation.

See: showibdal / 1, get Ret ur nCode/ 1, set Ret ur nCode/ 2

getAffirmativeId(This) -> integer()
Types:
This = wxDialog()
Getsthe identifier of the button which works like standard OK button in this dialog.
See:set Affirmativel d/ 2

getReturnCode(This) -> integer()
Types.

This = wxDialog()
Gets the return code for this window.

Remark: A return code is normally associated with a modal dialog, where showivbdal / 1 returns a code to the
application.

See: set Ret ur nCode/ 2, showivbdal / 1, endModal / 2

170 | Ericsson AB. All Rights Reserved.: wxErlang

wxDialog

isModal(This) -> boolean()
Types.
This = wxDialog()
Returnstrueif the dialog box is modal, false otherwise.

setAffirmativeld(This, Id) -> ok
Types.

This = wxDialog()

Id = integer()
Setsthe identifier to be used as OK button.

When the button with this identifier is pressed, the dialog cals wxW ndow: validate/1 and
wxW ndow: t r ansf er Dat aFr om\W ndow/ 1 and, if they both return true, closes the dialog with the affirmative
id return code.

Also, when the user presses a hardware OK button on the devices having one or the special OK button in the PocketPC
title bar, an event with thisid is generated.

By default, the affirmativeid iswxID_OK.
See:get Affirmativel d/ 1, Set Escapel d() (notimplemented in wx)

setReturnCode(This, RetCode) -> ok
Types.

This = wxDialog()

RetCode = integer()
Sets the return code for this window.

A return code is normally associated with a modal dialog, where showivbdal / 1 returns a code to the application.
The function endMbdal / 2 callsset Ret ur nCode/ 2.

See: get Ret ur nCode/ 1, showivbdal / 1, endModal / 2

show(This) -> boolean()
Types:
This = wxDialog()

show(This, Options :: [Option]) -> boolean()
Types:

This = wxDialog()

Option = {show, boolean()}

Hides or shows the dialog.
The preferred way of dismissing amodal dialog isto useendModal / 2.

showModal(This) -> integer()
Types.

This = wxDialog()
Shows an application-modal dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 171

wxDialog

Program flow does not return until the dialog has been dismissed with endMvbdal / 2.

Notice that it is possible to call showivbdal / 1 for a dialog which had been previously shown with show/ 2, this
allows making an existing modeless dialog modal. However showivbdal / 1 can't be called twice without intervening
endMbdal / 2 cadls.

Note that this function creates a temporary event loop which takes precedence over the application's main event loop
(seewxEvent LoopBase (not implemented in wx)) and which is destroyed when the dialog is dismissed. This also
resultsin acall towxApp: : ProcessPendi ngEvent s() (notimplemented in wx).

Return: The value set with set Ret ur nCode/ 2.

See: Showw ndowivbdal () (not implemented in wx), ShowW ndowivbdal ThenDo() (notimplemented inwx),
endMbdal / 2, get Ret ur nCode/ 1, set Ret ur nCode/ 2

172 | Ericsson AB. All Rights Reserved.: wxErlang

wxDirDialog

wxDirDialog

Erlang module

This class represents the directory chooser dialog.

Styles

This class supports the following styles:

Note: Thisflag cannot be used with thewxDD_MULTI PLE style.

Remark: MacOS 10.11+ does not display atitle bar onthedialog. Useset Message/ 2 to changethestring displayed
to the user at the top of the dialog after creation. Thewx TopLevel W ndow: set Ti t | e/ 2 method is provided for
compatibility with pre-10.11 MacOS versions that do still support displaying the title bar.

See: Overview cmndlg, wxFi | eDi al og
Thisclassisderived (and can usefunctions) from: wxDi al og wxTopLevel W ndowwxW ndowwxEvt Handl er
wxWidgets docs: wxDir Dialog

Data Types

wxDirDialog() = wx:wx object()

Exports

new(Parent) -> wxDirDialog()
Types:
Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxDirDialog()
Types.

Parent = wxWindow:wxWindow()

Option =

{title, unicode:chardata()} |
{defaultPath, unicode:chardata()} |
{style, integer()} |

{pos, {X :: integer(), Y :: integer()
{sz, {W :: integer(), H :: integer()}

Constructor.
UsewxDi al og: showivbdal / 1 to show the dialog.

I3
}

destroy(This :: wxDirDialog()) -> ok
Destructor.

getPath(This) -> unicode:charlist()
Types.

This = wxDirDialog()
Returns the default or user-selected path.

Ericsson AB. All Rights Reserved.: wxErlang | 173

href
href

wxDirDialog

Note: This function can't be used with dialogs which have the wxDD_MJLTI PLE style, use Get Pat hs() (not
implemented in wx) instead.

getMessage(This) -> unicode:charlist()
Types:

This = wxDirDialog()
Returns the message that will be displayed on the dial og.

setMessage(This, Message) -> ok
Types:

This = wxDirDialog()

Message = unicode:chardata()

Sets the message that will be displayed on the dialog.

setPath(This, Path) -> ok

Types:

This = wxDirDialog()

Path = unicode:chardata()
Sets the default path.

174 | Ericsson AB. All Rights Reserved.: wxErlang

wxDirPickerCtrl

wxDirPickerCtrl

Erlang module

This control allows the user to select a directory. The generic implementation is a button which brings up a
wxDi r Di al og when clicked. Nativeimplementation may differ but thisisusually a(small) widget which give access
to the dir-chooser dialog. It isonly available if wx USE_DI RPI CKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxDi r Di al og, wxFi | eDi r Pi cker Event

This classis derived (and can use functions) from: wxPi cker Base wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxDir Picker Ctrl

Events

Event types emitted from this class: conmand_di r pi cker _changed

Data Types

wxDirPickerCtrl() = wx:wx _object()

Exports
new() -> wxDirPickerCtrl()

new(Parent, Id) -> wxDirPickerCtrl()
Types.

Parent = wxWindow:wxWindow()

Id = integer()

new(Parent, Id, Options :: [Option]) -> wxDirPickerCtrl()
Types.
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{path, unicode:chardata()} |
{message, unicode:chardata()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Initializes the object and callscr eat e/ 4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 175

href

wxDirPickerCtrl

This = wxDirPickerCtrl()
Parent = wxWindow:wxWindow ()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:
This = wxDirPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{path, unicode:chardata()} |
{message, unicode:chardata()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Creates the widgets with the given parameters.
Return: true if the control was successfully created or falseif creation failed.

getPath(This) -> unicode:charlist()
Types:

This = wxDirPickerCtrl()
Returns the absol ute path of the currently selected directory.

setPath(This, Dirname) -> ok
Types:
This = wxDirPickerCtrl()
Dirname = unicode:chardata()
Sets the absolute path of the currently selected directory.

If the control useswxDI RP_DI R_MUST_EXI ST and does not usewx Dl RP_USE_TEXTCTRL style, thedi r nane
must be a name of an existing directory and will be ssmply ignored by the native wxGTK implementation if thisis
not the case.

destroy(This :: wxDirPickerCtrl()) -> ok
Destroys the object.

176 | Ericsson AB. All Rights Reserved.: wxErlang

wxDisplayChangedEvent

wxDisplayChangedEvent

Erlang module

A display changed event is sent to top-level windows when the display resolution has changed.
This event is currently emitted under Windows only.

Only for:wxmsw

See: wxDi spl ay

This classis derived (and can use functions) from: wx Event

wxWidgets docs: wxDisplayChangedEvent

Events
UsewxEvt Handl er: connect/ 3 withwxDi spl ayChangedEvent Type to subscribe to events of thistype.

Data Types

wxDisplayChangedEvent() = wx:wx object()
wxDisplayChanged() =
#wxDisplayChanged{type =
wxDisplayChangedEvent:wxDisplayChangedEventType()}

wxDisplayChangedEventType() = display changed

Ericsson AB. All Rights Reserved.: wxErlang | 177

href

wxDisplay

wxDisplay

Erlang module

Determines the sizes and locations of displays connected to the system.
wxWidgets docs: wxDisplay

Data Types

wxDisplay() = wx:wx_object()
Exports

new() -> wxDisplay()
Default constructor creating wxDi spl ay object representing the primary display.

new(Index) -> wxDisplay()
new(Window) -> wxDisplay()
Types:
Window = wxWindow:wxWindow/()
Constructor creating the display object associated with the given window.

Thisisthe most convenient way of finding the display on which the given window is shown while falling back to the
default display if it is not shown at all or positioned outside of any display.

See: get Fr omW ndow/ 1
Since: 3.1.2

destroy(This :: wxDisplay()) -> ok
Destructor.

isOk(This) -> boolean()
Types:
This = wxDisplay()
Returns true if the object wasiinitialized successfully.

getClientArea(This) ->
{X :: integer

OF
Y :: integer(),
W :: integer(),
H :: integer()}

Types:
This = wxDisplay()
Returns the client area of the display.

The client areais the part of the display available for the normal (non full screen) windows, usualy it is the same as
get Geonet ry/ 1 but it could be lessif there is ataskbar (or equivalent) on thisdisplay.

178 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxDisplay

getGeometry(This) ->
{X :: integer

OF
Y :: integer(),
W :: integer(),
H :: integer()}

Types:

This = wxDisplay()
Returns the bounding rectangle of the display whose index was passed to the constructor.
See:getdientArea/ 1,wx_m sc: displaySize/0

getName(This) -> unicode:charlist()
Types:
This = wxDisplay()
Returns the display's name.
Thereturned value is currently an empty string under all platforms except MSW.

isPrimary(This) -> boolean()
Types:

This = wxDisplay()
Returnstrueif the display isthe primary display.
The primary display isthe one whose index is 0.

getCount() -> integer()
Returns the number of connected displays.

getFromPoint (Pt) -> integer()
Types:
Pt = {X :: integer(), Y :: integer()}

Returns the index of the display on which the given point lies, or wx NOT_FOUND if the point is not on any connected
display.

getFromwWindow(Win) -> integer()
Types:
Win = wxWindow:wxWindow()
Returns the index of the display on which the given window lies.
If the window is on more than one display it gets the display that overlaps the window the most.
Returns wxNOT_FOUND if the window is not on any connected display.

getPPI(This) -> {W :: integer(), H :: integer()}
Types:

This = wxDisplay()
Returns display resolution in pixels per inch.

Horizontal and vertical resolution are returned in x and'y components of the { Width,Height} object respectively.

Ericsson AB. All Rights Reserved.: wxErlang | 179

wxDisplay

If the resolution information is not available, returns.
Since: 3.1.2

180 | Ericsson AB. All Rights Reserved.: wxErlang

wxDropFilesEvent

wxDropFilesEvent

Erlang module

This classis used for drop files events, that is, when files have been dropped onto the window.
The window must have previously been enabled for dropping by calling wxW ndow. dr agAccept Fi | es/ 2.

Important note: this is a separate implementation to the more general drag and drop implementation documented in
the overview_dnd. It uses the older, Windows message-based approach of dropping files.

Remark: Windows only until version 2.8.9, available on all platforms since 2.8.10.
See: Overview events, wxW ndow:. dr agAccept Fi |l es/ 2

This classis derived (and can use functions) from: wx Event

wxWidgets docs: wxDr opFilesEvent

Events

Usewx Evt Handl er: connect / 3 withwxDr opFi | esEvent Type to subscribe to events of thistype.

Data Types

wxDropFilesEvent() = wx:wx object()

wxDropFiles() =
#wxDropFiles{type = wxDropFilesEvent:wxDropFilesEventType(),
pos = {X :: integer(), Y :: integer()},
files = [unicode:chardata()]}
wxDropFilesEventType() = drop files

Exports

getPosition(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxDropFilesEvent()
Returns the position at which the files were dropped.

Returns an array of filenames.

getNumberOfFiles(This) -> integer()
Types:

This = wxDropFilesEvent()
Returns the number of files dropped.

getFiles(This) -> [unicode:charlist()]
Types:

This = wxDropFilesEvent()
Returns an array of filenames.

Ericsson AB. All Rights Reserved.: wxErlang | 181

href
href

wxEraseEvent

wXxEraseEvent

Erlang module

An erase event is sent when awindow's background needs to be repainted.

On some platforms, such as GTK+, this event is simulated (simply generated just before the paint event) and may
causeflicker. It istherefore recommended that you set the text background colour explicitly in order to prevent flicker.
The default background colour under GTK+ isgrey.

To intercept this event, use the EVT_ERASE BACKGROUND macro in an event table definition.

Y ou must use the device context returned by get DT/ 1 to draw on, don't create awx Pai nt DCin the event handler.
See: Overview events

This classis derived (and can use functions) from: wx Event

wxWidgets docs: wxEr aseEvent

Events

Usewx Evt Handl er : connect / 3 withwxEr aseEvent Type to subscribe to events of thistype.

Data Types

wxEraseEvent () = wx:wx object()

wxErase() =
#wxErase{type = wxEraseEvent:wxEraseEventType(),
dc = wxDC:wxDC()}

wxEraseEventType() = erase background

Exports

getDC(This) -> wxDC:wxDC()
Types:
This = wxEraseEvent()
Returns the device context associated with the erase event to draw on.

The returned pointer is never NULL.

182 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxEvent

wXxEvent

Erlang module

An event is a structure holding information about an event passed to a callback or member function.

wxEvent used to be a multipurpose event object, and is an abstract base class for other event classes (see below).
For more information about events, see the overview_events overview.

See: wxCommandEvent , wxMouseEvent

wxWidgets docs: wxEvent

Data Types

wxEvent () = wx:wx _object()

Exports

getId(This) -> integer()
Types:
This = wxEvent()

Returns the identifier associated with this event, such as a button command id.

getSkipped(This) -> boolean()
Types:
This = wxEvent()
Returnstrueif the event handler should be skipped, false otherwise.

getTimestamp(This) -> integer()
Types:

This = wxEvent()
Gets the timestamp for the event.

The timestamp is the time in milliseconds since some fixed moment (not necessarily the standard Unix Epoch, so only
differences between the timestamps and not their absolute values usually make sense).

Warning: wxWidgets returns a non-NULL timestamp only for mouse and key events (see wxMouseEvent and
wxKeyEvent).

isCommandEvent(This) -> boolean()
Types:
This = wxEvent()
Returnstrueif the event is or is derived from wx CommandEvent elseit returns false.

Note: exists only for optimization purposes.

resumePropagation(This, PropagationLevel) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 183

href

wxEvent

This = wxEvent()
PropagationLevel = integer()

Sets the propagation level to the given value (for example returned from an earlier call to st opPr opagat i on/ 1).

shouldPropagate(This) -> boolean()
Types:
This = wxEvent()
Test if this event should be propagated or not, i.e. if the propagation level is currently greater than 0.

skip(This) -> ok
Types.
This = wxEvent()

skip(This, Options :: [Option]) -> ok
Types:

This = wxEvent()

Option = {skip, boolean()}

This method can be used inside an event handler to control whether further event handlers bound to this event will
be called after the current one returns.

Without ski p/ 2 (or equivaently if Skip(false) is used), the event will not be processed any more. If Skip(true) is
called, the event processing system continues searching for a further handler function for this event, even though it
has been processed already in the current handler.

Ingeneral, itisrecommended to skip al non-command eventsto allow the default handling to take place. The command
events are, however, normally not skipped as usually a single command such as a button click or menu item selection
must only be processed by one handler.

stopPropagation(This) -> integer()
Types:

This = wxEvent()
Stop the event from propagating to its parent window.

Returnsthe old propagation level valuewhich may belater passedtor esumePr opagat i on/ 2 to allow propagating
the event again.

184 | Ericsson AB. All Rights Reserved.: wxErlang

wxEvtHandler

wxEvtHandler

Erlang module

A class that can handle events from the windowing system. wxW ndow is (and therefore all window classes are)
derived from this class.

To get events from wxwidgets objects you subscribe to them by calling connect / 3.
If thecal | back option is not supplied events are sent as messages.

These messages will be #wx{} where Event Recor d isarecord that depends on the wx Event Type. The records
are defined in: wx/ i ncl ude/ wx. hrl .

If a callback was supplied to connect, the callback will be invoked (in another process) to handle the event. The
callback should be of arity 2.

fun Cal |l back (Event Record::wx(), EventObject::wxCbject()).
Note: The callback will be in executed in new process each time.

See: Overview events

wxWidgets docs: wxEvtHandler

Data Types

wxEvtHandler() = wx:wx object()

wxEventType() =
wxActivateEvent:wxActivateEventType() |
wxAuiManagerEvent:wxAuiManagerEventType() |
wxAuiNotebookEvent:wxAuiNotebookEventType() |
wxBookCtrlEvent:wxBookCtrlEventType() |
wxCalendarEvent:wxCalendarEventType() |
wxChildFocusEvent:wxChildFocusEventType() |
wxClipboardTextEvent:wxClipboardTextEventType() |
wxCloseEvent:wxCloseEventType() |
wxColourPickerEvent:wxColourPickerEventType() |
wxCommandEvent:wxCommandEventType() |
wxContextMenuEvent:wxContextMenuEventType() |
wxDateEvent:wxDateEventType() |
wxDisplayChangedEvent:wxDisplayChangedEventType() |
wxDropFilesEvent:wxDropFilesEventType() |
wxEraseEvent:wxEraseEventType() |
wxFileDirPickerEvent:wxFileDirPickerEventType() |
wxFocusEvent:wxFocusEventType() |
wxFontPickerEvent:wxFontPickerEventType() |
wxGridEvent:wxGridEventType() |
wxHelpEvent:wxHelpEventType() |
wxHtmlLinkEvent:wxHtmlLinkEventType() |
wxIconizeEvent:wxIconizeEventType() |
wxIdleEvent:wxIdleEventType() |
wxInitDialogEvent:wxInitDialogEventType() |
wxJoystickEvent:wxJoystickEventType() |
wxKeyEvent:wxKeyEventType() |
wxListEvent:wxListEventType() |

Ericsson AB. All Rights Reserved.: wxErlang | 185

href
href

wxEvtHandler

wxMaximizeEvent:wxMaximizeEventType() |

wxMenuEvent :wxMenuEventType() |
wxMouseCaptureChangedEvent:wxMouseCaptureChangedEventType() |
wxMouseCaptureLostEvent:wxMouseCaptureLostEventType() |
wxMouseEvent:wxMouseEventType() |

wxMoveEvent :wxMoveEventType() |
wxNavigationKeyEvent:wxNavigationKeyEventType() |
wxPaintEvent:wxPaintEventType() |
wxPaletteChangedEvent:wxPaletteChangedEventType() |
wxQueryNewPaletteEvent:wxQueryNewPaletteEventType() |
wxSashEvent:wxSashEventType() |
wxScrollEvent:wxScrollEventType() |
wxScrollWinEvent:wxScrollWinEventType() |
wxSetCursorEvent:wxSetCursorEventType() |

wxShowEvent :wxShowEventType() |
wxSizeEvent:wxSizeEventType() |
wxSpinEvent:wxSpinEventType() |
wxSplitterEvent:wxSplitterEventType() |
wxStyledTextEvent:wxStyledTextEventType() |
wxSysColourChangedEvent:wxSysColourChangedEventType() |
wxTaskBarIconEvent:wxTaskBarIconEventType() |
wxTreeEvent:wxTreeEventType() |
wxUpdateUIEvent:wxUpdateUIEventType() |
wxWebViewEvent:wxWebViewEventType() |
wxWindowCreateEvent:wxWindowCreateEventType() |
wxWindowDestroyEvent:wxWindowDestroyEventType()

wx() =

#wx{id = integer(),
obj = wx:wx object(),
userData = term(),
event = event()}

event() =
wxActivateEvent:wxActivate() |
wxAuiManagerEvent:wxAuiManager() |
wxAuiNotebookEvent:wxAuiNotebook() |
wxBookCtrlEvent:wxBookCtrl() |
wxCalendarEvent:wxCalendar() |
wxChildFocusEvent:wxChildFocus() |
wxClipboardTextEvent:wxClipboardText() |
wxCloseEvent:wxClose() |
wxColourPickerEvent:wxColourPicker() |
wxCommandEvent :wxCommand () |
wxContextMenuEvent:wxContextMenu() |
wxDateEvent:wxDate() |
wxDisplayChangedEvent:wxDisplayChanged() |
wxDropFilesEvent:wxDropFiles() |
wxEraseEvent:wxErase() |
wxFileDirPickerEvent:wxFileDirPicker() |
wxFocusEvent:wxFocus() |
wxFontPickerEvent:wxFontPicker() |
wxGridEvent:wxGrid() |
wxHelpEvent:wxHelp() |

186 | Ericsson AB. All Rights Reserved.: wxErlang

wxEvtHandler

wxHtmlLinkEvent:wxHtmlLink () |
wxIconizeEvent:wxIconize() |
wxIdleEvent:wxIdle() |
wxInitDialogEvent:wxInitDialog() |
wxJoystickEvent:wxJoystick() |
wxKeyEvent:wxKey () |

wxListEvent:wxList() |
wxMaximizeEvent:wxMaximize() |
wxMenuEvent:wxMenu() |
wxMouseCaptureChangedEvent:wxMouseCaptureChanged() |
wxMouseCaptureLostEvent:wxMouseCaptureLost() |
wxMouseEvent:wxMouse() |

wxMoveEvent :wxMove () |
wxNavigationKeyEvent:wxNavigationKey() |
wxPaintEvent:wxPaint() |
wxPaletteChangedEvent:wxPaletteChanged() |
wxQueryNewPaletteEvent:wxQueryNewPalette() |
wxSashEvent:wxSash() |
wxScrollEvent:wxScroll() |
wxScrollWinEvent:wxScrollWin() |
wxSetCursorEvent:wxSetCursor() |

wxShowEvent :wxShow() |

wxSizeEvent:wxSize() |

wxSpinEvent:wxSpin() |
wxSplitterEvent:wxSplitter() |
wxStyledTextEvent:wxStyledText() |
wxSysColourChangedEvent:wxSysColourChanged() |
wxTaskBarIconEvent:wxTaskBarIcon() |
wxTreeEvent:wxTree() |
wxUpdateUIEvent:wxUpdateUI() |
wxWebViewEvent:wxWebView() |
wxWindowCreateEvent:wxWindowCreate() |
wxWindowDestroyEvent :wxWindowDestroy ()

Exports
connect(This :: wxEvtHandler(), EventType :: wxEventType()) -> ok

connect(This :: wxEvtHandler(),
EventType :: wxEventType(),
Options :: [Option]) ->

ok
Types:
Option =
{id, integer()} |
{lastId, integer()} |
{skip, boolean()} |

callback |
{callback, function()} |

Ericsson AB. All Rights Reserved.: wxErlang | 187

wxEvtHandler

{userData, term()}
This function subscribes to events.
Subscribesto events of type Event Type, intherangei d, | ast | d.
The events will be received as messages if no callback is supplied.
Options

id{id, integer()} Theidentifier (or first of the identifier range) to be associated with this event handler.
Default is 2wxID_ANY

lastid:{ | ast 1 d, i nteger()} The second part of the identifier range. If used 'id' must be set as the starting
identifier range. Default is 2wxID_ANY

skip:{ ski p, bool ean()} If skipistrue further event_handlers will be called. Thisis not used if the 'callback’
option isused. Default isf al se.

callback:{ cal | back, function()} Use a
callbackf un(Event Recor d: : wx(), Event Obj ect : : wxQObj ect ()) to process the event. Default not
specified i.e. amessage will be delivered to the process calling this function.

userData:{ user Dat a, tern{)} An erlangterm that will be sent with the event. Default: [].
disconnect(This :: wxEvtHandler()) -> boolean()

disconnect(This :: wxEvtHandler(), EventType :: wxEventType()) ->
boolean()

disconnect(This :: wxEvtHandler(),

EventType :: wxEventType(),

Opts :: [Option]) ->

boolean()
Types:
Option =
{id, integer()} | {lastld, integer()} | {callback, function()}

This function unsubscribes the process or callback fun from the event handler.

EventType may be the atom 'null' to match any eventtype. Notice that the options skip and userdata is not used to
match the eventhandler.

188 | Ericsson AB. All Rights Reserved.: wxErlang

wxFileDataObject

wxFileDataObject

Erlang module

wxFi | eDat aCbj ect isaspecialization of wxDat aCbj ect for file names. The program works with it just asif it
were alist of absolute file names, but internally it uses the same format as Explorer and other compatible programs
under Windows or GNOME/KDE file manager under Unix which makes it possible to receive files from them using
this class.

See. wxDat aCbj ect, wxDataObjectSinple (not implemented in wx), wxText DataObject,
wxBi t mapDat aCbj ect , wxDat aObj ect

This classis derived (and can use functions) from: wxDat aCbj ect
wxWidgets docs: wxFileDataObject

Data Types

wxFileDataObject() = wx:wx object()

Exports

new() -> wxFileDataObject()
Constructor.

addFile(This, File) -> ok

Types:
This = wxFileDataObject()
File = unicode:chardata()

Adds afileto thefile list represented by this data object (Windows only).

getFilenames(This) -> [unicode:charlist()]
Types:

This = wxFileDataObject()
Returns the array of file names.

destroy(This :: wxFileDataObject()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 189

href

wxFileDialog

wxFileDialog

Erlang module

This class represents the file chooser dialog.

The path and filename are distinct elements of a full file pathname. If path is 2wxEmptyString, the current directory
will be used. If filenameis AwxEmptyString, no default filename will be supplied. The wildcard determines what files
are displayed in the file selector, and file extension supplies a type extension for the required filename.

The typical usage for the open file didog is:
Thetypical usage for the savefile dialog is instead somewhat simpler:

Remark: All implementations of the wxFi | eDi al og provide a wildcard filter. Typing a filename containing
wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only those files matching the pattern being
displayed. The wildcard may be a specification for multiple types of file with a description for each, such as: It must
be noted that wildcard support in the native Motif file dialog is quite limited: only one file type is supported, and it
is displayed without the descriptive test; "BMP files (*.bmp)[*.bmp" is displayed as "*.bmp", and both "BMP files
(*.bmp)[*.bmp|GIF files (*.gif)|*.gif" and "Imagefiles[* .bmp;*.gif" are errors. On Mac macOS in the open file dialog
thefilter choice box is not shown by default. Instead all given wildcards are appplied at the sametime: So in the above
example al bmp, gif and png files are displayed. To enforce the display of the filter choice set the corresponding
wx Syst emOpt i ons before calling the file open dialog: But in contrast to Windows and Unix, where the file type
choicefilters only the selected files, on Mac macOS even in this case the dialog shows all files matching all file types.
The files which does not match the currently selected file type are greyed out and are not selectable.

Styles

This class supports the following styles:

See: Overview cmndlg, AwxFileSelector()

Thisclassisderived (and can usefunctions) from: wxDi al og wxTopLevel W ndowwxW ndowwxEvt Handl er

wxWidgets docs: wxFileDialog

Data Types

wxFileDialog() = wx:wx object()

Exports

new(Parent) -> wxFileDialog()
Types:
Parent = wxWindow:wxWindow ()

new(Parent, Options :: [Option]) -> wxFileDialog()
Types:

Parent = wxWindow:wxWindow()

Option =

{message, unicode:chardata()} |
{defaultDir, unicode:chardata()} |
{defaultFile, unicode:chardata()} |
{wildCard, unicode:chardata()} |
{style, integer()} |

190 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxFileDialog

{pos, {X :: integer(), Y :: integer(

)} |
{sz, {W :: integer(), H :: integer()}}

Constructor.
UsewxDi al og: showivbdal / 1 to show the dialog.

destroy(This :: wxFileDialog()) -> ok
Destructor.

getDirectory(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the default directory.

getFilename(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the default filename.

Note: This function can't be used with dialogs which have the wxFD_MULTI PLE style, use get Fi | enanes/ 1
instead.

getFilenames(This) -> [unicode:charlist()]
Types:

This = wxFileDialog()
Fillsthearray f i | enanes with the names of the files chosen.

This function should only be used with the dialogs which have wxFD_MULTI PLE style, useget Fi | enane/ 1 for
the others.

Note that under Windows, if the user selects shortcuts, the filenames include paths, since the application cannot
determine the full path of each referenced file by appending the directory containing the shortcuts to the filename.

getFilterIndex(This) -> integer()
Types:
This = wxFileDialog()
Returnsthe index into the list of filters supplied, optionally, in the wildcard parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first displayed.
After the dialog is shown, thisis the index selected by the user.

getMessage(This) -> unicode:charlist()
Types:

This = wxFileDialog()
Returns the message that will be displayed on the dial og.

Ericsson AB. All Rights Reserved.: wxErlang | 191

wxFileDialog

getPath(This) -> unicode:charlist()
Types:
This = wxFileDialog()
Returns the full path (directory and filename) of the selected file.

Note: This function can't be used with dialogs which have thewx FD_MULTI PLE style, use get Pat hs/ 1 instead.

getPaths(This) -> [unicode:charlist()]
Types.

This = wxFileDialog()
Fillsthe array pat hs with the full paths of the files chosen.

This function should only be used with the dialogs which have wxFD_MULTI PLE style, use get Pat h/ 1 for the
others.

getWildcard(This) -> unicode:charlist()
Types.

This = wxFileDialog()
Returns the file dialog wildcard.

setDirectory(This, Directory) -> ok
Types.

This = wxFileDialog()

Directory = unicode:chardata()

Sets the default directory.

setFilename(This, Setfilename) -> ok
Types:

This = wxFileDialog()

Setfilename = unicode:chardata()
Sets the default filename.

In wxGTK thiswill have little effect unless a default directory has previously been set.

setFilterIndex(This, FilterIndex) -> ok
Types.

This = wxFileDialog()

FilterIndex = integer()

Sets the default filter index, starting from zero.

setMessage(This, Message) -> ok
Types:
This = wxFileDialog()
Message = unicode:chardatal()

Sets the message that will be displayed on the dialog.

192 | Ericsson AB. All Rights Reserved.: wxErlang

wxFileDialog

setPath(This, Path) -> ok

Types.
This = wxFileDialog()
Path = unicode:chardata()

Sets the path (the combined directory and filename that will be returned when the dialog is dismissed).

setWildcard(This, WildCard) -> ok
Types:

This = wxFileDialog()

WildCard = unicode:chardata()

Setsthewildcard, which can contain multiplefiletypes, for example: "BMPfiles (* .omp)[* .omp|GIF files (*.gif)[*.gif".
Note that the native Motif dialog has some limitations with respect to wildcards; see the Remarks section above.

Ericsson AB. All Rights Reserved.: wxErlang | 193

wxFileDirPickerEvent

wxFileDirPickerEvent

Erlang module

This event classis used for the events generated by wxFi | ePi cker Ct rl and by wxDi r Pi ckerCtrl .
See: wxFi | ePi ckerCtrl,wxDirPi ckerCtrl

This classis derived (and can use functions) from: wxCommandEvent wxEvent

wxWidgets docs: wxFileDirPicker Event

Events

UsewxEvt Handl er: connect / 3 withwxFi | eDi r Pi cker Event Type to subscribe to events of thistype.

Data Types

wxFileDirPickerEvent() = wx:wx object()

wxFileDirPicker() =
#wxFileDirPicker{type =
wxFileDirPickerEvent:wxFileDirPickerEventType(),
path = unicode:chardata()}

wxFileDirPickerEventType() =
command filepicker changed | command dirpicker changed

Exports

getPath(This) -> unicode:charlist()
Types:
This = wxFileDirPickerEvent()
Retrieve the absolute path of the file/directory the user has just selected.

194 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFilePickerCtrl

wxFilePickerCtrl

Erlang module

Thiscontrol allowsthe user to select afile. The genericimplementation isabutton which bringsupawx Fi | eDi al og
when clicked. Native implementation may differ but this is usually a (small) widget which give access to the file-
chooser dialog. It isonly available if wcUSE_FI LEPI CKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxFi | eDi al og, wxFi | eDi r Pi cker Event

This classis derived (and can use functions) from: wxPi cker Base wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxFilePicker Ctrl

Events

Event types emitted from this class: conmand_fi | epi cker _changed

Data Types

wxFilePickerCtrl() = wx:wx object()

Exports
new() -> wxFilePickerCtrl()

new(Parent, Id) -> wxFilePickerCtrl()
Types.

Parent = wxWindow:wxWindow()

Id = integer()

new(Parent, Id, Options :: [Option]) -> wxFilePickerCtrl()
Types.
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{path, unicode:chardata()} |
{message, unicode: chardata OF |
{wildcard, unicode:chardata()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Initializes the object and callscr eat e/ 4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 195

href

wxFilePickerCtrl

This = wxFilePickerCtrl()
Parent = wxWindow:wxWindow ()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:
This = wxFilePickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{path, unicode:chardata()} |
{message, unicode:chardata()} |
{wildcard, unicode:chardata()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}
Creates this widget with the given parameters.

Return: true if the control was successfully created or falseif creation failed.

getPath(This) -> unicode:charlist()
Types:

This = wxFilePickerCtrl()
Returns the absolute path of the currently selected file.

setPath(This, Filename) -> ok
Types:
This = wxFilePickerCtrl()
Filename = unicode:chardata()
Sets the absolute path of the currently selected file.

If the control useswxFLP_FI LE_MUST_EXI ST and does not usewxFLP_USE_TEXTCTRL style, thef i | enane
must be a name of an existing file and will be simply ignored by the native wxGTK implementation if thisis not the
case (the generic implementation used under the other platforms accepts even invalid file names currently, but thisis
subject to change in the future, don't rely on being able to use non-existent paths with it).

destroy(This :: wxFilePickerCtrl()) -> ok
Destroys the object.

196 | Ericsson AB. All Rights Reserved.: wxErlang

wxFindReplaceData

wxFindReplaceData

Erlang module

wxFi ndRepl aceDat a holdsthe datafor wxFi ndRepl aceDi al og.

Itisused to initialize the dialog with the default values and will keep the last values from the dialog when it is closed.
It is also updated each time awx Fi ndDi al ogEvent (not implemented in wx) is generated so instead of using the
wxFi ndDi al ogEvent (not implemented in wx) methods you can also directly query this object.

Note that all Set XXX() methods may only be called before showing the dialog and calling them has no effect later.
wxWidgets docs: wxFindReplaceData

Data Types

wxFindReplaceData() = wx:wx object()

Exports
new() -> wxFindReplaceData()

new(Options :: [Option]) -> wxFindReplaceData()
Types.

Option = {flags, integer()}
Constructor initializes the flags to default value (0).

getFindString(This) -> unicode:charlist()
Types:

This = wxFindReplaceData()
Get the string to find.

getReplaceString(This) -> unicode:charlist()
Types:

This = wxFindReplaceData()
Get the replacement string.

getFlags(This) -> integer()
Types:
This = wxFindReplaceData()
Get the combination of wxFi ndRepl aceFl ags values.

setFlags(This, Flags) -> ok
Types:
This = wxFindReplaceData()
Flags = integer()
Set the flags to use to initialize the controls of the dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 197

href

wxFindReplaceData

setFindString(This, Str) -> ok
Types.
This = wxFindReplaceData()
Str = unicode:chardata()

Set the string to find (used asinitial value by the dial og).

setReplaceString(This, Str) -> ok
Types:

This = wxFindReplaceData()

Str = unicode:chardata()

Set the replacement string (used as initial value by the dialog).

destroy(This :: wxFindReplaceData()) -> ok
Destroys the object.

198 | Ericsson AB. All Rights Reserved.: wxErlang

wxFindReplaceDialog

wxFindReplaceDialog

Erlang module

wxFi ndRepl aceDi al og isastandard modeless dialog which is used to allow the user to search for sometext (and
possibly replace it with something else).

The actual searching is supposed to be donein the owner window which isthe parent of thisdialog. Note that it means
that unlike for the other standard dialogs this one nust have a parent window. Also note that there is no way to use
this dialog in amodal way; it is always, by design and implementation, model ess.

Please see the page_samples dialogs sample for an example of using it.
Thisclassisderived (and can usefunctions) from: wxDi al og wxTopLevel W ndowwxW ndowwxEvt Handl er
wxWidgets docs: wxFindReplaceDialog

Data Types

wxFindReplaceDialog() = wx:wx object()

Exports
new() -> wxFindReplaceDialog()

new(Parent, Data, Title) -> wxFindReplaceDialog()
Types:
Parent = wxWindow:wxWindow()
Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()

new(Parent, Data, Title, Options :: [Option]) ->
wxFindReplaceDialog()
Types:
Parent = wxWindow:wxWindow()
Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()
Option = {style, integer()}
After using default constructor cr eat e/ 5 must be called.
The par ent and dat a parameters must be non-NULL.

destroy(This :: wxFindReplaceDialog()) -> ok
Destructor.

create(This, Parent, Data, Title) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 199

href

wxFindReplaceDialog

This = wxFindReplaceDialog()

Parent = wxWindow:wxWindow()

Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()

create(This, Parent, Data, Title, Options :: [Option]) ->
boolean()
Types:
This = wxFindReplaceDialog()
Parent = wxWindow:wxWindow()
Data = wxFindReplaceData:wxFindReplaceData()
Title = unicode:chardata()
Option = {style, integer()}
Creates the dialog; use wxW ndow. show/ 2 to show it on screen.
Thepar ent and dat a parameters must be non-NULL.

getData(This) -> wxFindReplaceData:wxFindReplaceData()
Types:

This = wxFindReplaceDialog()
Get thewx Fi ndRepl aceDat a object used by this dialog.

200 | Ericsson AB. All Rights Reserved.: wxErlang

wxFlexGridSizer

wxFlexGridSizer

Erlang module

A flex grid sizer isasizer which lays out its children in atwo-dimensional table with al table fieldsin one row having
the same height and all fields in one column having the same width, but al rows or al columns are not necessarily
the same height or width asinthewxGri dSi zer .

Since wxWidgets 2.5.0, wxFl exGri dSi zer can also sizeitems equally in one direction but unequally (“flexibly™)
inthe other. If the sizer is only flexiblein one direction (this can be changed using set Fl exi bl eDi r ecti on/ 2),
it needs to be decided how the sizer should grow in the other ("non-flexible") direction in order to fill the available
space. Theset NonFl exi bl eGr owvbde/ 2 method serves this purpose.

See: WwxSi zer , Overview sizer
This classis derived (and can use functions) from: wxGr i dSi zer wxSi zer
wxWidgets docs: wxFlexGridSizer

Data Types

wxFlexGridSizer() = wx:wx_object()

Exports

new(Cols) -> wxFlexGridSizer()
Types.
Cols = integer()

new(Cols, Options :: [Option]) -> wxFlexGridSizer()
Types:

Cols = integer()

Option = {gap, {W :: integer(), H :: integer()}}

new(Cols, Vgap, Hgap) -> wxFlexGridSizer()
new(Rows, Cols, Gap) -> wxFlexGridSizer()
Types:

Rows = Cols = integer()

Gap = {W :: integer(), H :: integer()}

new(Rows, Cols, Vgap, Hgap) -> wxFlexGridSizer()
Types.
Rows = Cols = Vgap = Hgap = integer()

addGrowableCol(This, Idx) -> ok
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 201

href
href

wxFlexGridSizer

This = wxFlexGridSizer()
Idx = integer()

addGrowableCol(This, Idx, Options :: [Option]) -> ok
Types.
This = wxFlexGridSizer()
Idx = integer()
Option = {proportion, integer()}
Specifiesthat columni dx (starting from zero) should be grown if there is extra space available to the sizer.

The pr opor ti on parameter has the same meaning as the stretch factor for the sizers (see wxBox Si zer) except
that if all proportions are 0, then al columns are resized equally (instead of not being resized at al).

Notice that the column must not be already growable, if you need to change the proportion you must cal
renmoveG owabl eCol / 2 first and then make it growable (with a different proportion) again. You can use
| sCol Growabl e() (hotimplemented in wx) to check whether a column is aready growable.

addGrowableRow(This, Idx) -> ok
Types:

This = wxFlexGridSizer()

Idx = integer()

addGrowableRow(This, Idx, Options :: [Option]) -> ok
Types:
This = wxFlexGridSizer()
Idx = integer()
Option = {proportion, integer()}
Specifiesthat row idx (starting from zero) should be grown if there is extra space available to the sizer.

Thisisidentical to addG owabl eCol / 3 except that it works with rows and not columns.

getFlexibleDirection(This) -> integer()
Types.
This = wxFlexGridSizer()
Returns a AwxOrientation value that specifies whether the sizer flexibly resizesits columns, rows, or both (default).
Return: One of the following values:
See: set Fl exi bl eDirection/ 2

getNonFlexibleGrowMode(This) -> wx:wx_enum()
Types:
This = wxFlexGridSizer()
Returns the value that specifies how the sizer grows in the "non-flexible" direction if thereis one.

The behaviour of the elements in the flexible direction (i.e. both rows and columns by default, or rows only if
get Fl exi bl eDi recti on/ 1 iswxVERTI CAL or columns only if it iswxHORI ZONTAL) is always governed by
their proportion as specified in the call to addG owabl eRow/ 3 or addGr owabl eCol / 3. What happens in the
other direction depends on the value of returned by this function as described below.

202 | Ericsson AB. All Rights Reserved.: wxErlang

wxFlexGridSizer

Return: One of the following values:
See: set Fl exi bl eDi recti on/ 2, set NonFl exi bl eG owivbde/ 2

removeGrowableCol(This, Idx) -> ok
Types:
This = wxFlexGridSizer()
Idx = integer()
Specifiesthat thei dx columnindex isno longer growable.

removeGrowableRow(This, Idx) -> ok
Types.

This = wxFlexGridSizer()

Idx = integer()
Specifiesthat thei dx row index is no longer growable.

setFlexibleDirection(This, Direction) -> ok
Types:
This = wxFlexGridSizer()
Direction = integer()
Specifies whether the sizer should flexibly resize its columns, rows, or both.

Argument di r ect i on can bewx VERTI CAL, wx HORI ZONTAL or wx BOTH (which isthe default value). Any other

valueisignored.

See get Fl exi bl eDi recti on/ 1 for the explanation of these values. Note that this method does not trigger

relayout.

setNonFlexibleGrowMode(This, Mode) -> ok

Types:
This = wxFlexGridSizer()
Mode = wx:wx_enum()

Specifies how the sizer should grow in the non-flexible direction if thereis one (so set Fl exi bl eDi recti on/ 2

must have been called previoudly).

Argument node can be one of those documented in get NonFl exi bl eG owivbde/ 1, please see there for their

explanation. Note that this method does not trigger relayout.

destroy(This :: wxFlexGridSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 203

wxFocusEvent

wXxFocusEvent

Erlang module

A focus event is sent when a window's focus changes. The window losing focus receives a "kill focus" event while
the window gaining it gets a"set focus' one.

Notice that the set focus event happens both when the user gives focus to the window (whether using the mouse or
keyboard) and when it is done from the program itself using wxW ndow. set Focus/ 1.

The focus event handlers should almost invariably call wxEvent : ski p/ 2 on their event argument to alow the
default handling to take place. Failure to do this may result in incorrect behaviour of the native controls. Also note
that wxEVT_KILL_FOCUS handler must not call wxW ndow: set Focus/ 1 asthis, again, is not supported by all
native controls. If you need to do this, consider using the Del ayed Acti on Mechani sm(not implemented in
wx) described inwx| dl eEvent documentation.

See: Overview events
This classis derived (and can use functions) from: wx Event
wxWidgets docs: wxFocusEvent

Events

Usewx Evt Handl er : connect / 3 withwxFocusEvent Type to subscribe to events of thistype.

Data Types

wxFocusEvent() = wx:wx _object()

wxFocus () =
#wxFocus{type = wxFocusEvent:wxFocusEventType(),
win = wxWindow:wxWindow()}

wxFocusEventType() = set focus | kill focus

Exports

getWindow(This) -> wxWindow:wxWindow()
Types:
This = wxFocusEvent()

Returns the window associated with this event, that is the window which had the focus before for the
WXEVT_SET _FOCUS event and the window which is going to receive focus for the wx EVT_KI LL_FOCUS one.

Warning: the window pointer may be NULL!

204 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxFontData

wxFontData

Erlang module

This class holds avariety of information related to font dialogs.
See: Overview cmndlg, wxFont , wxFont Di al og
wxWidgets docs: wxFontData

Data Types

wxFontData() = wx:wx object()

Exports

new() -> wxFontData()
Constructor.

Initializes f ont Col our to black, showHel p to fase, al | owSynbol s to true, enabl eEf f ect s to true,
m nSi ze to0and maxSi ze to 0.

new(Data) -> wxFontData()

Types:
Data = wxFontData()
Copy Constructor.

enableEffects(This, Enable) -> ok
Types:

This = wxFontData()

Enable = boolean()

Enables or disables"effects’ under Windows or generic only.
Thisrefersto the controls for manipulating colour, strikeout and underline properties.
The default value istrue.

getAllowSymbols(This) -> boolean()
Types:
This = wxFontData()
Under Windows, returns a flag determining whether symbol fonts can be selected.
Has no effect on other platforms.
The default value istrue.

getColour(This) -> wx:wx_colour4()
Types.

This = wxFontData()
Gets the colour associated with the font dialog.

Ericsson AB. All Rights Reserved.: wxErlang | 205

href
href

wxFontData

The default value is black.

getChosenFont(This) -> wxFont:wxFont()
Types:
This = wxFontData()

Gets the font chosen by the user if the user pressed OK (WwxFont Di al og: : Showivbdal () (not implemented in
wx) returned wxID_OK).

getEnableEffects(This) -> boolean()
Types:
This = wxFontData()
Determines whether "effects’ are enabled under Windows.
This refersto the controls for manipulating colour, strikeout and underline properties.
The default valueis true.

getInitialFont(This) -> wxFont:wxFont()
Types:

This = wxFontData()
Getsthe font that will be initialy used by the font dialog.

This should have previously been set by the application.

getShowHelp(This) -> boolean()
Types:
This = wxFontData()
Returns true if the Help button will be shown (Windows only).

The default value isfalse.

setAllowSymbols(This, AllowSymbols) -> ok
Types:

This = wxFontData()

AllowSymbols = boolean()
Under Windows, determines whether symbol fonts can be selected.
Has no effect on other platforms.
The default valueis true.

setChosenFont(This, Font) -> ok
Types:

This wxFontData()

Font = wxFont:wxFont()

Sets the font that will be returned to the user (for internal use only).

206 | Ericsson AB. All Rights Reserved.: wxErlang

wxFontData

setColour(This, Colour) -> ok
Types.

This = wxFontData()

Colour = wx:wx colour()

Sets the colour that will be used for the font foreground colour.

The default colour is black.

setInitialFont(This, Font) -> ok

Types:
This = wxFontData()
Font = wxFont:wxFont()

Sets the font that will beinitialy used by the font dialog.

setRange(This, Min, Max) -> ok
Types:
This = wxFontData()
Min = Max = integer()
Sets the valid range for the font point size (Windows only).
The default is 0, O (unrestricted range).

setShowHelp(This, ShowHelp) -> ok
Types:

This = wxFontData()

ShowHelp = boolean()

Determines whether the Help button will be displayed in the font dialog (Windows only).

The default value isfalse.

destroy(This :: wxFontData()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 207

wxFontDialog

wxFontDialog

Erlang module

This class represents the font chooser dialog.

See: Overview cmndlg, wxFont Dat a, AwxGetFontFromUser()

Thisclassisderived (and can usefunctions) from: wxDi al og wxTopLevel W ndowwxW ndowwxEvt Handl er
wxWidgets docs: wxFontDialog

Data Types

wxFontDialog() = wx:wx object()

Exports

new() -> wxFontDialog()
Defaullt ctor.
cr eat e/ 3 must be called before the dial og can be shown.

new(Parent, Data) -> wxFontDialog()
Types:
Parent = wxWindow:wxWindow()
Data = wxFontData:wxFontData()

Constructor.
Pass a parent window, and the wx Font Dat a object to be used to initialize the dialog controls.

create(This, Parent, Data) -> boolean()
Types.

This = wxFontDialog()

Parent = wxWindow:wxWindow()

Data = wxFontData:wxFontData()

Createsthe dialog if thewxFont Di al og object had been initialized using the default constructor.
Return: true on success and false if an error occurred.

getFontData(This) -> wxFontData:wxFontData()
Types.

This = wxFontDialog()
Returns the wx Font Dat a associated with the font dialog.

destroy(This :: wxFontDialog()) -> ok
Destroys the object.

208 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxFontPickerCtrl

wxFontPickerCtrl

Erlang module

Thiscontrol allowsthe user to select afont. The genericimplementationisabutton which bringsupawxFont Di al og
when clicked. Native implementation may differ but this is usually a (small) widget which give access to the font-
chooser dialog. It isonly available if wxUSE_FONTPI CKERCTRL is set to 1 (the default).

Styles

This class supports the following styles:

See: wxFont Di al og, wxFont Pi cker Event

This classis derived (and can use functions) from: wxPi cker Base wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxFontPicker Ctrl

Events

Event types emitted from this class: conmmand_f ont pi cker _changed

Data Types

wxFontPickerCtrl() = wx:wx object()

Exports
new() -> wxFontPickerCtrl()

new(Parent, Id) -> wxFontPickerCtrl()
Types.

Parent = wxWindow:wxWindow()

Id = integer()

new(Parent, Id, Options :: [Option]) -> wxFontPickerCtrl()
Types.
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{initial, wxFont:wxFont()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Initializes the object and callscr eat e/ 4 with all the parameters.

create(This, Parent, Id) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 209

href

wxFontPickerCtrl

This = wxFontPickerCtrl()
Parent = wxWindow:wxWindow ()
Id = integer()

create(This, Parent, Id, Options :: [Option]) -> boolean()
Types:
This = wxFontPickerCtrl()
Parent = wxWindow:wxWindow()
Id = integer()
Option =
{initial, wxFont:wxFont()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}
Creates this widget with given parameters.

Return: true if the control was successfully created or falseif creation failed.

getSelectedFont(This) -> wxFont:wxFont()
Types:

This = wxFontPickerCtrl()
Returns the currently selected font.

Note that this function is completely different from wx W ndow:. get Font / 1.

setSelectedFont(This, Font) -> ok

Types:
This = wxFontPickerCtrl()
Font = wxFont:wxFont()
Sets the currently selected font.

Note that this function is completely different from wx W ndow: set Font / 2.

getMaxPointSize(This) -> integer()
Types.
This = wxFontPickerCtrl()
Returns the maximum point size value allowed for the user-chosen font.

setMaxPointSize(This, Max) -> ok
Types:
This = wxFontPickerCtrl()
Max = integer()
Sets the maximum point size value allowed for the user-chosen font.

The default value is 100. Note that big fonts can require a lot of memory and CPU time both for creation and
for rendering; thus, specialy because the user has the option to specify the fontsize through a text control (see

210 | Ericsson AB. All Rights Reserved.: wxErlang

wxFontPickerCtrl

WXFNTP_USE _TEXTCTRL), it's agood ideato put alimit to the maximum font size when huge fonts do not make
much sense.

destroy(This :: wxFontPickerCtrl()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 211

wxFontPickerEvent

wxFontPickerEvent

Erlang module

This event classis used for the events generated by wxFont Pi cker Ct r | .

See: wxFont Pi cker Ctr

This classis derived (and can use functions) from: wxCommandEvent wxEvent
wxWidgets docs: wxFontPicker Event

Events

Usewx Evt Handl er : connect / 3 withwxFont Pi cker Event Type to subscribe to events of thistype.

Data Types

wxFontPickerEvent() = wx:wx object()

wxFontPicker() =
#wxFontPicker{type =
wxFontPickerEvent:wxFontPickerEventType(),
font = wxFont:wxFont()}

wxFontPickerEventType() = command fontpicker changed

Exports

getFont(This) -> wxFont:wxFont()
Types:

This = wxFontPickerEvent()
Retrieve the font the user has just selected.

212 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFont

wxFont

Erlang module

A font is an object which determines the appearance of text.

Fonts are used for drawing text to a device context, and setting the appearance of a window's text, see
wxDC: set Font / 2 and wxW ndow. set Font/ 2.

The easiest way to create a custom font is to use wxFont | nf o (not implemented in wx) object to specify the font
attributes and then use new/ 5 constructor. Alternatively, you could start with one of the pre-defined fonts or use
wxW ndow: get Font / 1 and modify the font, e.g. by increasing its size using MakeLar ger () (not implemented
in wx) or changing its weight using MakeBol d() (not implemented in wx).

This class uses reference counting and copy-on-writeinternally so that assignments between two instances of this class
are very cheap. You can therefore use actual objects instead of pointers without efficiency problems. If an instance
of this classis changed it will create its own data internally so that other instances, which previously shared the data
using the reference counting, are not affected.

Y ou can retrieve the current system font settings with wx Syst enSet t i ngs.

Predefined objects (include wx.hrl): 2wxNullFont, 2wWxNORMAL_FONT, 2wxSMALL_FONT, ?
WXITALIC_FONT, 2wxSWISS_FONT

See: Overview font, wxDC: set Font / 2, wxDC: dr awText / 3, wxDC: get Text Ext ent/ 3, wxFont Di al og,
wxSyst enSet t i ngs

wxWidgets docs: wxFont

Data Types

wxFont() = wx:wx _object()

Exports

new() -> wxFont()
Default ctor.

new(NativeInfoString) -> wxFont()
new(Font) -> wxFont()
Types:
Font = wxFont()
Copy constructor, uses reference counting.

new(PointSize, Family, Style, Weight) -> wxFont()
new(PixelSize, Family, Style, Weight) -> wxFont()
Types.
PixelSize = {W :: integer(), H :: integer()}
Family = Style = Weight = wx:wx_enum()

new(PointSize, Family, Style, Weight, Options :: [Option]) ->

Ericsson AB. All Rights Reserved.: wxErlang | 213

href
href

wxFont

wxFont()

new(PixelSize, Family, Style, Weight, Options :: [Option]) ->
wxFont ()

Types:

PixelSize = {W :: integer(), H :: integer()}

Family = Style = Weight = wx:wx_enum()

Option
{underline, boolean()} |
{faceName, unicode:chardata()} |
{encoding, wx:wx _enum()}

Creates afont object with the specified attributes and size in pixels.

Notice that the use of this constructor is often more verbose and less readable than the use of constructor from
wxFont | nf o (not implemented in wx), consider using that constructor instead.

Remark: If the desired font does not exist, the closest match will be chosen. Under Windows, only scalable TrueType
fonts are used.

destroy(This :: wxFont()) -> ok
Destructor.
See reference-counted object destruction for more info.

Remark: Although all remaining fonts are deleted when the application exits, the application should try to clean up
al fontsitself. Thisis because wxWidgets cannot know if a pointer to the font object is stored in an application data
structure, and there is arisk of double deletion.

isFixedWidth(This) -> boolean()
Types:
This = wxFont()
Returnstrueif the font is afixed width (or monospaced) font, falseif it is a proportiona one or font isinvalid.

Note that this function under some platforms is different from just testing for the font family being equa to
WX FONTFAM LY_TELETYPE because native platform-specific functions are used for the check (resulting in amore
accurate return value).

getDefaultEncoding() -> wx:wx_enum()
Returns the current application's default encoding.
See: Overview fontencoding, set Def aul t Encodi ng/ 1

getFaceName(This) -> unicode:charlist()
Types:
This = wxFont()
Returns the face name associated with the font, or the empty string if thereis no face information.
See: set FaceName/ 2

getFamily(This) -> wx:wx_enum()
Types:

214 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFont

This = wxFont()
Getsthe font family if possible.

Asdescribed in 2wxFontFamily docs the returned val ue acts as arough, basic classification of the main font properties
(look, spacing).

If the current font face nameis not recognized by wx Font or by the underlying system, wxFONTFAM LY DEFAULT
isreturned.

Note that currently this function is not very precise and so not particularly useful. Font families mostly make sense
only for font creation, seeset Fami | y/ 2.

See:setFanily/ 2

getNativeFontInfoDesc(This) -> unicode:charlist()
Types:
This = wxFont()
Returns the platform-dependent string completely describing this font.
Returned string is always non-empty unless the font isinvalid (in which case an assert is triggered).

Notethat the returned string is not meant to be shown or edited by the user: atypical use of thisfunctionisfor serializing
in string-form awxFont object.

See: Set Nat i veFont | nf o() (hot implemented in wx), get Nat i veFont | nf oUser Desc/ 1

getNativeFontInfoUserDesc(This) -> unicode:charlist()
Types:
This = wxFont()
Returns a user-friendly string for this font object.
Returned string is always non-empty unless the font isinvalid (in which case an assert is triggered).

The string does not encode all wxFont infos under all platforms; e.g. under wxMSW the font family is not present
in the returned string.

Some examples of the formats of returned strings (which are platform-dependent) are in
Set Nat i veFont | nf oUser Desc() (notimplemented in wx).

See: Set Nat i veFont | nf oUser Desc() (notimplemented inwx), get Nat i veFont | nf oDesc/ 1

getPointSize(This) -> integer()
Types.

This = wxFont()
Gets the point size as an integer number.

This function is kept for compatibility reasons. New code should use Get Fracti onal Poi nt Si ze() (not
implemented in wx) and support fractional point sizes.

See: set Poi nt Si ze/ 2
See: Get Fracti onal Poi nt Si ze() (notimplemented in wx)

getStyle(This) -> wx:wx_enum()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 215

wxFont

This = wxFont()
Getsthe font style.
See wxFontStyle for alist of valid styles.
See:set Styl e/ 2

getUnderlined(This) -> boolean()
Types:

This = wxFont ()
Returnstrueif the font is underlined, false otherwise.
See: set Under | i ned/ 2

getWeight(This) -> wx:wx_enum()

Types.
This = wxFont ()
Getsthe font weight.

See AxFontWeight for alist of valid weight identifiers.
See: set Wi ght/ 2

ok(This) -> boolean()
Types:

This = wxFont()
Seeri sCk/ 1.

isOk(This) -> boolean()
Types.
This = wxFont()
Returnstrue if this object isavalid font, false otherwise.

setDefaultEncoding(Encoding) -> ok
Types:

Encoding = wx:wx_enum()
Sets the default font encoding.

See: Overview fontencoding, get Def aul t Encodi ng/ 0

setFaceName(This, FaceName) -> boolean()
Types.

This = wxFont()

FaceName = unicode:chardata()
Sets the facename for the font.

Remark: To avoid portability problems, don't rely on a specific face, but specify the font family instead (see ?
wxFontFamily and set Fani | y/ 2).

216 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxFont

Return: trueif the given face name exists; if the face name doesn't exist in the user's system then the font isinvalidated
(sothati sOk/ 1 will return false) and falseis returned.

See: get FaceNane/ 1, set Fami | y/ 2

setFamily(This, Family) -> ok
Types:

This = wxFont()

Family = wx:wx_enum()
Sets the font family.

As described in AwxFontFamily docs the given f ami | y value acts as a rough, basic indication of the main font
properties (look, spacing).

Note that changing the font family results in changing the font face name.
See: get Fami | y/ 1, set FaceNane/ 2

setPointSize(This, PointSize) -> ok
Types:

This = wxFont()

PointSize = integer()
Setsthe font size in pointsto an integer value.

This is a legacy version of the function only supporting integer point sizes. It can still be used, but to avoid
unnecessarily restricting the font size in points to integer values, consider using the new (added in wxWidgets 3.1.2)
Set Fract i onal Poi nt Si ze() (not implemented in wx) function instead.

setStyle(This, Style) -> ok
Types:
This = wxFont()
Style = wx:wx_enum()
Sets the font style.
Seeiget Style/l

setUnderlined(This, Underlined) -> ok
Types:

This = wxFont()

Underlined = boolean()
Sets underlining.

See: get Under | i ned/ 1

setWeight(This, Weight) -> ok
Types:

This = wxFont()

Weight = wx:wx_enum()
Sets the font weight.

Ericsson AB. All Rights Reserved.: wxErlang | 217

wxFont

See: get Wi ght/ 1

218 | Ericsson AB. All Rights Reserved.: wxErlang

wxFrame

wxFrame

Erlang module

A frame is awindow whose size and position can (usually) be changed by the user.

It usually has thick borders and atitle bar, and can optionally contain a menu bar, toolbar and status bar. A frame can
contain any window that is not aframe or dialog.

A frame that has a status bar and toolbar, created via the cr eat eSt at usBar/ 2 and cr eat eTool Bar/ 2
functions, manages these windows and adjusts the value returned by wx W ndow: get Cl i ent Si ze/ 1 toreflect the
remaining size available to application windows.

Remark: An application should normally defineanwxCl oseEvent handler for the frame to respond to system close
events, for example so that related data and subwindows can be cleaned up.

Default event processing

wx Fr anme processes the following events:

Styles

This class supports the following styles:

See also the overview_windowstyles.

Extra Styles

This class supports the following extra styles:

See: wx VDI Par ent Fr ane, wxVDI Chi | dFr ane, wxM ni Fr anme, wxDi al og

This classis derived (and can use functions) from: wx TopLevel W ndowwxW ndowwx Evt Handl er
wxWidgets docs: wxFrame

Events

Event types emitted from this class. cl ose_w ndow, iconize, nenu_open, nenu_cl ose,
menu_hi ghl i ght

Data Types

wxFrame() = wx:wx _object()

Exports

new() -> wxFrame()
Default constructor.

new(Parent, Id, Title) -> wxFrame()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 219

href

wxFrame

Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardatal()

new(Parent, Id, Title, Options :: [Option]) -> wxFrame()
Types:

Parent = wxWindow:wxWindow()

Id = integer()

Title = unicode:chardata()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()}
Constructor, creating the window.

Remark: For Motif, MWM (the Motif Window Manager) should be running for any window stylesto work (otherwise
all styles take effect).

See:createl/5

destroy(This :: wxFrame()) -> ok
Destructor.
Destroys all child windows and menu bar if present.

See overview_windowdeletion for more info.

create(This, Parent, Id, Title) -> boolean()
Types:

This = wxFrame()

Parent = wxWindow:wxWindow()

Id = integer()

Title = unicode:chardata()

create(This, Parent, Id, Title, Options :: [Option]) -> boolean()
Types.
This = wxFrame()
Parent = wxWindow:wxWindow()
Id = integer()
Title = unicode:chardata()
Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Used in two-step frame construction.
See new 4 for further details.

220 | Ericsson AB. All Rights Reserved.: wxErlang

wxFrame

createStatusBar(This) -> wxStatusBar:wxStatusBar()
Types.
This = wxFrame()

createStatusBar(This, Options :: [Option]) ->
wxStatusBar:wxStatusBar()

Types:
This = wxFrame()
Option =
{number, integer()} | {style, integer()} | {id, integer()}
Creates a status bar at the bottom of the frame.
Return: A pointer to the status bar if it was created successfully, NULL otherwise.

Remark: The width of the status bar is the whole width of the frame (adjusted automatically when resizing), and the
height and text size are chosen by the host windowing system.

See: set St at usText/ 3, OnCr eat eSt at usBar () (not implemented in wx), get St at usBar/ 1

createToolBar(This) -> wxToolBar:wxToolBar()
Types:
This = wxFrame()

createToolBar(This, Options :: [Option]) -> wxToolBar:wxToolBar()
Types:
This = wxFrame()
Option = {style, integer()} | {id, integer()}
Creates atoolbar at the top or left of the frame.
Return: A pointer to the toolbar if it was created successfully, NULL otherwise.

Remark: By default, the toolbar is an instance of wxTool Bar. To use a different class, override
OnCr eat eTool Bar () (not implemented in wx). When a toolbar has been created with this function, or made
known to the frame with set Tool Bar/ 2, the frame will manage the toolbar position and adjust the return value
from wxW ndow. get O i ent Si ze/ 1 to reflect the available space for application windows. Under Pocket PC,
you should always use this function for creating the toolbar to be managed by the frame, so that wxWidgets can use a
combined menubar and toolbar. Where you manage your own toolbars, create awx Tool Bar as usual.

See: createStatusBar/2, OnCreateTool Bar() (not implemented in wx), setTool Bar/2,
get Tool Bar/ 1

getClientAreaOrigin(This) -> {X :: integer(), Y :: integer()}
Types:

This = wxFrame()
Returns the origin of the frame client area (in client coordinates).

It may be different from (0, 0) if the frame has atoolbar.

getMenuBar(This) -> wxMenuBar:wxMenuBar ()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 221

wxFrame

This = wxFrame()
Returns a pointer to the menubar currently associated with the frame (if any).
See: set MenuBar / 2, wxMenuBar , wxMenu

getStatusBar(This) -> wxStatusBar:wxStatusBar()
Types:

This = wxFrame()
Returns a pointer to the status bar currently associated with the frame (if any).

See: cr eat eSt at usBar / 2, wxSt at usBar

getStatusBarPane(This) -> integer()
Types.
This = wxFrame()
Returns the status bar pane used to display menu and toolbar help.
See: set St at usBar Pane/ 2

getToolBar(This) -> wxToolBar:wxToolBar()
Types:
This = wxFrame()
Returns a pointer to the toolbar currently associated with the frame (if any).

See: cr eat eTool Bar/ 2, wxTool Bar, set Tool Bar/ 2

processCommand(This, Id) -> boolean()
Types.

This = wxFrame()

Id = integer()

Simulate a menu command.

sendSizeEvent(This) -> ok
Types:
This = wxFrame()

sendSizeEvent(This, Options :: [Option]) -> ok
Types:
This = wxFrame()
Option = {flags, integer()}
This function sends adummy wx Si zeEvent to thewindow alowing it to re-layout its children positions.
It is sometimes useful to call this function after adding or deleting a children after the frame creation or if a child

size changes. Note that if the frame is using either sizers or constraints for the children layout, it is enough to call
wxW ndow: | ayout / 1 directly and this function should not be used in this case.

If f | ags includeswx SEND_EVENT _POST value, this function posts the event, i.e. schedulesit for later processing,
instead of dispatching it directly. You canaso use Post Si zeEvent () (notimplemented inwx) asamorereadable
equivalent of calling this function with this flag.

222 | Ericsson AB. All Rights Reserved.: wxErlang

wxFrame

setMenuBar(This, MenuBar) -> ok
Types.

This = wxFrame()

MenuBar = wxMenuBar:wxMenuBar ()
Tells the frame to show the given menu bar.

Remark: If the frame is destroyed, the menu bar and its menus will be destroyed also, so do not delete the menu
bar explicitly (except by resetting the frame's menu bar to another frame or NULL). Under Windows, a size event is
generated, so be suretoinitialize datamembersproperly beforecallingset MenuBar / 2. Notethat on some platforms,
it isnot possible to cal this function twice for the same frame object.

See: get MenuBar / 1, wxMenuBar , wxMenu

setStatusBar(This, StatusBar) -> ok
Types:
This = wxFrame()
StatusBar = wxStatusBar:wxStatusBar()
Associates a status bar with the frame.
If st at usBar isNULL, then the status bar, if present, is detached from the frame, but not deleted.

See: creat eSt at usBar/ 2, wxSt at usBar , get St at usBar/ 1

setStatusBarPane(This, N) -> ok
Types:
This = wxFrame()
N = integer()
Set the status bar pane used to display menu and toolbar help.
Using -1 disables help display.

setStatusText(This, Text) -> ok

Types.
This = wxFrame()
Text = unicode:chardata()

setStatusText(This, Text, Options :: [Option]) -> ok

Types:
This = wxFrame()
Text = unicode:chardata()

Option = {number, integer()}
Sets the status bar text and updates the status bar display.

Thisis asimple wrapper for wxSt at usBar : set St at usText / 3 which doesn't do anything if the frame has no
status bar, i.e. get St at usBar / 1 returns NULL.

Remark: Use an empty string to clear the status bar.

See: cr eat eSt at usBar/ 2, wxSt at usBar

Ericsson AB. All Rights Reserved.: wxErlang | 223

wxFrame

setStatusWidths(This, Widths field) -> ok
Types.

This = wxFrame()

Widths field = [integer()]
Sets the widths of the fields in the status bar.

Remark: The widths of the variable fields are calcul ated from the total width of all fields, minus the sum of widths of
the non-variable fields, divided by the number of variable fields.

setToolBar(This, ToolBar) -> ok
Types:

This = wxFrame()

ToolBar = wxToolBar:wxToolBar()

Associates a toolbar with the frame.

224 | Ericsson AB. All Rights Reserved.: wxErlang

wxGauge

wxGauge

Erlang module

A gaugeisahorizontal or vertical bar which shows a quantity (often time).
wxGauge supports two working modes: determinate and indeterminate progress.

The first is the usual working mode (see set Val ue/ 2 and set Range/ 2) while the second can be used when
the program is doing some processing but you don't know how much progress is being done. In this case, you can
periodically call thepul se/ 1 function to makethe progressbar switch to indeterminate mode (graphically it'susually
a set of blocks which move or bounce in the bar control).

wx Gauge supports dynamic switch between these two work modes.

There are no user commands for the gauge.

Styles

This class supports the following styles:

See: wx Sl i der,wxScr ol | Bar

This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxGauge

Data Types

wxGauge() = wx:wx_object()
Exports

new() -> wxGauge()
Default constructor.

new(Parent, Id, Range) -> wxGauge()
Types:

Parent = wxWindow:wxWindow()

Id = Range = integer()

new(Parent, Id, Range, Options :: [Option]) -> wxGauge()
Types:

Parent = wxWindow:wxWindow()

Id = Range = integer()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()} |
{validator, wx:wx object()}

Constructor, creating and showing a gauge.
See:create/5

Ericsson AB. All Rights Reserved.: wxErlang | 225

href

wxGauge

destroy(This :: wxGauge()) -> ok
Destructor, destroying the gauge.

create(This, Parent, Id, Range) -> boolean()
Types:

This = wxGauge()

Parent = wxWindow:wxWindow/()

Id = Range = integer()

create(This, Parent, Id, Range, Options :: [Option]) -> boolean()
Types.
This = wxGauge()
Parent = wxWindow:wxWindow()
Id = Range = integer()
Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{validator, wx:wx object()}

Creates the gauge for two-step construction.
See new 4 for further details.

getRange(This) -> integer()
Types:

This = wxGauge()
Returns the maximum position of the gauge.
See: set Range/ 2

getValue(This) -> integer()
Types:

This = wxGauge()
Returns the current position of the gauge.
See: set Val ue/ 2

isVertical(This) -> boolean()
Types:
This = wxGauge()
Returnstrueif the gaugeisvertical (haswx GA_VERTI CAL style) and false otherwise.

setRange(This, Range) -> ok
Types:

226 | Ericsson AB. All Rights Reserved.: wxErlang

wxGauge

This = wxGauge()
Range = integer()
Sets the range (maximum value) of the gauge.
This function makes the gauge switch to determinate mode, if it's not already.

When the gauge is in indeterminate mode, under wxM SW the gauge repestedly goes from zero to r ange and back;
under other ports when in indeterminate mode, the r ange setting isignored.

See: get Range/ 1

setValue(This, Pos) -> ok
Types:
This = wxGauge()
Pos = integer()
Sets the position of the gauge.
The pos must be between 0 and the gauge range as returned by get Range/ 1, inclusive.
This function makes the gauge switch to determinate mode, if it was in indeterminate mode before.

See: get Val ue/ 1

pulse(This) -> ok
Types:
This = wxGauge()

Switch the gauge to indeterminate mode (if required) and makes the gauge move a bit to indicate the user that some
progress has been made.

Note: After calling thisfunction the value returned by get Val ue/ 1 isundefined and thus you need to explicitly call
set Val ue/ 2 if you want to restore the determinate mode.

Ericsson AB. All Rights Reserved.: wxErlang | 227

wxGBSizerltem

wxGBSizerltem

Erlang module

ThewxGBSi zer | t emclassisused by thewx G i dBagSi zer fortrackingtheitemsinthesizer. It addsgrid position
and spanning information to the norma wxSi zer | t emby adding wx GBPosi t i on (not implemented in wx) and
wx GBSpan (not implemented in wx) attributes. Most of thetime you will not needtouseawx GBSi zer | t emdirectly
in your code, but there are a couple of cases where it is handy.

This classis derived (and can use functions) from: wxSi zer | t em
wxWidgets docs: wxGBSizerltem

Data Types

wxGBSizerItem() = wx:wx object()

228 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGCDC

wxGCDC

Erlang module

wx GCDC is adevice context that draws on awxGr aphi csCont ext .

wx GCDC does its best to implement wxDC API, but the following features are not (fully) implemented because
wx G aphi csCont ext doesn't support them:

See: wx DC, wx Gr aphi csCont ext
This classis derived (and can use functions) from: wx DC
wxWidgets docs: wxGCDC

Data Types
wxGCDC() = wx:wx_object()

Exports
new() -> wxGCDC()

new (WindowDC) -> wxGCDC()
Types:
WindowDC =
wxWindowDC:wxWindowDC() |
wxMemoryDC:wxMemoryDC() |
wxGraphicsContext:wxGraphicsContext ()

Constructs awx GCDC from awx W ndowDC.
destroy(This :: wxGCDC()) -> ok

getGraphicsContext(This) -> wxGraphicsContext:wxGraphicsContext()
Types:

This = wxGCDC()
Retrieves associated wx Gr aphi csCont ext .

setGraphicsContext(This, Context) -> ok
Types:

This = wxGCDC()

Context = wxGraphicsContext:wxGraphicsContext()
Set the graphics context to be used for thiswx GCDC.

Note that this object takes ownership of context and will delete it when it is destroyed or when
set G aphi csCont ext/ 2 iscalled again.

Also, unlike the constructor taking wx Gr aphi csCont ext , this method will reapply the current font, pen and brush,
so that this object continues to use them, if they had been changed before (which is never the case when constructing
wx GCDC directly from wx Gr aphi csCont ext).

Ericsson AB. All Rights Reserved.: wxErlang | 229

href

wxGenericDirCtrl

wxGenericDirCtrl

Erlang module

This control can be used to place a directory listing (with optional files) on an arbitrary window.

The control contains awxTr eeCt r | window representing the directory hierarchy, and optionally, a wxChoi ce
window containing alist of filters.

Styles

This class supports the following styles:

This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxGenericDir Ctrl

Events

Event types emitted fromthisclass: di rctr| _sel ecti onchanged,dirctrl _fil eactivated

Data Types

wxGenericDirCtrl() = wx:wx _object()

Exports

new() -> wxGenericDirCtrl()
Default constructor.

new(Parent) -> wxGenericDirCtrl()
Types.
Parent = wxWindow:wxWindow ()

new(Parent, Options :: [Option]) -> wxGenericDirCtrl()
Types:
Parent = wxWindow:wxWindow/()

Option
{id, integer()} |
{dir, unicode:chardata()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()} |
{filter, unicode:chardata()} |
{defaultFilter, integer()}

Main constructor.

destroy(This :: wxGenericDirCtrl()) -> ok
Destructor.

230 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGenericDirCtrl

create(This, Parent) -> boolean()
Types.
This = wxGenericDirCtrl()
Parent = wxWindow:wxWindow()

create(This, Parent, Options ::
Types:
This = wxGenericDirCtrl()
Parent = wxWindow:wxWindow()
Option
{id, integer()} |
{dir, unicode:chardata()} |
{pos, {X :: integer(), Y ::
{size, {W :: integer(), H ::
{style, integer()} |

{filter, unicode:chardata()} |

{defaultFilter, integer()}
Create function for two-step construction.
Seenew 2 for details.

init(This) -> ok
Types:

This = wxGenericDirCtrl()
Initializes variables.

collapseTree(This) -> ok
Types:

This = wxGenericDirCtrl()
Collapsesthe entire tree.

expandPath(This, Path) -> boolean()
Types.

This wxGenericDirCtrl()

Path = unicode:chardata()

[Option]) -> boolean()

integer()}} |
integer()}} |

Tries to expand as much of the given pat h as possible, so that the filename or directory is visible in the tree control.

getDefaultPath(This) -> unicode:charlist()

Types:
This = wxGenericDirCtrl()
Gets the default path.

getPath(This) -> unicode:charlist()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 231

wxGenericDirCtrl

This = wxGenericDirCtr1l()
Gets the currently-selected directory or filename.

getPath(This, ItemId) -> unicode:charlist()
Types:

This = wxGenericDirCtrl()

ItemId = integer()

Gets the path corresponding to the given tree control item.
Since: 2.9.5

getFilePath(This) -> unicode:charlist()
Types:

This = wxGenericDirCtrl()
Gets selected filename path only (else empty string).

This function doesn't count a directory as a selection.

getFilter(This) -> unicode:charlist()
Types:

This = wxGenericDirCtrl()
Returns the filter string.

getFilterIndex(This) -> integer()
Types.

This = wxGenericDirCtrl()
Returns the current filter index (zero-based).

getRootId(This) -> integer()
Types.

This = wxGenericDirCtrl()
Returns the root id for the tree control.

getTreeCtrl(This) -> wxTreeCtrl:wxTreeCtrl()
Types:

This = wxGenericDirCtrl()
Returns a pointer to the tree control.

reCreateTree(This) -> ok
Types:
This = wxGenericDirCtrl()
Collapse and expand the tree, thus re-creating it from scratch.

May be used to update the displayed directory content.

232 | Ericsson AB. All Rights Reserved.: wxErlang

wxGenericDirCtrl

setDefaultPath(This, Path) -> ok

Types.
This = wxGenericDirCtrl()
Path = unicode:chardata()
Sets the default path

setFilter(This, Filter) -> ok
Types:
This = wxGenericDirCtrl()
Filter = unicode:chardata()

Setsthefilter string.

setFilterIndex(This, N) -> ok
Types.
This = wxGenericDirCtrl()
N = integer()
Sets the current filter index (zero-based).

setPath(This, Path) -> ok
Types:
This = wxGenericDirCtrl()
Path = unicode:chardata()

Sets the current path.

Ericsson AB. All Rights Reserved.: wxErlang | 233

wxGLCanvas

wxGLCanvas

Erlang module

wxGLCanvas isaclass for displaying OpenGL graphics. It is always used in conjunction with wxGLCont ext as
the context can only be made current (i.e. active for the OpenGL commands) when it is associated to awx GLCanvas.

More precisely, you first need to create awxG_Canvas window and then create an instance of awxG_Cont ext
that is initialized with this wxGLCanvas and then later use either set Current/ 2 with the instance of the
wxGLCont ext or wxGLCont ext : set Cur r ent / 2 with the instance of the wxGLCanvas (which might be not
the same as was used for the creation of the context) to bind the OpenGL state that is represented by the rendering
context to the canvas, and then finally call swapBuf f er s/ 1 to swap the buffers of the OpenGL canvas and thus
show your current output.

Please note that wx G_Cont ext always uses physical pixels, even on the platforms where wx W ndow uses logical
pixels, affected by the coordinate scaling, on high DPI displays. Thus, if you want to set the OpenGL view port
to the size of entire window, you must multiply the result returned by wxW ndow: get C i ent Si ze/ 1 by
wxW ndow: get Cont ent Scal eFact or/ 1 before passing it to gl Vi ewport () . Same considerations apply to
other OpenGL functions and other coordinates, notably those retrieved from wx MouseEvent in the event handlers.

Notice that versions of wxWidgets previous to 2.9 used to implicitly create awx@.Cont ext insidewxG.Canvas
itself. Thisis still supported in the current version but is deprecated now and will be removed in the future, please
update your code to create the rendering contexts explicitly.

To set up the attributes for the canvas (number of bits for the depth buffer, number of bits for the stencil buffer and
S0 0n) you pass them in the constructor using awx GLAt t r i but es (not implemented in wx) instance. Y ou can still
use the way before 3.1.0 (setting up the correct values of theat t ri bLi st parameter) but it's discouraged.

Note: On those platforms which use a configure script (e.g. Linux and macOS) OpenGL support is automatically
enabled if the relative headers and libraries are found. To switch it on under the other platforms (e.g. Windows), you
need to edit the set up. h file and set wxUSE_CGLCANVAS to 1 and then also pass USE_OPENGL.=1 to the make
utility. You may also need to add opengl 32.1i b (and gl u32. |i b for old OpenGL versions) to the list of the
libraries your program is linked with.

See: wxG.Cont ext , wxG_At t ri but es (not implemented in wx), wxGL.Cont ext At t r s (not implemented in
WX)

This classis derived (and can use functions) from: wx W ndowwxEvt Handl er
wxWidgets docs: wxGL Canvas

Data Types

wxGLCanvas() = wx:wx _object()

Exports
new(Parent) -> wxGLCanvas()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxGLCanvas()
Types:

234 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGLCanvas

Parent = wxWindow:wxWindow()
Option =
{id, integer()} |

{attribList, [integer()1} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H integer()}} |

{style, integer()} |
{name, unicode:chardata()} |
{palette, wxPalette:wxPalette()}

This constructor is still available only for compatibility reasons.
Please use the constructor with wxGLAt t r i but es (not implemented in wx) instead.

IfattribLi st isnotspecified, wxGLAt tri but es: : Pl at f or nDef aul t s() (notimplementedinwx) isused,
plus some other attributes (see below).

setCurrent(This, Context) -> boolean()
Types:

This = wxGLCanvas()

Context = wxGLContext:wxGLContext()

Makes the OpenGL state that is represented by the OpenGL rendering context cont ext current, i.e.
it will be used by all subsequent OpenGL calls.
Thisisequivalent to wx GLCont ext : set Cur r ent / 2 called with thiswindow as parameter.

Note: This function may only be called when the window is shown on screen, in particular it can't usually be called
from the constructor as the window isn't yet shown at this moment.

Return: false if an error occurred.

createSurface(This) -> boolean()
Types:
This = wxGLCanvas()

isDisplaySupported(AttribList) -> boolean()
Types:

AttriblList = [integer()]
Determines if a canvas having the specified attributes is available.

Thisonly appliesfor visual attributes, not rendering context attributes. Please, use the new form of this method, using
WXGLAt t ri but es (not implemented in wx).

Return: true if attributes are supported.

swapBuffers(This) -> boolean()
Types:
This = wxGLCanvas()

Swaps the double-buffer of this window, making the back-buffer the front-buffer and vice versa, so that the output of
the previous OpenGL commands is displayed on the window.

Return: falseif an error occurred.

Ericsson AB. All Rights Reserved.: wxErlang | 235

wxGLCanvas

destroy(This :: wxGLCanvas()) -> ok
Destroys the object.

236 | Ericsson AB. All Rights Reserved.: wxErlang

wxGLContext

wxGLContext

Erlang module

Aninstanceof awx GLCont ext representsthe state of an OpenGL state machine and the connection between OpenGL
and the system.

The OpenGL state includes everything that can be set with the OpenGL API: colors, rendering variables, buffer data
ids, texture objects, etc. It is possible to have multiple rendering contexts share buffer data and textures. This feature
is specialy useful when the application use multiple threads for updating data into the memory of the graphics card.

Whether one only rendering context is used with or bound to multiple output windows or if each window hasits own
bound context is adeveloper decision. It isimportant to take into account that GPU makers may set different pointers
to the same OGL function for different contexts. The way these pointers are retrieved from the OGL driver should
be used again for each new context.

Binding (making current) a rendering context with another instance of awxG.Canvas however works only if the
both wx GLCanvas instances were created with the same attributes.

OpenGL version 3introduced anew type of specification profile, themodern core profile. The old compatibility profile
maintains all legacy features. Since wxWidgets 3.1.0 you can choose the type of context and even ask for a specified
OGL version number. However, its advised to use only core profile as the compatibility profile may run a bit slower.

OpenGL core profile specification defines several flags at context creation that determine not only the type of context
but also some features. Some of these flags can be set in the list of attributes used at wxG.Canvas ctor. But
since wxWidgets 3.1.0 it is strongly encouraged to use the new mechanism: setting the context attributes with a
wxGLCont ext At t rs (not implemented in wx) object and the canvas attributes with awxGLAt t ri but es (hot
implemented in wx) object.

Thebest way of knowing if your OpenGL environment supportsaspecific type of context iscreatingawx GLCont ext
instance and checking i sOK/ 1. If it returns false, then simply delete that instance and create a new one with other
attributes.

WXHAS OPENGL_ESisdefined on platformsthat only have thisimplementation available (e.g. theiPhone) and don't
support the full specification.

See: wxG@.Canvas,wG.Cont ext At t r s (not implemented inwx), wxGLAt t r i but es (not implemented inwx)
wxWidgets docs: wxGL Context

Data Types

wxGLContext() = wx:wx _object()

Exports
new(Win) -> wxGLContext()
Types:

Win = wxGLCanvas:wxGLCanvas()

new(Win, Options :: [Option]) -> wxGLContext()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 237

href

wxGLContext

Win = wxGLCanvas:wxGLCanvas()
Option = {other, wxGLContext()}

Constructor.

setCurrent(This, Win) -> boolean()
Types:

This = wxGLContext()

Win = wxGLCanvas:wxGLCanvas ()

Makes the OpenGL state that is represented by this rendering context current with thewxG_Canvas wi n.

Note: wi n can be a different wxG.Canvas window than the one that was passed to the constructor of this
rendering context. If RC is an object of type wxG_Cont ext , the statements " RC. Set Current (Wi n) ;" and
"W n. Set Current (RC) ;" areequivalent, seewxG.Canvas: set Current/ 2

isOK(This) -> boolean()
Types:
This = wxGLContext()
Checksif the underlying OpenGL rendering context was correctly created by the system with the requested attributes.

If this function returns false then the wxG_Cont ext object is useless and should be deleted and recreated with
different attributes.

Since: 3.1.0

destroy(This :: wxGLContext()) -> ok
Destroys the object.

238 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsBrush

wxGraphicsBrush

Erlang module

A wxG aphi ¢sBr ush isanative representation of a brush. The contents are specific and private to the respective
renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get avalid instanceisvia
wxGr aphi csCont ext : cr eat eBrush/ 2 orwxG aphi csRender er: cr eat eBrush/ 2.

This classis derived (and can use functions) from: wxGr aphi csObj ect
wxWidgets docs: wxGraphicsBrush

Data Types

wxGraphicsBrush() = wx:wx object()

Ericsson AB. All Rights Reserved.: wxErlang | 239

href

wxGraphicsContext

wxGraphicsContext

Erlang module

A wxGraphi csCont ext instance is the object that is drawn upon. It is created by a renderer using
wx G aphi csRender er: cr eat eCont ext / 2. Thiscan be either directly using arenderer instance, or indirectly
using the static convenience cr eat e/ 1 functions of wkG- aphi csCont ext that aways delegate the task to the
default renderer.

Remark: For some renderers (like Direct2D or Cairo) processing of drawing operations may be deferred (Direct2D
render target normally builds up a batch of rendering commands but defers processing of these commands, Cairo
operates on a separate surface) so to make drawing results visible you need to update the content of the context by
calingwxG aphi csCont ext : : Fl ush() (notimplemented in wx) or by destroying the context.

See: wx G aphi csRender er : cr eat eCont ext / 2, wxGCDC, wx DC
This classis derived (and can use functions) from: wxGr aphi csCbj ect
wxWidgets docs: wxGraphicsContext

Data Types

wxGraphicsContext() = wx:wx object()

Exports

destroy(This :: wxGraphicsContext()) -> ok
Createsawx G aphi csCont ext from awxW ndow.
See: wx G aphi csRender er: cr eat eCont ext/ 2

create() -> wxGraphicsContext()
Create alightweight context that can be used only for measuring text.

create(WindowDC) -> wxGraphicsContext()
Types:
WindowDC =
wxWindowDC:wxWindowDC() |
wxWindow:wxWindow() |
wxMemoryDC:wxMemoryDC() |
wxImage:wxImage()

Createsawx Gr aphi csCont ext from awxW ndowDC.
See: wxGr aphi csRender er: cr eat eCont ext/ 2

createPen(This, Pen) -> wxGraphicsPen:wxGraphicsPen()
Types:

This = wxGraphicsContext()

Pen = wxPen:wxPen()

Creates a native pen from awx Pen.

240 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsContext

Prefer to use the overload taking wx G- aphi csPenl nf o (not implemented in wx) unlessyou already have awxPen
as constructing one only to passit to this method is wasteful.

createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsContext()

Brush = wxBrush:wxBrush()

Creates a native brush from awxBr ush.

createRadialGradientBrush(This, StartX, StartY, EndX, EndY,
Radius, Stops) ->
wxGraphicsBrush:wxGraphicsBrush()
Types.
This = wxGraphicsContext()
StartX = StartY = EndX = EndY = Radius = number()
Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

createRadialGradientBrush(This, StartX, StartY, EndX, EndY,
Radius, 0Color, CColor) ->
wxGraphicsBrush:wxGraphicsBrush()
Types:
This = wxGraphicsContext()
StartX StartyY EndX = EndY = Radius = number()
0Color = CColor = wx:wx _colour()

Creates a native brush with a radial gradient. The brush originates at (@
startX, @ startY) and ends on a circle around (@ endX, @ endY) with the given
@ radius. The gradient may be specified either by its start and end col ours @
oColor and @ cColor or by a full set of gradient @ stops. The version taking
wxG aphi csGadi ent Stops is new in wxWdgets 2.9.1.

The ability to apply atransformation matrix to the gradient was added in 3.1.3

createlLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) ->
wxGraphicsBrush:wxGraphicsBrush()

Types:
This = wxGraphicsContext()
X1 = Y1l = X2 = Y2 = number()
Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2) ->

Ericsson AB. All Rights Reserved.: wxErlang | 241

wxGraphicsContext

wxGraphicsBrush:wxGraphicsBrush()
Types.
This = wxGraphicsContext()
X1 = Y1l = X2 = Y2 = number()
Cl = C2 = wx:wx_colour()

Creates a native brush with a linear gradient. The brush starts at (@ x1, @
yl) and ends at (@ x2, @ y2). Either just the start and end gradi ent col ours
(@ cl and @ c2) or full set of gradient @ stops can be specified. The version
t aki ng wxGr aphi csGradi ent Stops is new in wWdgets 2.9. 1.

Themat ri x parameter was added in wxWidgets 3.1.3

createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()

Types:
This = wxGraphicsContext()
Font = wxFont:wxFont()

createFont(This, SizeInPixels, Facename) ->
wxGraphicsFont:wxGraphicsFont ()

createFont(This, Font, Facename :: [Option]) ->
wxGraphicsFont:wxGraphicsFont()

Types.
This = wxGraphicsContext()
Font = wxFont:wxFont()

Option = {col, wx:wx colour()}
Creates a native graphics font from awx Font and atext colour.
Remark: For Direct2D graphics fonts can be created from TrueType fonts only.

createFont(This, SizeInPixels, Facename, Options :: [Option]) ->
wxGraphicsFont:wxGraphicsFont ()

Types:
This = wxGraphicsContext()
SizeInPixels = number()
Facename = unicode:chardata()
Option = {flags, integer()} | {col, wx:wx colour()}
Creates afont object with the specified attributes.
The use of overload taking wxFont is preferred, seewxGr aphi csRender er : cr eat eFont / 4 for more details.
Remark: For Direct2D graphics fonts can be created from TrueType fonts only.

Since: 2.9.3

createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix()
Types:

242 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsContext

This = wxGraphicsContext()

createMatrix(This, Options :: [Option]) ->
wxGraphicsMatrix:wxGraphicsMatrix()
Types:
This = wxGraphicsContext()
Option =
{a, number()} |
{b, number()} |
{c, number()} |
{d, number()} |
{tx, number()} |

{ty, number()}
Creates a native affine transformation matrix from the passed in values.
The default parameters result in an identity matrix.

createPath(This) -> wxGraphicsPath:wxGraphicsPath()
Types.

This = wxGraphicsContext()
Creates a native graphics path which isinitially empty.

clip(This, Region) -> ok
Types:
This = wxGraphicsContext()
Region = wxRegion:wxRegion()
Sets the clipping region to the intersection of the given region and the previously set clipping region.
The clipping region is an area to which drawing is restricted.

Remark:

clip(This, X, Y, W, H) -> ok
Types:
This = wxGraphicsContext()
X =Y =W = H = number()

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

resetClip(This) -> ok
Types:

This = wxGraphicsContext()
Resets the clipping to original shape.

drawBitmap(This, Bmp, X, Y, W, H) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 243

wxGraphicsContext

This = wxGraphicsContext()
Bmp = wxBitmap:wxBitmap()
X =Y =W=H = number()

Draws the bitmap.
In case of amono bhitmap, thisis treated as a mask and the current brushed is used for filling.

drawEllipse(This, X, Y, W, H) -> ok
Types:

This = wxGraphicsContext()

X =Y =W=H = number()

Draws an elipse.

drawIcon(This, Icon, X, Y, W, H) -> ok
Types:

This = wxGraphicsContext()

Icon = wxIcon:wxIcon()

X =Y =W =H = number()

Drawstheicon

drawLines(This, Points) -> ok
Types:
This = wxGraphicsContext()
Points = [{X :: float(), Y :: float()}]

drawLines(This, Points, Options :: [Option]) -> ok
Types:
This = wxGraphicsContext()

Points = [{X :: float(), Y :: float()}]
Option = {fillStyle, wx:wx enum()}
Draws a polygon.

drawPath(This, Path) -> ok

Types:
This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()

drawPath(This, Path, Options :: [Option]) -> ok
Types:

244 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsContext

This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()
Option = {fillStyle, wx:wx_enum()}

Draws the path by first filling and then stroking.

drawRectangle(This, X, Y, W, H) -> ok
Types.

This = wxGraphicsContext()

X =Y =W = H = number()

Draws arectangle.

drawRoundedRectangle(This, X, Y, W, H, Radius) -> ok
Types.

This = wxGraphicsContext()

X =Y =W =H = Radius = number()

Draws arounded rectangle.

drawText(This, Str, X, Y) -> ok
Types.

This = wxGraphicsContext()
Str = unicode:chardata()
X =Y = number()

Draws text at the defined position.

drawText(This, Str, X, Y, Angle) -> ok
drawText(This, Str, X, Y, BackgroundBrush) -> ok
Types.
This = wxGraphicsContext()
Str = unicode:chardata()
X =Y = number()
BackgroundBrush = wxGraphicsBrush:wxGraphicsBrush()

Draws text at the defined position.

drawText(This, Str, X, Y, Angle, BackgroundBrush) -> ok
Types.

This = wxGraphicsContext()

Str = unicode:chardata()

X =Y = Angle = number()

BackgroundBrush = wxGraphicsBrush:wxGraphicsBrush()
Draws text at the defined position.

Ericsson AB. All Rights Reserved.: wxErlang | 245

wxGraphicsContext

fillPath(This, Path) -> ok

Types.
This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()

fillPath(This, Path, Options :: [Option]) -> ok
Types:
This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()
Option = {fillStyle, wx:wx_enum()}
Fills the path with the current brush.

strokePath(This, Path) -> ok

Types:
This = wxGraphicsContext()
Path = wxGraphicsPath:wxGraphicsPath()

Strokes along a path with the current pen.

getPartialTextExtents(This, Text) -> [number()]

Types:
This = wxGraphicsContext()
Text = unicode:chardata()

Fillsthewi dt hs array with the widths from the beginning of t ext to the corresponding character of t ext .

getTextExtent(This, Text) -> Result
Types.
Result =
{Width :: number(),
Height :: number(),
Descent :: number(),
ExternallLeading :: number()}

This = wxGraphicsContext()
Text = unicode:chardata()

Gets the dimensions of the string using the currently selected font.

rotate(This, Angle) -> ok
Types.
This = wxGraphicsContext()
Angle = number()

Rotates the current transformation matrix (in radians).

scale(This, XScale, YScale) -> ok
Types:

246 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsContext

This = wxGraphicsContext()
XScale = YScale = number()

Scales the current transformation matrix.

translate(This, Dx, Dy) -> ok
Types.
This = wxGraphicsContext()
Dx = Dy = number()

Trandates the current transformation matrix.

getTransform(This) -> wxGraphicsMatrix:wxGraphicsMatrix()
Types.
This = wxGraphicsContext()

Gets the current transformation matrix of this context.

setTransform(This, Matrix) -> ok
Types:
This = wxGraphicsContext()
Matrix = wxGraphicsMatrix:wxGraphicsMatrix()

Sets the current transformation matrix of this context.

concatTransform(This, Matrix) -> ok
Types.
This = wxGraphicsContext()
Matrix = wxGraphicsMatrix:wxGraphicsMatrix()

Concatenates the passed in transform with the current transform of this context.

setBrush(This, Brush) -> ok
Types:
This = wxGraphicsContext()
Brush = wxGraphicsBrush:wxGraphicsBrush() | wxBrush:wxBrush()

Sets the brush for filling paths.

setFont(This, Font) -> ok

Types.
This = wxGraphicsContext()
Font = wxGraphicsFont:wxGraphicsFont()

Sets the font for drawing text.

setFont(This, Font, Colour) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 247

wxGraphicsContext

This wxGraphicsContext()
Font wxFont:wxFont()
Colour = wx:wx _colour()

Sets the font for drawing text.
Remark: For Direct2D only TrueType fonts can be used.

setPen(This, Pen) -> ok
Types.
This = wxGraphicsContext()
Pen = wxPen:wxPen() | wxGraphicsPen:wxGraphicsPen()

Sets the pen used for stroking.

strokeLine(This, X1, Y1, X2, Y2) -> ok
Types:

This = wxGraphicsContext()

X1 = Y1 = X2 = Y2 = number()

Strokesasingleline.

strokeLines(This, Points) -> ok
Types:
This = wxGraphicsContext()
Points = [{X :: float(), Y :: float()}]

Stroke lines connecting al the points.

Unlike the other overload of this function, this method draws a single polyline and not anumber of disconnected lines.

248 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsFont

wxGraphicsFont

Erlang module

A wxG aphi csFont is a native representation of a font. The contents are specific and private to the respective
renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get avalid instanceisvia
wxGr aphi csCont ext : cr eat eFont/ 4 or wkG aphi csRender er: creat eFont/ 4.

This classis derived (and can use functions) from: wxGr aphi csObj ect
wxWidgets docs: wxGr aphicsFont

Data Types

wxGraphicsFont() = wx:wx object()

Ericsson AB. All Rights Reserved.: wxErlang | 249

href

wxGraphicsGradientStops

wxGraphicsGradientStops

Erlang module

The stops are maintained in order of position. If two or more stops are added with the same position then the one(s)
added later come later. This can be useful for producing discontinuities in the colour gradient.

Notice that this classis write-once, you can't modify the stops once they had been added.
Since: 2.9.1
wxWidgets docs: wxGraphicsGradientStops

Data Types

wxGraphicsGradientStops() = wx:wx _object()

Exports
new() -> wxGraphicsGradientStops()

new(Options :: [Option]) -> wxGraphicsGradientStops()
Types:

Option = {startCol, wx:wx colour()} | {endCol, wx:wx colour()}
Initializes the gradient stops with the given boundary colours.

Createsawx Gr aphi csGr adi ent St ops instance with start colour given by st art Col and end colour given by
endCol

item(This, N) -> {wx:wx colour4d(), float()}
Types:

This = wxGraphicsGradientStops()

N = integer()
Returns the stop at the given index.

getCount(This) -> integer()
Types:

This = wxGraphicsGradientStops()
Returns the number of stops.

setStartColour(This, Col) -> ok
Types:
This = wxGraphicsGradientStops()
Col = wx:wx_colour()

Set the start colour to col .

getStartColour(This) -> wx:wx colour4()
Types:

250 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsGradientStops

This = wxGraphicsGradientStops()

Returns the start colour.

setEndColour(This, Col) -> ok

Types:
This = wxGraphicsGradientStops()
Col = wx:wx_colour()

Set the end colour to col .

getEndColour(This) -> wx:wx_colour4()
Types:

This = wxGraphicsGradientStops()
Returns the end colour.

add(This, Col, Pos) -> ok

Types.
This = wxGraphicsGradientStops()
Col = wx:wx_colour()
Pos number ()

Add anew stop.

destroy(This ::
Destroys the object.

wxGraphicsGradientStops()) -> ok

Ericsson AB. All Rights Reserved.: wxErlang | 251

wxGraphicsMatrix

wxGraphicsMatrix

Erlang module

A wxG aphi csMat ri x isanative representation of an affine matrix. The contents are specific and private to the
respective renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get a valid
instanceisviawxG aphi csCont ext : creat eMat ri x/ 2 or wxG aphi csRenderer: createMatri x/ 2

This classis derived (and can use functions) from: wxGr aphi csCbj ect
wxWidgets docs: wxGraphicsM atrix

Data Types

wxGraphicsMatrix() = wx:wx object()

Exports

concat(This, T) -> ok
Types:

This = T = wxGraphicsMatrix()
Concatenates the matrix passed with the current matrix.

The effect of the resulting transformation is to first apply the transformation in t to the coordinates and then apply
the transformation in the current matrix to the coordinates.

get(This) -> Result

Types.
Result =
{A :: number(),
B :: number(),
C :: number(),
D :: number(),
TX :: number(),

Ty :: number()}
This = wxGraphicsMatrix()

Returns the component values of the matrix viathe argument pointers.

invert(This) -> ok
Types:
This = wxGraphicsMatrix()

Inverts the matrix.

isEqual(This, T) -> boolean()
Types:
This = T = wxGraphicsMatrix()

Returnstrueif the elements of the transformation matrix are equal.

252 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsMatrix

isIdentity(This) -> boolean()
Types.

This = wxGraphicsMatrix()
Return trueif thisis the identity matrix.

rotate(This, Angle) -> ok
Types.
This = wxGraphicsMatrix()
Angle = number()

Rotates this matrix clockwise (in radians).

scale(This, XScale, YScale) -> ok
Types:
This = wxGraphicsMatrix()
XScale = YScale = number()

Scales this matrix.

translate(This, Dx, Dy) -> ok
Types:
This = wxGraphicsMatrix()
Dx = Dy = number()

Translates this matrix.
set(This) -> ok
Types:

This = wxGraphicsMatrix()

set(This, Options :: [Option]) -> ok

Types.
This = wxGraphicsMatrix()
Option =
{a, number()} |
{b, number()} |
{c, number()} |
{d, number()} |
{tx, number()} |

{ty, number()}
Sets the matrix to the respective values (default values are the identity matrix).

transformPoint (This) -> {X :: number(), Y :: number()}
Types:

This = wxGraphicsMatrix()
Applies this matrix to a point.

Ericsson AB. All Rights Reserved.: wxErlang | 253

wxGraphicsMatrix

transformDistance(This) -> {Dx :: number(), Dy :: number()}
Types.

This = wxGraphicsMatrix()
Applies this matrix to adistance (ie.

performs all transforms except trandations).

254 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsObject

wxGraphicsObject

Erlang module

This class is the superclass of native graphics objects like pens etc. It allows reference counting. Not instantiated by
user code.

See: wxGr aphi csBrush, wxG aphi csPen, wxG aphi csMat ri x, wxG aphi csPat h
wxWidgets docs: wxGraphicsObj ect

Data Types

wxGraphicsObject() = wx:wx object()

Exports
destroy(This :: wxGraphicsObject()) -> ok

getRenderer(This) -> wxGraphicsRenderer:wxGraphicsRenderer()
Types:
This = wxGraphicsObject()
Returns the renderer that was used to create this instance, or NULL if it has not been initialized yet.

isNull(This) -> boolean()
Types.
This = wxGraphicsObject()

Return: falseif this object isvalid, otherwise returns true.

Ericsson AB. All Rights Reserved.: wxErlang | 255

href

wxGraphicsPath

wxGraphicsPath

Erlang module

A wxG aphi csPat h is a native representation of a geometric path. The contents are specific and private to the
respective renderer. Instances are reference counted and can therefore be assigned asusua. The only way to get avalid
instanceis by using wxGr aphi csCont ext : cr eat ePat h/ 1 or wxGr aphi csRender er: creat ePat h/ 1

This classis derived (and can use functions) from: wxGr aphi csCbj ect
wxWidgets docs: wxGraphicsPath

Data Types

wxGraphicsPath() = wx:wx object()

Exports

moveToPoint(This, P) -> ok

Types:
This = wxGraphicsPath()
P={X:: float(), Y :: float()}

Begins anew subpath at p.

moveToPoint(This, X, Y) -> ok
Types.

This = wxGraphicsPath()

X =Y = number()

Begins anew subpath at (x,y).

addArc(This, C, R, StartAngle, EndAngle, Clockwise) -> ok
Types.

This = wxGraphicsPath()

C={X:: float(), Y :: float()}

R = StartAngle = EndAngle = number()
Clockwise = boolean()

addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise) -> ok
Types:
This = wxGraphicsPath()

X =Y = R = StartAngle = EndAngle = number()
Clockwise = boolean()

Adds an arc of acircle.

256 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsPath

The circle is defined by the coordinates of its centre (X, y) or ¢ and its radius r . The arc goes from the starting
angle st art Angl e to endAngl e either clockwise or counter-clockwise depending on the value of ¢l ockwi se
argument.

The angles are measured in radians but, contrary to the usual mathematical convention, arealwayscl ockwi se from
the horizontal axis.

If for clockwisearcendAngl e islessthan st ar t Angl e it will be progressively increased by 2* pi until it isgreater
than st ar t Angl e. If for counter-clockwise arc endAngl e is greater than st ar t Angl e it will be progressively
decreased by 2*pi until itislessthanst ar t Angl e.

If there is a current point set, an initial line segment will be added to the path to connect the current point to the
beginning of the arc.

addArcToPoint(This, X1, Y1, X2, Y2, R) -> ok
Types:
This = wxGraphicsPath()
X1 = Y1 = X2 = Y2 = R = number()
Adds an arc (of acirclewith radiusr) that is tangent to the line connecting current point and (x1, y1) and to the line
connecting (x1,y1) and (x2, y2).

If the current point and the starting point of the arc are different, astraight line connecting these pointsisal so appended.
If there is no current point before the call to addAr cToPoi nt / 6 this function will behave asif preceded by acall
to MoveToPoint(0, 0). After this call the current point will be at the ending point of the arc.

addCircle(This, X, Y, R) -> ok
Types:
This = wxGraphicsPath()
X =Y = R = number()
Appends acircle around (x,y) with radiusr asanew closed subpath.
After this call the current point will be at (x+r,y).

addCurveToPoint(This, C1, C2, E) -> ok
Types:
This = wxGraphicsPath()
Cl=C2=E={X:: float(), Y :: float()}
Adds a cubic bezier curve from the current point, using two control points and an end point.

If there is no current point before the call to addCur veToPoi nt / 7 this function will behave as if preceded by a
call to MoveToPoint(c1).

addCurveToPoint(This, Cx1, Cyl, Cx2, Cy2, X, Y) -> ok
Types:

This = wxGraphicsPath()

Cx1l = Cyl = Cx2 = Cy2 = X =Y = number()

Adds a cubic bezier curve from the current point, using two control points and an end point.

Ericsson AB. All Rights Reserved.: wxErlang | 257

wxGraphicsPath

If there is no current point before the call to addCur veToPoi nt / 7 this function will behave as if preceded by a
cal to MoveToPoint(cx1, cy1l).

addEllipse(This, X, Y, W, H) -> ok
Types:
This = wxGraphicsPath()
X =Y =W =H = number()
Appends an ellipse fitting into the passed in rectangle as a new closed subpath.
After this call the current point will be at (x+w, y+h/ 2).

addLineToPoint(This, P) -> ok
Types:
This = wxGraphicsPath()
P={X :: float(), Y :: float()}
Adds a straight line from the current point to p.
If current point isnot yet set beforethe call toaddLi neToPoi nt / 3 thisfunction will behaveasnmoveToPoi nt / 3.

addLineToPoint(This, X, Y) -> ok
Types:
This = wxGraphicsPath()
X =Y = number()
Adds a straight line from the current point to (X,y).
If current pointisnot yet set beforethe call toaddLi neToPoi nt / 3 thisfunction will behaveasnmoveToPoi nt / 3.

addPath(This, Path) -> ok
Types:

This = Path = wxGraphicsPath()
Adds another path onto the current path.

After thiscall the current point will be at the added path's current point. For Direct2D the path being appended shouldn't
contain a started non-empty subpath when this function is called.

addQuadCurveToPoint(This, Cx, Cy, X, Y) -> ok
Types.
This = wxGraphicsPath()
Cx = Cy = X =Y = number()
Adds a quadratic bezier curve from the current point, using a control point and an end paint.

If there is no current point before the call to addQuadCur veToPoi nt / 5 this function will behave as if preceded
by acall to MoveToPoint(cx, cy).

addRectangle(This, X, Y, W, H) -> ok
Types:

258 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsPath

This = wxGraphicsPath()
X =Y =W=H = number()

Appends arectangle as a new closed subpath.
After this call the current point will be at (x, y).

addRoundedRectangle(This, X, Y, W, H, Radius) -> ok
Types.

This = wxGraphicsPath()

X =Y =W =H = Radius = number()

Appends a rounded rectangle as a new closed subpath.

If radi us equals 0 this function will behave asaddRect angl e/ 5, otherwise after this call the current point will
beat (x+w, y+h/ 2).

closeSubpath(This) -> ok
Types:

This = wxGraphicsPath()
Closes the current sub-path.

After this call the current point will be at the joined endpoint of the sub-path.

contains(This, C) -> boolean()
Types:
This = wxGraphicsPath()
C={X:: float(), Y :: float()}

contains(This, X, Y) -> boolean()
contains(This, C, Y :: [Option]) -> boolean()
Types.

This = wxGraphicsPath()

C={X:: float(), Y :: float()}

Option = {fillStyle, wx:wx_enum()}
Return: true if the point is within the path.

contains(This, X, Y, Options :: [Option]) -> boolean()
Types.

This = wxGraphicsPath()

X =Y = number()

Option = {fillStyle, wx:wx enum()}

Return: true if the point is within the path.
getBox(This) ->

{X :: float(), Y :: float(), W :: float(), H :: float()}
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 259

wxGraphicsPath

This = wxGraphicsPath()

Gets the bounding box enclosing all points (possibly including control points).

getCurrentPoint(This) -> {X :: float(), Y :: float()}
Types:

This = wxGraphicsPath()
Getsthe last point of the current path, (0,0) if not yet set.

transform(This, Matrix) -> ok
Types:
This = wxGraphicsPath()
Matrix = wxGraphicsMatrix:wxGraphicsMatrix()

Transforms each point of this path by the matrix.
For Direct2D the current path shouldn't contain a started non-empty subpath when this function is called.

260 | Ericsson AB. All Rights Reserved.: wxErlang

wxGraphicsPen

wxGraphicsPen

Erlang module

A wxGr aphi csPen is a native representation of a pen. The contents are specific and private to the respective
renderer. Instances are ref counted and can therefore be assigned as usua. The only way to get a valid instance is
viawxG aphi csCont ext : cr eat ePen/ 2 orwxGr aphi csRender er: : Cr eat ePen() (notimplementedin
WX).

This classis derived (and can use functions) from: wxGr aphi csCbj ect
wxWidgets docs: wxGr aphicsPen

Data Types

wxGraphicsPen() = wx:wx object()

Ericsson AB. All Rights Reserved.: wxErlang | 261

href

wxGraphicsRenderer

wxGraphicsRenderer

Erlang module

A wxGr aphi csRender er is the instance corresponding to the rendering engine used. There may be multiple
instances on asystem, if there are different rendering engines present, but there is always only oneinstance per engine.
This instance is pointed back to by al objects created by it (WwxGr aphi csCont ext , wxGr aphi csPat h etc.)
and can be retrieved through their wxGr aphi csObj ect : get Render er/ 1 method. Therefore you can create an
additional instance of apath etc. by callingwx Gr aphi csObj ect : get Render er / 1 andthen using the appropriate
CreateX X X() function of that renderer.

wxWidgets docs: wxGr aphicsRender er

Data Types

wxGraphicsRenderer() = wx:wx object()

Exports

getDefaultRenderer() -> wxGraphicsRenderer()
Returns the default renderer on this platform.

On macOS this is the Core Graphics (a.k.a. Quartz 2D) renderer, on MSW the GDIPlus renderer, and on GTK we
currently default to the Cairo renderer.

createContext(This, WindowDC) ->
wxGraphicsContext:wxGraphicsContext ()

Types:
This = wxGraphicsRenderer()
WindowDC =

wxWindowDC:wxWindowDC() |
wxWindow:wxWindow() |
wxMemoryDC:wxMemoryDC ()

Createsawx G aphi csCont ext from awxW ndowDC.

createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
Types:

This = wxGraphicsRenderer()

Brush = wxBrush:wxBrush()

Creates anative brush from awxBr ush.
createlLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) ->

wxGraphicsBrush:wxGraphicsBrush()
Types:

262 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGraphicsRenderer

This = wxGraphicsRenderer()
X1 = Y1l = X2 = Y2 = number()
Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()
Creates a native brush with alinear gradient.
Stops support is new since wxWidgets 2.9.1, previously only the start and end colours could be specified.

The ability to apply atransformation matrix to the gradient was added in 3.1.3

createRadialGradientBrush(This, StartX, StartY, EndX, EndY,
Radius, Stops) ->
wxGraphicsBrush:wxGraphicsBrush()

Types:

This = wxGraphicsRenderer()

StartX = StartY = EndX = EndY = Radius = number()

Stops = wxGraphicsGradientStops:wxGraphicsGradientStops()
Creates a native brush with aradial gradient.
Stops support is new since wxWidgets 2.9.1, previously only the start and end colours could be specified.

The ability to apply atransformation matrix to the gradient was added in 3.1.3

createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()
Types:

This = wxGraphicsRenderer()

Font = wxFont:wxFont ()

createFont(This, SizeInPixels, Facename) ->
wxGraphicsFont:wxGraphicsFont()

createFont(This, Font, Facename :: [Option]) ->
wxGraphicsFont:wxGraphicsFont ()

Types:
This = wxGraphicsRenderer()
Font = wxFont:wxFont()

Option = {col, wx:wx colour()}
Creates a native graphics font from awx Font and atext colour.

createFont(This, SizeInPixels, Facename, Options :: [Option]) ->
wxGraphicsFont:wxGraphicsFont ()

Types:

This = wxGraphicsRenderer()

SizeInPixels = number()

Facename = unicode:chardata()

Option = {flags, integer()} | {col, wx:wx colour()}
Creates a graphics font with the given characteristics.

Ericsson AB. All Rights Reserved.: wxErlang | 263

wxGraphicsRenderer

If possible, the cr eat eFont / 4 overload taking wxFont should be used instead. The main advantage of this
overload isthat it can be used without X server connection under Unix when using Cairo.

Since: 2.9.3

createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix()
Types:
This = wxGraphicsRenderer()

createMatrix(This, Options :: [Option]) ->
wxGraphicsMatrix:wxGraphicsMatrix()
Types:
This = wxGraphicsRenderer()
Option =
{a, number()} |
{b, number()} |
{c, number()} |
{d, number()} |
{tx, number()} |

{ty, number()}
Creates a native affine transformation matrix from the passed in values.

The defaults result in an identity matrix.

createPath(This) -> wxGraphicsPath:wxGraphicsPath()
Types.

This = wxGraphicsRenderer()
Creates a native graphics path which isinitially empty.

264 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridBagSizer

wxGridBagSizer

Erlang module

AwxSi zer that canlay outitemsin avirtual grid likeawxFl exGr i dSi zer butin thiscase explicit positioning of
theitemsis alowed using wx GBPosi t i on (not implemented in wx), and items can optionally span more than one
row and/or column using wx GBSpan (not implemented in wx).

This classis derived (and can use functions) from: wxFl exGri dSi zer wxG'i dSi zer wxSi zer
wxWidgets docs: wxGridBagSizer

Data Types

wxGridBagSizer() = wx:wx object()

Exports

new() -> wxGridBagSizer()

new(Options :: [Option]) -> wxGridBagSizer()
Types.

Option = {vgap, integer()} | {hgap, integer()}
Constructor, with optional parameters to specify the gap between the rows and columns.

add(This, Item) -> wxSizerItem:wxSizerItem()

Types.
This = wxGridBagSizer()
Item = wxGBSizerItem:wxGBSizerItem()

add(This, Window, Pos) -> wxSizerItem:wxSizerItem()
Types.
This = wxGridBagSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Pos = {R :: integer(), C :: integer()}

add(This, Width, Height, Pos) -> wxSizerItem:wxSizerItem()
add(This, Window, Pos, Pos :: [Option]) ->
wxSizerItem:wxSizerItem()
Types:
This = wxGridBagSizer()
Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Pos = {R :: integer(), C :: integer()}
Option =
{span, {RS :: integer(), CS :: integer()}} |
{flag, integer()} |
{border, integer()} |

Ericsson AB. All Rights Reserved.: wxErlang | 265

href

wxGridBagSizer

{userData, wx:wx object()}
Adds the given item to the given position.

Return: A valid pointer if the item was successfully placed at the given position, or NULL if something was already
there.

add(This, Width, Height, Pos, Options :: [Option]) ->
wxSizerItem:wxSizerItem()
Types.
This = wxGridBagSizer()
Width = Height = integer()
Pos = {R :: integer(), C :: integer()}
Option =
{span, {RS :: integer(), CS :: integer()}} |
{flag, integer()} |
{border, integer()} |
{userData, wx:wx object()}

Adds a spacer to the given position.
wi dt h and hei ght specify the dimension of the spacer to be added.

Return: A valid pointer if the spacer was successfully placed at the given position, or NULL if something was already
there.

calcMin(This) -> {W :: integer(), H :: integer()}
Types:

This = wxGridBagSizer()
Called when the managed size of the sizer is needed or when layout needs done.

checkForIntersection(This, Item) -> boolean()

Types.
This = wxGridBagSizer()
Item = wxGBSizerItem:wxGBSizerItem()

checkForIntersection(This, Pos, Span) -> boolean()

checkForIntersection(This, Item, Span :: [Option]) -> boolean()
Types.
This = wxGridBagSizer()

Item wxGBSizerItem:wxGBSizerItem()
Option = {excludeIltem, wxGBSizerItem:wxGBSizerItem()}

Look at all items and seeif any intersect (or would overlap) the given item.

Returns true if so, false if there would be no overlap. If an excl udel t emis given then it will not be checked for
intersection, for example it may be the item we are checking the position of.

checkForIntersection(This, Pos, Span, Options :: [Option]) ->

boolean()
Types.

266 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridBagSizer

This = wxGridBagSizer()

Pos = {R :: integer(), C :: integer()}

Span = {RS :: integer(), CS :: integer()}

Option = {excludeltem, wxGBSizerItem:wxGBSizerItem()}

findItem(This, Window) -> wxGBSizerItem:wxGBSizerItem()
Types:

This = wxGridBagSizer()

Window = wxWindow:wxWindow() | wxSizer:wxSizer()
Find the sizer item for the given window or subsizer, returns NULL if not found.

(non-recursive)

findItemAtPoint(This, Pt) -> wxGBSizerItem:wxGBSizerItem()
Types.

This = wxGridBagSizer()

Pt = {X :: integer(), Y :: integer()}
Return the sizer item located at the point givenin pt, or NULL if thereis no item at that point.

The (x,y) coordinates in pt correspond to the client coordinates of the window using the sizer for layout. (non-
recursive)

findItemAtPosition(This, Pos) -> wxGBSizerItem:wxGBSizerItem()
Types:

This = wxGridBagSizer()

Pos = {R :: integer(), C :: integer()}
Return the sizer item for the given grid cell, or NULL if thereis no item at that position.

(non-recursive)

findItemWithData(This, UserData) -> wxGBSizerItem:wxGBSizerItem()
Types:
This = wxGridBagSizer()
UserData = wx:wx object()
Return the sizer item that has a matching user data (it only compares pointer values) or NULL if not found.

(non-recursive)

getCellSize(This, Row, Col) -> {W :: integer(), H :: integer()}
Types:
This = wxGridBagSizer()
Row = Col = integer()
Get the size of the specified cell, including hgap and vgap.
Only valid after window layout has been performed.

Ericsson AB. All Rights Reserved.: wxErlang | 267

wxGridBagSizer

getEmptyCellSize(This) -> {W :: integer(), H :: integer()}
Types.

This = wxGridBagSizer()
Get the size used for cellsin the grid with no item.

getItemPosition(This, Window) -> {R :: integer(), C :: integer()}
getItemPosition(This, Index) -> {R :: integer(), C :: integer()}
Types:

This = wxGridBagSizer()

Index = integer()

getItemSpan(This, Window) -> {RS :: integer(), CS :: integer()}
getItemSpan(This, Index) -> {RS :: integer(), CS :: integer()}
Types:

This = wxGridBagSizer()

Index = integer()

setEmptyCellSize(This, Sz) -> ok
Types:

This = wxGridBagSizer()

Sz = {W :: integer(), H :: integer()}
Set the size used for cellsin the grid with no item.

setItemPosition(This, Window, Pos) -> boolean()
setItemPosition(This, Index, Pos) -> boolean()
Types:

This = wxGridBagSizer()

Index = integer()

Pos = {R :: integer(), C :: integer()}

setItemSpan(This, Window, Span) -> boolean()
setItemSpan(This, Index, Span) -> boolean()
Types.

This = wxGridBagSizer()

Index = integer()

Span = {RS :: integer(), CS :: integer()}

destroy(This :: wxGridBagSizer()) -> ok
Destroys the object.

268 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellAttr

wxGridCellAttr

Erlang module

This class can be used to ater the cells appearancein the grid by changing their attributes from the defaults. An object
of this class may bereturned by wxG i dTabl eBase: : Get Attr () (notimplemented inwx).

Note that objects of this class are reference-counted and it's recommended to use wxGridCellAttrPtr smart pointer
class when working with them to avoid memory leaks.

wxWidgets docs: wxGridCellAttr

Data Types
wxGridCellAttr() = wx:wx object()

Exports

setTextColour(This, ColText) -> ok
Types:

This = wxGridCellAttr()

ColText = wx:wx _colour()

Sets the text colour.

setBackgroundColour(This, ColBack) -> ok
Types.

This = wxGridCellAttr()

ColBack = wx:wx _colour()

Sets the background colour.

setFont(This, Font) -> ok

Types:
This = wxGridCellAttr()
Font = wxFont:wxFont()
Sets the font.

setAlignment(This, HAlign, VAlign) -> ok
Types:

This = wxGridCellAttr()

HAlign = VAlign = integer()
Sets the alignment.

hAl i gn can be one of wxALI GN_LEFT, wx ALI GN_CENTRE or wxALI GN_RI GHT and vAl i gn can be one of
WXALI GN_TOP, wxALI GN_CENTRE or wxALI GN_BOTTOM

setReadOnly(This) -> ok
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 269

href

wxGridCellAttr

This = wxGridCellAttr()

setReadOnly(This, Options :: [Option]) -> ok
Types:

This = wxGridCellAttr()

Option = {isReadOnly, boolean()}

Setsthe cell as read-only.

setRenderer(This, Renderer) -> ok
Types.

This = wxGridCellAttr()

Renderer = wxGridCellRenderer:wxGridCellRenderer()
Sets the renderer to be used for cells with this attribute.

Takes ownership of the pointer.

setEditor(This, Editor) -> ok
Types:
This = wxGridCellAttr()
Editor = wxGridCellEditor:wxGridCellEditor()

Sets the editor to be used with the cells with this attribute.

hasTextColour(This) -> boolean()
Types.

This = wxGridCellAttr()
Returns true if this attribute has a valid text colour set.

hasBackgroundColour(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns trueif this attribute has a valid background colour set.

hasFont(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this attribute has a valid font set.

hasAlignment(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this attribute has avalid alignment set.

hasRenderer(This) -> boolean()
Types:

270 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellAttr

This = wxGridCellAttr()
Returnstrue if this attribute has a valid cell renderer set.

hasEditor(This) -> boolean()
Types:
This = wxGridCellAttr()
Returns true if this attribute has avalid cell editor set.

getTextColour(This) -> wx:wx colour4()
Types:

This = wxGridCellAttr()
Returns the text colour.

getBackgroundColour(This) -> wx:wx_colour4()
Types:

This = wxGridCellAttr()
Returns the background colour.

getFont(This) -> wxFont:wxFont()

Types:
This = wxGridCellAttr()
Returns the font.

getAlignment(This) -> {HAlign :: integer(), VAlign :: integer()}
Types:

This = wxGridCellAttr()
Get the alignment to use for the cell with the given attribute.

If this attribute doesn't specify any alignment, the default attribute alignment is used (which can be changed using
wxG i d: set Def aul t Cel | Al'i gnnent / 3 but isleft and top by default).

Notice that hAlign and VvAlign vaues ae adways overwritten by this function, use
Get NonDef aul t Al i gnnent () (not implemented in wx) if thisis not desirable.

getRenderer(This, Grid, Row, Col) ->
wxGridCellRenderer:wxGridCellRenderer()

Types.
This = wxGridCellAttr()
Grid = wxGrid:wxGrid()

Row = Col = integer()
Returns the cell renderer.

The caler is responsible for caling DecRef () (not implemented in wx) on the returned pointer, use
Get Render er Pt r () (not implemented in wx) to do it automatically.

getEditor(This, Grid, Row, Col) ->

Ericsson AB. All Rights Reserved.: wxErlang | 271

wxGridCellAttr

wxGridCellEditor:wxGridCellEditor()
Types.
This = wxGridCellAttr()
Grid = wxGrid:wxGrid()
Row = Col = integer()
Returns the cell editor.

The caler is responsible for calling DecRef () (not implemented in wx) on the returned pointer, use
Get Edi tor Pt r () (notimplemented in wx) to do it automatically.

isReadOnly(This) -> boolean()
Types:

This = wxGridCellAttr()
Returns true if this cell is set asread-only.

setDefAttr(This, DefAttr) -> ok

Types:
This = DefAttr = wxGridCellAttr()

272 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellBoolEditor

wxGridCellBoolEditor

Erlang module

Grid cell editor for boolean data.

See: wxG i dCel | Edi t or, wxGr i dCel | Aut oW apStri ngEdi t or (not implemented in
wXx), wxXG i dCel | Choi ceEdi tor, wxGr i dCel | EnunEdi t or (not implemented in
Wx), wx& i dCel | FI oat Edi t or, wxG i dCel | Nurber Edi t or, wxG& i dCel | Text Edi t or,
wxGr i dCel | Dat eEdi t or (not implemented in wx)

This classis derived (and can use functions) from: wxG i dCel | Edi t or
wxWidgets docs: wxGridCellBool Editor

Data Types
wxGridCellBoolEditor() = wx:wx object()

Exports

new() -> wxGridCellBoolEditor()
Default constructor.

isTrueValue(Value) -> boolean()
Types:
Value = unicode:chardata()

Returns true if the given val ue is equal to the string representation of the truth value we currently use (see
useStringVal ues/ 1).

useStringValues() -> ok

useStringValues(Options :: [Option]) -> ok
Types:
Option =
{valueTrue, unicode:chardata()} |
{valueFalse, unicode:chardata()}

This method allows you to customize the values returned by wxGr i dCel | Nunber Edi t or : get Val ue/ 1 for the
cell using this editor.

By default, the default values of the argumentsare used, i.e. " 1" isreturned if the cell is checked and an empty string
otherwise.

destroy(This :: wxGridCellBoolEditor()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 273

href

wxGridCellBoolRenderer

wxGridCellBoolRenderer

Erlang module

This class may be used to format boolean datain a cell.

Seee wxGi dCel | Renderer, wxG i dCel | Aut oW apStringRenderer (not implemented in wx),
wxG i dCel | Dat eTi neRender er (notimplemented in wx), wxG i dCel | EnunRender er (not implemented
inwx), wxG& i dCel | Fl oat Render er ,wxG i dCel | Nunber Render er ,wxG i dCel | St ri ngRender er

This classis derived (and can use functions) from: wxG i dCel | Render er
wxWidgets docs: wxGridCellBoolRender er

Data Types

wxGridCellBoolRenderer() = wx:wx object()

Exports
new() -> wxGridCellBoolRenderer()

destroy(This :: wxGridCellBoolRenderer()) -> ok
Destroys the object.

274 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellChoiceEditor

wxGridCellChoiceEditor

Erlang module

Grid cell editor for string data providing the user a choice from alist of strings.

See: wxG i dCel | Edi t or, wxGr i dCel | Aut oW apStri ngEdi t or (not implemented in
wXx), wxG i dCel | Bool Edi t or, wxGr i dCel | EnunEdi t or (not implemented in
Wx), wx& i dCel | FI oat Edi t or, wxG i dCel | Nurber Edi t or, wxG& i dCel | Text Edi t or,
wxGr i dCel | Dat eEdi t or (not implemented in wx)

This classis derived (and can use functions) from: wxG i dCel | Edi t or
wxWidgets docs: wxGridCellChoiceEditor

Data Types

wxGridCellChoiceEditor() = wx:wx object()

Exports

new(Choices) -> wxGridCellChoiceEditor()
Types:
Choices = [unicode:chardata()]

new(Choices, Options :: [Option]) -> wxGridCellChoiceEditor()
Types:

Choices = [unicode:chardata()]

Option = {allowOthers, boolean()}

Choice cell renderer ctor.

setParameters(This, Params) -> ok
Types:
This = wxGridCellChoiceEditor()
Params = unicode:chardata()

Parameters string format is "item1[,item2]...,itemN]]".

This method can be called before the editor is used for the first time, or later, in which case it replaces the previously
specified strings with the new ones.

destroy(This :: wxGridCellChoiceEditor()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 275

href

wxGridCellEditor

wxGridCellEditor

Erlang module

This class is responsible for providing and manipulating the in-place edit controls for the grid. Instances of
wxGri dCel | Edi t or (actually, instances of derived classes since it is an abstract class) can be associated with the
cell attributes for individual cells, rows, columns, or even for the entire grid.

Normally wxG i dCel | Edi t or shows some Ul control allowing the user to edit the cell, but starting with
wxWidgets 3.1.4 it's also possible to define "activatable" cell editors, that change the value of the cell directly when
it's activated (typically by pressing Space key or clicking on it), see Tr yAct i vat e() (not implemented in wx)
method. Note that when implementing an editor which is always activatable, i.e. never shows any in-place editor, it is
more convenient to deriveitsclassfromwxG i dCel | Acti vat abl eEdi t or (not implemented in wx) than from
wxGr i dCel | Edi t or itsdlf.

See. wxGi dCel | Aut oW apStri ngEdi tor (not implemented in wx), wxG i dCel | Bool Edit or,
wxGr i dCel | Choi ceEdi t or, wxG& i dCel | Enuntdi t or (not implemented in wx),
wxG i dCel | Fl oat Edi t or, wxXG i dCel | Nunber Edi t or, wX@ i dCel | Text Edi t or,
wxGr i dCel | Dat eEdi t or (not implemented in wx)

wxWidgets docs: wxGridCellEditor

Data Types
wxGridCellEditor() = wx:wx object()

Exports

create(This, Parent, Id, EvtHandler) -> ok
Types:

This = wxGridCellEditor()

Parent = wxWindow:wxWindow()

Id = integer()

EvtHandler = wxEvtHandler:wxEvtHandler()
Creates the actual edit control.

isCreated(This) -> boolean()
Types.

This = wxGridCellEditor()
Returnstrueif the edit control has been created.

setSize(This, Rect) -> ok
Types.
This = wxGridCellEditor()

Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),

276 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellEditor

H :: integer()}

Size and position the edit control.

show(This, Show) -> ok

Types:
This = wxGridCellEditor()
Show = boolean()

show(This, Show, Options :: [Option]) -> ok

Types.
This = wxGridCellEditor()
Show = boolean()

Option = {attr, wxGridCellAttr:wxGridCellAttr()}
Show or hide the edit control, use the specified attributes to set colours/fonts for it.

reset(This) -> ok
Types:
This = wxGridCellEditor()
Reset the value in the control back to its starting value.

startingKey(This, Event) -> ok
Types:

This = wxGridCellEditor()

Event = wxKeyEvent:wxKeyEvent()

If the editor is enabled by pressing keys on the grid, this will be called to let the editor do something about that first
key if desired.

startingClick(This) -> ok
Types:
This = wxGridCellEditor()
If the editor is enabled by clicking on the cell, this method will be called.

handleReturn(This, Event) -> ok
Types.

This = wxGridCellEditor()

Event = wxKeyEvent:wxKeyEvent ()

Some types of controls on some platforms may need some help with the Return key.

Ericsson AB. All Rights Reserved.: wxErlang | 277

wxGridCellFloatEditor

wxGridCellFloatEditor

Erlang module

The editor for floating point numbers data.

Seee wxGidCell Editor, wxGidCell AutoWapStringEditor (not implemented in wx),
wxG i dCel | Bool Edi t or, wxGri dCel | Choi ceEdi t or, wxGri dCel | EnunEdi t or (not implemented
in wx), wxGidCell NunberEditor, wxGidCell TextEditor, wxGidCell DateEditor (not
implemented in wx)

This classis derived (and can use functions) from: wxGr i dCel | Edi t or
wxWidgets docs: wxGridCellFloatEditor

Data Types
wxGridCellFloatEditor() = wx:wx object()

Exports
new() -> wxGridCellFloatEditor()

new(Options :: [Option]) -> wxGridCellFloatEditor()
Types:
Option =
{width, integer()} |
{precision, integer()} |
{format, integer()}

Float cell editor ctor.

setParameters(This, Params) -> ok
Types.
This = wxGridCellFloatEditor()
Params = unicode:chardata()

The parameters string format is "width[,precision[,format]]" where f or mat should be chosen between fle|g|E|G (f
isused by default)

destroy(This :: wxGridCellFloatEditor()) -> ok
Destroys the object.

278 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellFloatRenderer

wxGridCellFloatRenderer

Erlang module

This class may be used to format floating point datain acell.

Seee wxGidCell Renderer, wxGidCell AutoW apStringRenderer (not implemented in
wx), wxGidCell Bool Renderer, wxGidCell DateTi neRenderer (not implemented in
wx), wxCGidCell EnunRenderer (not implemented in wx), wxGidCell Nunber Renderer,
wxG i dCel | St ri ngRender er

This classis derived (and can use functions) from: wxGri dCel | St ri ngRender er wxGr i dCel | Render er
wxWidgets docs: wxGridCellFloatRender er

Data Types

wxGridCellFloatRenderer() = wx:wx object()

Exports
new() -> wxGridCellFloatRenderer()

new(Options :: [Option]) -> wxGridCellFloatRenderer()
Types.
Option =
{width, integer()} |
{precision, integer()} |
{format, integer()}

Float cell renderer ctor.

getPrecision(This) -> integer()
Types.

This = wxGridCellFloatRenderer()
Returns the precision.

getWidth(This) -> integer()

Types.
This = wxGridCellFloatRenderer()
Returns the width.

setParameters(This, Params) -> ok
Types:
This = wxGridCellFloatRenderer()
Params = unicode:chardata()

The parameters string format is "width[,precision[,format]]" where f or mat should be chosen between fle|g|E|G (f
is used by default)

Ericsson AB. All Rights Reserved.: wxErlang | 279

href

wxGridCellFloatRenderer

setPrecision(This, Precision) -> ok
Types.
This = wxGridCellFloatRenderer/()
Precision = integer()
Sets the precision.

setWidth(This, Width) -> ok

Types:
This = wxGridCellFloatRenderer()
Width = integer()

Sets the width.

destroy(This :: wxGridCellFloatRenderer()) -> ok
Destroys the object.

280 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellINumberEditor

wxGridCelINumberEditor

Erlang module

Grid cell editor for numeric integer data.

Seee wxGidCell Editor, wxGidCell AutoWapStringEditor (not implemented in wx),
wxG i dCel | Bool Edi t or, wxG i dCel | Choi ceEdi t or, wxG i dCel | EnunEdi t or (not implemented in
wx), wxG i dCel | Fl oat Edi t or ,wxGri dCel | Text Edi t or ,wxG& i dCel | Dat eEdi t or (notimplemented
in wx)

This classis derived (and can use functions) from: wxGr i dCel | Text Edi t or wxGri dCel | Edi t or
wxWidgets docs: wxGridCelINumber Editor

Data Types

wxGridCellNumberEditor() = wx:wx object()

Exports
new() -> wxGridCellNumberEditor()

new(Options :: [Option]) -> wxGridCellNumberEditor()
Types.
Option = {min, integer()} | {max, integer()}
Allows you to specify the range for acceptable data.
Values equal to -1 for both mi n and nmex indicate that no range checking should be done.

getValue(This) -> unicode:charlist()
Types.

This = wxGridCellNumberEditor()
Returns the value currently in the editor contral.

setParameters(This, Params) -> ok
Types.
This = wxGridCellNumberEditor()
Params = unicode:chardata()

Parameters string format is "min,max".

destroy(This :: wxGridCellNumberEditor()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 281

href

wxGridCellNumberRenderer

wxGridCelINumberRenderer

Erlang module

This class may be used to format integer datain a cell.

Seee wxGidCell Renderer, wxGidCell AutoW apStringRenderer (not implemented in
wx), wxGidCell Bool Renderer, wxGidCell DateTi meRenderer (not implemented in
wx), wWxGidCell EnunRenderer (not implemented in wx), wGidCell Fl oatRenderer,
wxG i dCel | Stri ngRender er

This classis derived (and can use functions) from: wxGri dCel | St ri ngRender er wxGr i dCel | Render er
wxWidgets docs: wxGridCelINumber Render er

Data Types

wxGridCellNumberRenderer() = wx:wx object()

Exports

new() -> wxGridCellNumberRenderer()
Default constructor.

destroy(This :: wxGridCellNumberRenderer()) -> ok
Destroys the object.

282 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridCellRenderer

wxGridCellRenderer

Erlang module

Thisclassisresponsiblefor actually drawing thecell inthegrid. Y ou may passittothewxGri dCel | Att r (below)to
change the format of one given cell ortowxGr i d: set Def aul t Render er / 2 to changethe view of al cells. This
isan abstract class, and you will normally use one of the predefined derived classes or derive your own class fromit.

See: wxGi dCel | Aut oW apSt ri ngRender er (not implemented in wx), wxG i dCel | Bool Render er,
wxG i dCel | Dat eTi neRender er (not implemented in wx), wxG i dCel | EnunRender er (not implemented
inwx), wxG& i dCel | Fl oat Render er ,wxG i dCel | Nunber Render er ,wxG i dCel | St ri ngRender er

wxWidgets docs: wxGridCellRenderer

Data Types

wxGridCellRenderer() = wx:wx object()

Exports

draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected) -> ok

Types:
This = wxGridCellRenderer()
Grid = wxGrid:wxGrid()
Attr = wxGridCellAttr:wxGridCellAttr()
Dc = wxDC:wxDC()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

Row = Col = integer()
IsSelected = boolean()

Draw the given cell on the provided DC inside the given rectangle using the style specified by the attribute and the
default or selected state corresponding to the isSelected value.

This pure virtual function has a default implementation which will prepare the DC using the given attribute: it will
draw the rectangle with the background colour from attr and set the text colour and font.

getBestSize(This, Grid, Attr, Dc, Row, Col) ->
{W :: integer(), H :: integer()}

Types:
This = wxGridCellRenderer()
Grid = wxGrid:wxGrid()
Attr = wxGridCellAttr:wxGridCellAttr()

Dc = wxDC:wxDC()
Row = Col = integer()

Get the preferred size of the cell for its contents.

Ericsson AB. All Rights Reserved.: wxErlang | 283

href

wxGridCellRenderer

This method must be overridden in the derived classes to return the minimal fitting size for displaying the content
of the given grid cell.

See: Get Best Hei ght () (not implemented in wx), Get Best W dt h() (not implemented in wx)

284 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridCellStringRenderer

wxGridCellStringRenderer

Erlang module

This class may be used to format string datain a cell; it is the default for string cells.

Seee wxGidCell Renderer, wxGidCell AutoW apStringRenderer (not implemented in
wx), wxGidCell Bool Renderer, wxGidCell DateTi neRenderer (not implemented in
wx), wxCGidCell EnunRenderer (not implemented in wx), wxGidCell FloatRenderer,
wxG i dCel | Nunber Render er

This classis derived (and can use functions) from: wxG i dCel | Render er
wxWidgets docs: wxGridCellStringRender er

Data Types

wxGridCellStringRenderer() = wx:wx object()

Exports
new() -> wxGridCellStringRenderer()

destroy(This :: wxGridCellStringRenderer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 285

href

wxGridCellTextEditor

wxGridCellTextEditor

Erlang module

Grid cell editor for string/text data.

Seee wxGidCell Editor, wxGidCell AutoWapStringEditor (not implemented in wx),
wxG i dCel | Bool Edi t or, wxGri dCel | Choi ceEdi t or, wxGri dCel | EnunEdi t or (not implemented
in wx), wxGidCel | Fl oat Editor, wxG i dCel | Number Edi t or, wxG i dCel | Dat eEdi t or (not
implemented in wx)

This classis derived (and can use functions) from: wxGr i dCel | Edi t or
wxWidgets docs: wxGridCellTextEditor

Data Types
wxGridCellTextEditor() = wx:wx object()

Exports
new() -> wxGridCellTextEditor()

new(Options :: [Option]) -> wxGridCellTextEditor()
Types:

Option = {maxChars, integer()}
Text cell editor constructor.

setParameters(This, Params) -> ok
Types.
This = wxGridCellTextEditor()
Params = unicode:chardata()

The parameters string format is"n" where n is a number representing the maximum width.

destroy(This :: wxGridCellTextEditor()) -> ok
Destroys the object.

286 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxGridEvent

wxGridEvent

Erlang module

This event class contains information about various grid events.

Notice that al grid event table macros are available in two versions: EVT_GRI D_XXX and EVT_GRI D_CWVD_XXX.
The only difference between the two isthat the former doesn't allow to specify the grid window identifier and so takes
a single parameter, the event handler, but is not suitable if there is more than one grid control in the window where
the event table is used (as it would catch the events from all the grids). The version with CVD takes the id as first
argument and the event handler as the second one and so can be used with multiple grids as well. Otherwise there are
no difference between the two and only the versions without the id are documented below for brevity.

This classis derived (and can use functions) from: wxNot i f yEvent wxConmandEvent wxEvent
wxWidgets docs: wxGridEvent

Events

Usewx Evt Handl er: connect/ 3 withwxG i dEvent Type to subscribe to events of this type.

Data Types
wxGridEvent () = wx:wx_object()
wxGrid() =
#wxGrid{type = wxGridEvent:wxGridEventType(),
row = integer(),
col = integer(),
pos = {X :: integer(), Y :: integer()},

selecting = boolean(),
control = boolean(),
meta = boolean(),
shift = boolean(),
alt = boolean()}
wxGridEventType() =
grid cell left click | grid cell right click |
grid cell left dclick | grid cell right dclick |
grid label left click | grid label right click |
grid label left dclick | grid label right dclick |
grid cell changed | grid select cell | grid cell begin drag |
grid editor shown | grid editor hidden | grid col move |
grid col sort | grid tabbing

Exports

altDown(This) -> boolean()
Types.
This = wxGridEvent()
Returnstrueif the Alt key was down at the time of the event.

Ericsson AB. All Rights Reserved.: wxErlang | 287

href

wxGridEvent

controlDown(This) -> boolean()
Types:
This = wxGridEvent ()
Returnstrueif the Control key was down at the time of the event.

getCol(This) -> integer()
Types.

This = wxGridEvent()
Column at which the event occurred.

Noticethat forawx EVT_GRI D_SELECT _CELL event this column isthe column of the newly selected cell whilethe
previously selected cell can beretrieved usingwxGr i d: get Gri dCur sor Col / 1.

getPosition(This) -> {X :: integer(), Y :: integer()}
Types.
This = wxGridEvent()

Position in pixels at which the event occurred.

getRow(This) -> integer()
Types:

This = wxGridEvent()
Row at which the event occurred.

Notice that for a wxEVT_GRI D_SELECT_CELL event this row is the row of the newly selected cell while the
previously selected cell can beretrieved usingwxGri d: get Gri dCur sor Row/ 1.

metaDown(This) -> boolean()
Types:
This = wxGridEvent()
Returns true if the Meta key was down at the time of the event.

selecting(This) -> boolean()
Types:
This = wxGridEvent()
Returnstrueif the user is selecting grid cells, or false if deselecting.

shiftDown(This) -> boolean()
Types:
This = wxGridEvent()
Returnstrueif the Shift key was down at the time of the event.

288 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridSizer

wxGridSizer

Erlang module

A grid sizer isasizer which lays out its children in atwo-dimensional table with all table fields having the same size,
i.e. the width of each field isthe width of the widest child, the height of each field is the height of the tallest child.

See: wxSi zer , Overview sizer
This classis derived (and can use functions) from: wxSi zer
wxWidgets docs: wxGridSizer

Data Types

wxGridSizer() = wx:wx_object()

Exports

new(Cols) -> wxGridSizer()
Types:
Cols = integer()

new(Cols, Options :: [Option]) -> wxGridSizer()
Types:

Cols = integer()

Option = {gap, {W :: integer(), H :: integer()}}

new(Cols, Vgap, Hgap) -> wxGridSizer()
new(Rows, Cols, Gap) -> wxGridSizer()
Types.

Rows = Cols = integer()

Gap = {W :: integer(), H :: integer()}

new(Rows, Cols, Vgap, Hgap) -> wxGridSizer()
Types.
Rows = Cols = Vgap = Hgap = integer()

getCols(This) -> integer()
Types.
This = wxGridSizer()
Returns the number of columns that has been specified for the sizer.

Returns zero if the sizer is automatically adjusting the number of columns depending on number of its children. To get
the effective number of columnsor rowsbeing currently used, seeGet Ef f ect i veCol sCount () (notimplemented
in wx)

Ericsson AB. All Rights Reserved.: wxErlang | 289

href
href

wxGridSizer

getHGap(This) -> integer()
Types:
This = wxGridSizer()
Returns the horizontal gap (in pixels) between cellsin the sizer.

getRows(This) -> integer()
Types:
This = wxGridSizer()
Returns the number of rows that has been specified for the sizer.

Returns zero if the sizer is automatically adjusting the number of rows depending on number of its children. To get the
effective number of columns or rows being currently used, see Get Ef f ect i veRows Count () (not implemented
in wx).

getVGap(This) -> integer()
Types:
This = wxGridSizer()
Returnsthe vertical gap (in pixels) between the cellsin the sizer.

setCols(This, Cols) -> ok

Types:
This = wxGridSizer()
Cols = integer()

Sets the number of columnsin the sizer.

setHGap(This, Gap) -> ok
Types:
This = wxGridSizer()
Gap = integer()
Sets the horizontal gap (in pixels) between cellsin the sizer.

setRows(This, Rows) -> ok

Types:
This = wxGridSizer()
Rows = integer()

Sets the number of rowsin the sizer.

setVGap(This, Gap) -> ok
Types:
This = wxGridSizer()
Gap = integer()
Setsthe vertical gap (in pixels) between the cellsin the sizer.

290 | Ericsson AB. All Rights Reserved.: wxErlang

wxGridSizer

destroy(This :: wxGridSizer()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 291

wxGrid

wxGrid

Erlang module

wx G i d and itsrelated classes are used for displaying and editing tabular data. They provide arich set of featuresfor
display, editing, and interacting with a variety of data sources. For simple applications, and to help you get started,
wx G i d istheonly class you need to refer to directly. It will set up default instances of the other classes and manage
them for you. For more complex applications you can derive your own classes for custom grid views, grid datatables,
cell editors and renderers. The overview_grid has examples of simple and more complex applications, explains the
relationship between the various grid classes and has a summary of the keyboard shortcuts and mouse functions
provided by wxGr i d.

AwxG i dTabl eBase (notimplemented inwx) classholdsthe actual datato bedisplayedby awxGr i d class. Oneor
morewx G i d classes may act asaview for onetable class. The default table classiscalledwxGr i dSt ri ngTabl e
(not implemented in wx) and holds an array of strings. An instance of such aclassiscreated by cr eat eGri d/ 4.

wxGr i dCel | Render er is the abstract base class for rendering contents in a cell. The following renderers are
predefined:

The look of a cell can be further defined using wxGri dCel | Attr. An object of this type may be returned by
wxQ& i dTabl eBase: : Get Attr () (notimplemented inwx).

wx G i dCel | Edi t or isthe abstract base class for editing the value of acell. The following editors are predefined:

Please see wxG i dEvent , wxG&r i dSi zeEvent (not implemented in wx), wxG' i dRangeSel ect Event (not
implemented in wx), and wxG i dEdi t or Cr eat edEvent (not implemented in wx) for the documentation of all
event typesyou can use withwxGri d.

See: Overview grid, wxGr i dUpdat eLocker (not implemented in wx)
This classis derived (and can use functions) from: wxScr ol | edW ndowwxPanel wxW ndowwxEvt Handl er
wxWidgets docs: wxGrid

Data Types

wxGrid() = wx:wx object()

Exports

new() -> wxGrid()
Default constructor.

You must call Creat e() (notimplemented in wx) to really create the grid window and also call creat eGri d/ 4
or Set Tabl e() (notimplemented inwx) or Assi gnTabl e() (notimplemented in wx) toinitiaize its contents.

new(Parent, Id) -> wxGrid()
Types:
Parent = wxWindow:wxWindow()
Id = integer()

new(Parent, Id, Options :: [Option]) -> wxGrid()
Types:

292 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxGrid

Parent = wxWindow:wxWindow()
Id = integer()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()}
Constructor creating the grid window.

You must cal either creat eGi d/ 4 or Set Tabl e() (not implemented in wx) or Assi gnTabl e() (not
implemented in wx) to initialize the grid contents before using it.

destroy(This :: wxGrid()) -> ok
Destructor.

Thiswill also destroy the associated grid table unless you passed atable object to the grid and specified that the grid
should not take ownership of the table (see Set Tabl e() (not implemented in wx)).

appendCols(This) -> boolean()
Types.
This = wxGrid()

appendCols(This, Options :: [Option]) -> boolean()
Types:

This = wxGrid()

Option = {numCols, integer()} | {updateLabels, boolean()}
Appends one or more new columns to the right of the grid.

The updat eLabel s argument is not used at present. If you are using a derived grid table class you will need
to override wxGr i dTabl eBase: : AppendCol s() (not implemented in wx). See i nsert Col s/ 2 for further
information.

Return: true on success or false if appending columns failed.

appendRows (This) -> boolean()
