
Porting Source to Linux
Valve’s Lessons Learned

Overview

Who is this talk for?

Why port?

Windows->Linux

Linux Tools

Direct3D->OpenGL

Why port?

Why port?

Linux is open

Linux (for gaming) is

growing, and quickly

Stepping stone to mobile

Performance

Steam for Linux

% December January February

Windows 94.79 94.56 94.09

Mac 3.71 3.56 3.07

Linux 0.79 1.12 2.01

0%

1%

10%

100%

Nov Dec Jan Feb

Linux Mac Windows

Why port? – cont’d

GL exposes functionality by hardware

capability—not OS.

China tends to have equivalent GPUs, but overwhelmingly still

runs XP

OpenGL can allow DX10/DX11 (and beyond) features for all of those users

Why port? – cont’d

Specifications are public.

GL is owned by committee, membership

is available to anyone with interest (and some, but not a lot, of

$).

GL can be extended quickly, starting with a single vendor.

GL is extremely powerful

Windows->Linux

Windowing issues

Consider SDL!

Handles all cross-platform windowing issues, including on mobile

OSes.

Tight C implementation—everything you need, nothing you don’t.

Used for all Valve ports, and Linux Steam
http://www.libsdl.org/

http://www.libsdl.org/
http://www.libsdl.org/

Filesystem issues

Linux filesystems are case-sensitive

Windows is not

Not a big issue for deployment (because everyone ships packs of

some sort)

But an issue during development, with loose files

Solution 1: Slam all assets to lower case, including directories,

then tolower all file lookups (only adjust below root)

Solution 2: Build file cache, look for similarly named files

Other issues

Bad Defines

E.g. Assuming that LINUX meant DEDICATED_SERVER

Locale issues

locale can break printf/scanf round-tripping

Solution: Set locale to en_US.utf8, handle internationalization internally

One problem: Not everyone has en_US.utf8—so pop up a warning in that

case.

More Other Issues

Font

Consider freetype and fontconfig

Still work determining how to translate font sizes to linux

RDTSC (use clock_gettime(CLOCK_MONOTONIC) instead)

Raw Mouse input

Great, but some window managers also grab the keyboard

This breaks alt-tab. Grr.

Multi-monitor is less polished than Windows

SDL mostly handles this for you

Linux Tools

Steam Linux Runtime (and SDK)

Runtime provides binary compatibility across many Linux distros

for end users

SDK has everything you’ll need to target the runtime in one

convenient set of packages

Debug versions available, too

For both developers and end users
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz

https://github.com/ValveSoftware/steam-runtime

http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime

Tools – CPU Compilation/Debug

Compilation / Debug

gcc – compilation

gdb – debugging from 1970

cgdb – debugging from 2000

ldd – dumpbin for linux

nm – for symbol information

objdump – disassembler / binary details

readelf – more details about binaries

make – no, really

We’ll talk about GPU Debug tools later

Tools – CPU Perf analysis

perf – free sampling profiler

vtune – Intel’s tool works on Linux, too!

Telemetry – You’re using this already, right?

Again, we’ll talk about GPU perf tools later

Telemetry

Telemetry is a performance visualization system on steroids,

created by RAD Game Tools.

Very low overhead (so you can leave it on all through

development)

Quickly identify long frames

Then dig into guts of that

frame

Telemetry Details

Direct3D -> OpenGL

Which GL should you support?

DX9 ≈ OpenGL 2

Shaders

DX10 ≈ OpenGL 3

Streamlined API

Geometry Shaders

DX11 ≈ OpenGL 4

Tessellation and Compute

Direct3D Support

D3D11

D3D10

D3D9 (and

below)

D3D11 GPU / D3D11 Capable OS

D3D10 GPU / D3D10 Capable OS

D3D10 GPU / D3D9 Capable OS

D3D9 (or below) GPU / All OSes

Sep 2011 Feb 2013

OpenGL Support

D3D10

D3D9

D3D11 GPU / D3D11 Capable OS

D3D10 GPU / D3D10 Capable OS

D3D10 GPU / D3D9 Capable OS

D3D9 (or below) GPU / All OSes

Sep 2011 Feb 2013

D3D11

togl

―to GL‖

A D3D9/10/11 implementation using

OpenGL

In application, using a DLL.

Engine code is overwhelmingly

(99.9%) unaware of which API is

being used—even rendering.

Source Engine

Matsys Shaderlib ShaderAPI

Direct3D

GPU

togl

―to GL‖

A D3D9/10/11 implementation using

OpenGL

In application, using a DLL.

Engine code is overwhelmingly

(99.9%) unaware of which API is

being used—even rendering.

Perf was a concern, but not a problem—this stack beats the

shorter stack by ~20% in apples:apples testing.

Source Engine

Matsys Shaderlib ShaderAPI

“CDirect3D9” (togl)

OpenGL

GPU

togl: Major pieces

Textures, VBs, IBs

Device Creation

D3DCAPS9 (yuck!)

Shaders

togl handles this, too!

GL / D3D differences

GL has thread local data

A thread can have at most one Context current

A Context can be current on at most one thread

Calls into the GL from a thread that has no current Context are specified

to ―have no effect‖

MakeCurrent affects relationship between current thread and a Context.

Context Thread Context Thread

Thread

Thread

Context Thread

Context

Context

GL / D3D differences

GL is C based, objects referenced by handle

Many functions don’t take a handle at all, act on currently selected object

Handle is usually a GLuint.

GL supports extensions

GL is chatty, but shockingly efficient.

Do not judge a piece of code by the number of function calls.

Profile, profile, profile!

GL doesn’t suffer lost devices

GL extensions

NV|AMD|APPLE extensions are vendor specific (but may still be
supported cross-vendor)

Ex: NV_bindless_texture

EXT are multi-vendor specs
Ex: EXT_separate_shader_objects

ARB are ARB-approved
Ex: ARB_multitexture

Core extensions
A core feature from a later GL version exposed as an extension to an earlier GL
version.

Platform extensions (WGL|GLX|AGL|EGL)

Consider GLEW or similar to wrangle extensions
http://www.opengl.org/wiki/OpenGL_Extension

http://www.opengl.org/wiki/OpenGL_Extension

GL tricks

When googling for GL functions, enums, etc, search with and

without the leading gl or GL_

Reading specs will make you more powerful than you can possibly

imagine

Don’t like where GL is heading? Join Khronos Group and shape

your destiny.

GL objects

GL has many objects: textures, buffers, FBOs, etc.

Current object reference unit is selected using a selector, then

the object is bound.

Modifications then apply to the currently bound object.

Most object types have a default object 0.

GL Object Model (cont’d)

// Select texture unit 3.
glActiveTexture(GL_TEXTURE0 + 3);

// bind texture object 7, which is a 2D texture.
glBindTexture(GL_TEXTURE_2D, 7);

// Texture object 7 will now use nearest filtering for
// minification.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

Core vs Compatibility

Some IHVs assert Core will be faster

No actual driver implementations have demonstrated this

Tools starting with Core, but will add Compat features as needed.

Some extensions / behaviors are outlawed by Core.

Recommendation: Use what you need.

Useful extensions

EXT_direct_state_access

EXT_swap_interval (and EXT_swap_control_tear)

ARB_debug_output

ARB_texture_storage

ARB_sampler_objects

EXT_direct_state_access

Common functions take an object name directly, no binding

needed for manipulation.

Code is easier to read, less switching needed.

More similar to D3D usage patterns
http://www.opengl.org/registry/specs/EXT/direct_state_access.txt

http://www.opengl.org/registry/specs/EXT/direct_state_access.txt

EXT_direct_state_access cont’d

GLint curTex;
glGetIntegeriv(GL_TEXTURE_BINDING_2D, &curTex);
glBindTexture(GL_TEXTURE_2D, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glBindTexture(GL_TEXTURE_2D, curTex);

Becomes
glTextureParameteriEXT(7, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

DSA when DSA is unavailable

DSA is a driver-only extension—hardware is irrelevant.

Write client code that assumes DSA

Provide your own DSA function(s) when DSA is unavailable

When resolving functions, use a pointer to your function if

extension is unavailable.
void myTextureParameteriEXT(GLuint texture, GLenum target,
 GLenum pname, GLint param)
{
 GLint curTex;
 glGetIntegeriv(GL_TEXTURE_BINDING_2D, &curTex);
 glBindTexture(target, texture);
 glTexParameteri(target, pname, param);
 glBindTexture(target, curTex);
}

EXT_swap_interval

Vsync, but can be changed dynamically at any time.

Actually a WGL/GLX extension.

wglSwapInterval(1); // Enable VSYNC

wglSwapInterval(0); // Disable VSYNC

http://www.opengl.org/wiki/Swap_Interval

http://www.opengl.org/registry/specs/EXT/wgl_swap_control.txt

http://www.opengl.org/registry/specs/EXT/swap_control.txt

http://www.opengl.org/wiki/Swap_Interval
http://www.opengl.org/registry/specs/EXT/wgl_swap_control.txt
http://www.opengl.org/registry/specs/EXT/swap_control.txt

EXT_swap_control_tear

XBox-style Swap-tear for the PC.

Requested by John Carmack.

First driver support a few weeks later

All vendors supported within a few months

 wglSwapIntervalEXT(-1); // Try to vsync, but tear if late!
http://www.opengl.org/registry/specs/EXT/wgl_swap_control_tear.txt

http://www.opengl.org/registry/specs/EXT/glx_swap_control_tear.txt

http://www.opengl.org/registry/specs/EXT/wgl_swap_control_tear.txt
http://www.opengl.org/registry/specs/EXT/glx_swap_control_tear.txt

ARB_debug_output

You provide a callback when the driver detects an error—get fed a
message.

When the driver is in single-
threaded mode, you can see
all the way back into your
own stack.

Supports fine-grained message
control.

And you can insert your own
messages in the error stream
from client code.

Quality varies by vendor, but
getting better.

ARB_debug_output cont’d

// Our simple callback
void APIENTRY myErrorCallback(GLenum _source,
 GLenum _type, GLuint _id, GLenum _severity,
 GLsizei _length, const char* _message,
 void* _userParam)
{
 printf("%s\n", _message);
}

// First check for GL_ARB_debug_output, then...
glDebugMessageCallbackARB(myErrorCallback, NULL);
glEnable(GL_DEBUG_OUTPUT);

More Useful GL Extensions

NVX_gpu_memory_info / GL_ATI_meminfo

Get memory info about the underlying GPU

GL_GREMEDY_string_marker

D3DPERF-equivalent

GL_ARB_vertex_array_bgra

better matches UINT-expectations of D3D

GL_APPLE_client_storage / GL_APPLE_texture_range

Not for linux, but useful for Mac.

GL Pitfalls

Several pitfalls along the way

Functional

Texture State

Handedness

Texture origin differences

Pixel Center Convention (D3D9->GL only)

Performance

MakeCurrent issues

Driver Serialization

Vendor differences—be sure to test your code on multiple vendors

Texture State

By default, GL stores information about how to access a texture in

a header that is directly tied to the texture.

This code doesn’t do what you want:

 Texture*

Sampler

Info
Image Data

* Not to scale

Texture State cont’d

glBindMultiTextureEXT(GL_TEXTURE0 + 0, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

glBindMultiTextureEXT(GL_TEXTURE0 + 1, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

// Draw

ARB_sampler_objects

With ARB_sampler_objects, textures can now be accessed

different ways through different units.

Samplers take precedence over texture headers

If sampler 0 is bound, the texture header will be read.

No shader changes required
http://www.opengl.org/registry/specs/ARB/sampler_objects.txt

http://www.opengl.org/registry/specs/ARB/sampler_objects.txt

Using sampler objects

Gluint samplers[2];
glGenSamplers(2, samplers);
glSamplerParameteri(samplers[0], GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
glSamplerParameteri(samplers[1], GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

glBindSampler(0, samplers[0]);
glBindSampler(1, samplers[1]);
glBindMultiTextureEXT(GL_TEXTURE0 + 0, 7);
glBindMultiTextureEXT(GL_TEXTURE0 + 1, 7);
// Draw

Other GL/D3D differences (cont’d)

Handedness

D3D is left-handed everywhere, GL is right-handed everywhere

Texture origin is lower-left in GL (flip coordinates about v)

Consider rendering upside-down, flipping at the end.

GLSL uses column-major matrices by default

Including when specifying constants/uniforms

Pixel Centers

OpenGL matches D3D10+

MakeCurrent issues

Responsible for several bugs on TF2

Font rendering glitches (the thread creating text tries to update

the texture page, but didn’t own the context

MakeCurrent Performance

Single-threaded is best here.

MakeCurrent is very

expensive—try not to

call even once/twice

per frame.

MakeCurrent – Fixed

Driver Serialization

Modern OpenGL drivers are dual-core / multithreaded

Your application speaks to a thin shim

The shim moves data over to another thread to prepare for submission

Similar to D3D

Issuing certain calls causes the shim to need to flush all work,

then synchronize with the server thread.

This is very expensive

Known naughty functions

glGet(…) – Most of these cause serialization; shadow state (just

like D3D)

glGetError - use ARB_debug_output!

Functions that return a value

Functions that copy a non-determinable amount of client

memory, or determining the memory would be very hard

Detecting Driver Serialization

ARB_debug_output to the rescue!

Place a breakpoint in your callback, look up the callstack to see

which call is causing the problem

Message in ARB_debug_output to look for: ―Synchronous call:

stalling threaded optimizations.‖

Device (Context) Creation in GL

Creating a simple context in GL is easy:

Create a Window

Create a Context

Whether this gets you a Core or Compatibility context is

unspecified , but most vendors give you Compatibility.

Creating a ―robust‖ context with a specific GL-support version

requires using a WGL/GLX extension, and is trickier:

Context Creation – Cont’d

1. Create a window (don’t show)

2. Create a context

3. Query for window-specific extensions

4. Create another window (this will be the application window)

5. Create a context using extension function from step 3.

6. Destroy Context from step 2.

7. Destroy window from step 1.

Yuck.

With SDL, SDL_GL_SetAttribute + SDL_CreateWindow.

Common D3D Idioms in GL

Vertex Attributes

Vertex Buffers

Textures

Render to texture

Shaders

Vertex Attributes

glBindBuffer(GL_ARRAY_BUFFER, mPositions);
// glVertexAttribPointer remembers mPositions
glVertexAttribPointer(mProgram_v4Pos, 4, GL_FLOAT,
 GL_FALSE, 0, 0);
glEnableVertexAttribArray(mProgram_v4Pos);

glBindBuffer(GL_ARRAY_BUFFER, mNormals);
// glVertexAttribPointer remembers mNormals
glVertexAttribPointer(mProgram_v3Normal, 3, GL_FLOAT,
 GL_FALSE, 0, 0);
glEnableVertexAttribArray(mProgram_v3Normal);

Vertex Attribs – Alternative #1

Vertex Attribute Objects (VAOs)

Good mapping for D3D (seductive!)

Slower than glVertexAttribPointer on all implementations

Recommendation: Skip it

ARB_vertex_attrib_binding

Separates Format from Binding

Code is easy to read

glVertexAttribFormat(0, 4, GL_FLOAT, FALSE, 0);
glVertexAttribBinding(0, 0);
glBindVertexBuffer(0, buffer0, 0, 24);

http://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt

http://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt

Vertex (and Index) Buffer Creation

GLuint vb = 0, ib = 0;
glGenBuffers(1, &vb);
glNamedBufferDataEXT(vb, vbLengthBytes, vbPtr, vbUsage);

glGenBuffers(1, &ib);
glNamedBufferDataEXT(ib, ibLengthBytes, ibPtr, ibUsage);

Vertex (and Index) Buffer Updates

// NO_OVERWRITE is implied if you specify non-overlapping
// regions.
glNamedBufferSubDataEXT(vb, vbOffset, vbLength, vbPtr);
glNamedBufferSubDataEXT(ib, ibOffset, ibLength, ibPtr);

// DISCARD.
glNamedBufferDataEXT(vb, vbLength, vbPtr, vbUsage);
glNamedBufferDataEXT(ib, ibLength, ibPtr, ibUsage);

Vertex (and Index) Buffer Using

// Binding VBs also involves setting up VB attributes.
glBindBuffer(GL_ARRAY_BUFFER, vb);
glVertexAttribPointer(mProgram_pos, 3, GL_FLOAT, GL_FALSE, 24, 0);
glVertexAttribPointer(mProgram_n, 3, GL_FLOAT, GL_FALSE, 24, 12);
glEnableVertexAttribArray(mProgram_pos);
glEnableVertexAttribArray(mProgram_n);

// We finally know what the type is!
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib);

Dynamic Buffer Updates

Don’t use MapBuffer—because it returns a pointer, it causes

driver serialization.

Even worse, it probably causes a CPU-GPU sync point.

Instead, use BufferSubData on subsequent regions, then

BufferData when it’s time to discard.

Render to Texture

Render-to-texture in GL utilizes Frame Buffer Objects (FBOs)

FBOs are created like other objects, and have attachment points.

Many color points, one depth, one stencil, one depth-stencil

FBOs must be ―framebuffer complete‖ to be rendered to.

FBOs, like other ―container objects,‖ are not shared between

contexts.
http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

Frame Buffers

Spec has fantastic examples for creation, updating, etc, so not

replicating here

Watch BindRenderTarget (and BindDepthStencil) etc calls

At draw time, check whether render targets are in an existing

FBO configuration (exactly) via hash lookup

If so, use it.

If not, create a new FBO, bind attachments, check for

completeness and store in cache.

Frame Buffers – Don’ts

Do not create a single FBO and then swap out attachments on it.

This causes lots of validation in the driver, which in turn leads to

poor performance.

Shaders/Programs

In GL, Shaders are attached to a Program.

Each Shader covers a single shader stage (VS, PS, etc)

Shaders are Compiled

Programs are Linked

The Program is ―used‖

This clearly doesn’t map particularly well to D3D, which supports

mix-and-match.

Shaders/Programs cont’d

GL Uniforms == D3D Constants

Uniforms are part of program state

Swapping out programs also swaps uniforms

This also maps poorly to D3D.

Uniform problem

To solve the uniform problem, consider uniform buffer objects

Create a single buffer, bind to all programs

Modify parameters in the buffer

Or, keep track of ―global‖ uniform state and set values just prior

to draw time

If you’re coming from D3D11, Uniform Buffers ARE Constant

Buffers—no problems there.
http://www.opengl.org/wiki/Uniform_Buffer_Object

http://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt

http://www.opengl.org/wiki/Uniform_Buffer_Object
http://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt

Shader Approach #1: Program Hash

Pay attention to shaders that get set.

At draw time, hash the names of the shaders to see if an existing

program object has been linked

Otherwise, link and store in the hash

Shader Translation

You have a pile of HLSL. You need to give GL GLSL.

ARB_vertex_program / ARB_fragment_program is a possible alternative,

but only for DX9.

No *_tessellation_program

Shader Translation cont’d

One approach: compile HLSL, translate the byte code to simple

GLSL asm-like.

Pro: One set of shaders goes public

Pro: Can be fast

Con: Can be hard to debug problems

Con: Potentially slow fxc idioms end up in generated GLSL

Con: Debugging requires heavy cognitive load

Other Translation Approaches

Open Source Alternatives

HLSLCrossCompiler – D3D11 only (SM4/5)

MojoShader – SM1/2/3

Shipped in several games and engines, including Unreal Tournament 3, Unity.

https://github.com/James-Jones/HLSLCrossCompiler

http://icculus.org/mojoshader/

https://github.com/James-Jones/HLSLCrossCompiler
https://github.com/James-Jones/HLSLCrossCompiler
https://github.com/James-Jones/HLSLCrossCompiler
http://icculus.org/mojoshader/

Performance tips

Profile

Profile

Profile

Performance tips – cont’d

For best performance, you will have to write vendor-specific code

in some cases.

But you were probably doing this anyways

And now behavior is specified in a public specification.

GL Debugging and Perf Tools

NVIDIA Nsight supports GL 4.2 Core.

With some specific extensions

More extensions / features coming!

PerfStudio and gDEBugger

CodeXL

Apitrace

Open Source api tracing tool—has scaling issues which Valve is working to

fix.

GL Debugging Tricks

Compare D3D to GL images

Keep them both

working on the

same platform

Bonus points:

Have the game

running on two machines,

broadcast inputs to both,

compare images in

realtime.

Questions?

jmcdonald at nvidia dot com

richg at valvesoftware dot com

Appendix

Some other GL gotchas/helpers

Magic Symbol Resolution

Linux equivalent of _NT_SYMBOL_PATH

In ~/.gdbinit:

set debug-file-directory /usr/lib/debug:/mnt/symstore/debug

/mnt/symstore/debug is a shared, remotely mounted share with your

symbols

Populate that server with symbols

Currently only applied to gdb, should also apply to Google’s perf tool

―soon‖
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/

http://fedoraproject.org/wiki/Releases/FeatureBuildId

http://randomascii.wordpress.com/category/symbols-2/

http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://fedoraproject.org/wiki/Releases/FeatureBuildId
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/

Performance tips

Force-inline is your friend—many of the functions you’ll be

implementing are among the most-called functions in the

application.

With few exceptions, you can maintain a GL:D3D call ratio of 1:1

or less.

For example, use glBindMultiTextureEXT instead of

glActiveTexture/glBindTexture.

glBindMultiTextureEXT(texUnit, target, texture)

Other useful GL references

http://www.opengl.org/wiki/Common_Mistakes

OpenGL SuperBible: Comprehensive Tutorial and Reference (5th Edition)
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/

OpenGL 4.2 Quick Reference Card
http://www.khronos.org/files/opengl42-quick-reference-card.pdf

http://www.opengl.org/wiki/Common_Mistakes
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf

Sampler gotchas…

On certain drivers, GL_TEXTURE_COMPARE_MODE (for shadow

map lookups) is buggy when set via sampler.

For robustness, use texture setting on those particular drivers.

Latched State

Recall that GL is very stateful.

State set by an earlier call is often captured (latched) by a later

call.

Vertex Attributes are the prime example of this, but there are

numerous other examples.

Textures (Creation)

GLuint texId = 0;
// Says “This handle is a texture”
glGenTextures(1, &texId);

// Allocates memory
glTextureStorage2DEXT(texId, GL_TEXTURE_2D, mipCount,
 texFmt, mip0Width, mip0Height);

// Pushes data—note that conversion is performed if necessary
foreach (mipLevel) {
 glTextureSubImage2DEXT(texId, GL_TEXTURE_2D, mipLevel,
 0, 0, mipWidth, mipHeight,
 srcFmt, srcType, mipData);
}

Textures (Updating)

With TexStorage, updates are just like initial data specification

(glTextureSubImage or glCompressedTextureSubImage).

Texture->Texture updates are covered later

On-GPU compression is straightforward, implemented in
https://code.google.com/p/nvidia-texture-tools/

MIT License, use freely!

Or copy Simon Green’s technique:
http://developer.download.nvidia.com/SDK/10/opengl/samples.html#compress_YCoCgDXT

https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
http://developer.download.nvidia.com/SDK/10/opengl/samples.html
http://developer.download.nvidia.com/SDK/10/opengl/samples.html

Textures (Setting State)

// Sets minification filtering on texture 7
// This parameter will be ignored if a sampler is bound.
glTextureParameteri(7, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

Textures (Using)

// Binds texture 7 to texture unit 3.
glBindMultiTextureEXT(3, GL_TEXTURE_2D, 7);

StretchRect

Implementing StretchRect in GL involves using Read/Write FBOs.

Bind source as a read target

Bind destination as a write target

Draw!

Alternatives:

No stretching/format conversion? EXT_copy_texture

Stretching / format conversion? NV_draw_texture

StretchRect – MSAA case

When MSAA is involved, use

EXT_framebuffer_multisample_blit_scaled

Allows resolving and resizing in a single blit

Otherwise two blits needed (one for resolve, one for resize)

Other GL/D3D differences

Clip Space

D3D:

-w <= x <= w

-w <= y <= w

0 <= z <= w

GL

-w <= x <= w

-w <= y <= w

-w <= z <= w

But anything with w < 0 still clipped by W=0 clipping

Latched State – let’s get back to this.

